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Introduction

Consider an elastic surface. The elastic energy of the surface is
given by

E =

∫
Ω

(α + βH2 + γK )dµ,

where the integral is over the surface Ω and

I H is the mean curvature,

I K is the Gaussian curvature.

The first term represents surface tension, while
the second and third term model the bending
energy. The equilibrium shape of certain cells
can be found by minimising the bending energy.
For example the red blood cell.
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The Willmore flow I

Since the integral over the Gaussian curvature is a constant
(Gauss-Bonnet), minimising the bending energy comes down to
minimising the Willmore functional∫

Ω
H2dµ.

Minimising this integral gives the so-called Willmore flow. This is a
partial differential equation on a surface.



Surface evolution

Consider a moving surface φ(t) : M → R3 parametrised by t, with
metric gij = 〈∂iφ, ∂jφ〉.

p

qφ̄t(p, t)

φ̄t(q, t)

Here, φ̄t is the displacement of the surface in the normal direction.



The Willmore flow II

The Willmore flow is given by

φ̄t = −∆H − 2H(H2 − K ),

with

I H : mean curvature,

I K : Gaussian curvature,

I ∆ : Laplace-Beltrami operator. Generalisation of Laplacian
given by

∆ =
1√

det g
∂i

(
g ij
√

det g∂j

)
.



Curvatures

Let κ1 and κ2 be the maximal and minimal curvatures of a surface
at a particular point. The mean and Gaussian curvatures at that
point are given by

H =
1

2
(κ1 + κ2),

K = κ1κ2.

Willmore flow : φ̄t = −∆H − 2H(H2 − K ).



The sphere

Consider a sphere of radius R. If we choose the normal such that it
points outwards, then

κ1 = κ2 = − 1

R
,

everywhere. Hence,

H = − 1

R
and K =

1

R2
,

on the whole sphere.
We see immediately that

φ̄t = −∆H − 2H(H2 − K ) = 0.



The sphere and more

I The Willmore energy for a sphere is 4π.

I The Willmore energy is scale invariant.

I The sphere is a global minimum for closed immersed surfaces.

A surface with κ1 = −κ2, everywhere, is also a stationary solution
(H = 0). This surface is given by the graph

r(z) = q cosh
(z

q

)
,

rotated around the z-axis.
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Properties of Willmore flow

I The Willmore flow is a fourth order, nonlinear, differential
equation.

I Short time existence (parabolic quasi linear)
I Long time existence

I for solutions close to a local minimum
I for immersed spheres with Willmore energy lower equal to 8π
I two-dimensional graphs

I If blowup occurs, the blowup profile must be stationary.



Problem

Can the Willmore flow create a singularity on a smooth surface in
finite time?

Numerical computations suggest that this can happen. Consider
the following curve (a so-called Limaçon) rotated around the
horizontal axes.
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Numerical computations

Numerical computations suggest that a Limaçon, governed by the
Willmore flow, creates a singularity in finite time.
Note

I a self intersection is not a singularity

I the tip drops with a quasi stationary rate

I the different scales

Goal of our research is to determine the rate with which the tip
drops. Call this rate λ.



Different scales
There are three regions in this problem corresponding to three
different scales.

I In the remote region the solution hardly moves.

I In the outer region the solution evolves (by definition) with
the self similar scale (T − t)1/4.

I In the inner region the solution is governed by the blowup rate.
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Matched asymptotics

On every region we can simplify the equation differently.

I In the remote region one can use κ1 ∼ κ2.

I In the outer region we use zr → 0.

I In the inner region we can use κ1 ∼ −κ2.

Matching means that the solutions should behave the same in the
intermediate regions.



Results

I Matching gives

λ ∼ (T − t)1/2

| ln
(

1
T−t

)
|4
.

I But we do not find a Limaçon that becomes singular.

I We find a dumbbell.
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Future work

I Study the dumbbell more carefully.
Numerically and analytically.

I Use other matching to describe the blowup of the Limaçon.
Use moving mesh methods to study the evolution.


