

A Microscopic Interpretation of the Entropy Increase Rate

Michiel Renger
Stefan Adams
Nicholas Dirr
Mark Peletier
Johannes Zimmer

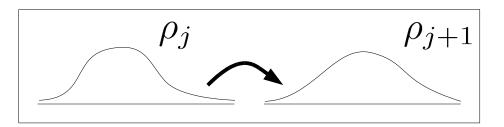
For two probability densities ρ, ρ_0 on \mathbb{R}^d :

$$I_h(\rho; \rho_0) := \int \rho(x) \log \rho(x) dx + \frac{1}{2h} d(\rho, \rho_0)^2$$

$$\rho_{1} := \arg \min_{\rho} I_{h}(\rho; \rho_{0})$$

$$\rho_{2} := \arg \min_{\rho} I_{h}(\rho; \rho_{1})$$

$$\vdots$$



Th. (R. Jordan, D. Kinderlehrer, F. Otto 1998)

$$\rho_{t/h} \xrightarrow{h \to 0} u \quad \text{in } L^1(\mathbb{R}^d \times (0, \infty))$$

where u is the solution of the diffusion equation:

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, & \mathbb{R}^d \times (0, \infty) \\ u = \rho_0, & \mathbb{R}^d \times \{t = 0\} \end{cases}$$

$$I_h(\rho; \rho_0) = \int \rho(x) \log \rho(x) \, dx + \frac{1}{2h} d(\rho, \rho_0)^2$$

$$\frac{driving \ force:}{(negative) \ entropy} \qquad Wasserstein \ distance$$

How can we interpret this functional microscopically?

Look for a similar functional in ρ and ρ_0 such that the minimisers converge to u (the solution of the diffusion eq.)

Brownian Particle System

 ρ_0 initial probability density of particles

 X_i random position of particle i at time h, with probability density $k_h(x,x_0)=rac{1}{(4\pi h)^{d/2}}\exp(-rac{|x-x_0|^2}{4h})$

 $L_n(x) := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(x)$ particle density at time h

Th. (Strong Law of Large Numbers)

$$L_n \xrightarrow{n \to \infty} u \quad a.s.$$

where u is the solution of the diffusion equation:

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u, & \mathbb{R}^d \times (0, \infty) \\ u = \rho_0, & \mathbb{R}^d \times \{t = 0\} \end{cases}$$

We loose too much information in this limit!

Def. $\mathbb{P}(L_n)$ satisfies a <u>Large Deviation Principle</u> with rate functional J iff:

- (i) $J \neq \infty$ and has compact level sets
- (ii) $\frac{1}{n} \log \mathbb{P}(L_n) \xrightarrow{n \to \infty} -J$ (weak convergence by duality with continuous bounded functions)

Informally, this means that for large n:

$$\mathbb{P}(L_n \sim \rho) \sim e^{-nJ(\rho;\rho_0)}$$

Note that J is minimised by the most likely particle density ρ !

Relation to entropy functional

$$S(\rho) := \int \rho(x) \log \rho(x) dx$$

$$H(q|\mu) := \iint q(x,y) \log \frac{q(x,y)}{\mu(x,y)} dx dy$$

The rate functional is given by:

connection for small
$$h$$
?
$$J_h(\rho;\rho_0)=\inf_{q\in\Gamma(\rho,\rho_0)}H(q|\rho_0k_h)$$

$$I_h(\rho;\rho_0)=S(\rho)+\frac{1}{2h}d(\rho,\rho_0)^2$$

Th. (Adams, Dirr, Peletier, Zimmer; forthcoming)

$$J_h(\cdot; \rho_0) - \frac{1}{4h}d(\cdot, \rho_0)^2 \xrightarrow{h \to 0} \frac{1}{2}S(\cdot) - \frac{1}{2}S(\rho_0)$$

 The Entropy-Wasserstein functional reflects the (infinitely small) probability that the system deviates from diffusion!

- Currently, my research focuses on extending this result to:
 - diffusion with drift
 - diffusion with death
 - diffusion with birth