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The Ginzburg-Landau Equation

Ginzburg-Landau Equation

i
∂Φ

∂t
+ (1 − iε)∇2Φ + (1 + ibε)|Φ|2σΦ = 0

Φ : R ×Rd → C

ε small, ε = 0 is the Nonlinear Schrödinger Equation
−1

4 < b = O(1)

Nonlinearity, 2 < σd < 4
In applications only valid for small amplitude
Interested in blowup solutions (norm solution blows up in
finite time)
σd = 2 is critical
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The Complex Ginzburg-Landau Equation
Blow-up

Look for radially symm. solutions: ∇2 = ∂2
r + d−1

r ∂r
Transformation:

Φ(x , t) B (2a(T − t))−
1
2 ( 1

σ+i ωa ) Q
(

r√
2a(T − t)︸          ︷︷          ︸

=ξ new space

,−
1

2a
ln

T − t
T︸           ︷︷           ︸

=τ new time

)

)

a > 0

iQτ − ωQ + (1 − iε)
(
Qξξ +

d − 1
ξ

Qξ

)
+ ia

(
1
σ

Q + ξQξ

)
+(1 + ibε)|Q|2σQ = 0

Look for stationary solutions
d is a parameter (non-integer)
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"Blow-up solutions" of the Rescaled Complex
Ginzburg-Landau Equation
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Numerical results from Budd, Rottschäfer, Williams (2005)
k = number of peaks, d = 3, σ = 1, b = 0
Numerical result: ring solution is stable!
Goal: investigate stability with analytic methods
We look at the case 0 < a � 1, ε = Ka
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Asymptotics

Asymptotics (σ = 1) by Budd, Rottschäfer, Williams (2005)

ξ = κ
a + s

Important parameters: 2 < d < 4 and b > −1
4 .
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Asymptotics

Asymptotics (σ = 1) by Budd, Rottschäfer, Williams (2005)

ξ = κ
a + s

Important parameters: 2 < d < 4 and b > −1
4 .
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Non-radially symmetric perturbations

Set-up stability w.r.t. radially symmetric perturbations

Standard techniques only work in the bump region
First concentrate on the bump region
Add a perturbation: Q(ξ)︸︷︷︸

bump

+ v(ξ)eλτ︸   ︷︷   ︸
small perturbation

→ L(a)V = λV

Stability: necessary Reλ ≤ 0
Eigenvalue prob. for v = v1 + iv2 in the bump region if
a = 0: 0 −

(
∂2

s − α + |S0|
2σ

)
∂2

s − α + (2σ + 1)|S0|
2σ 0

 [ v1
v2

]
= λ

[
v1
v2

]
.

Eigenvalues↔ localized (decaying) solutions
Essential spectrum↔ bounded (non-decaying) solutions
Plan: look for these solutions and match to other regions.
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Eigenvalue λ = 0

λ = 0 is an eigenvalue for a = 0 (no other evals)
Problem: What happens for a , 0?
Solution: Evans Function E(λ,a)

Zeros of the Evans function are the eigenvalues!

We show

E(λ,a) = λ2
(
∂4
λE(0,0)

4! λ2 +
∂a∂

3
λE(0,0)
1!3! aλ +

∂2
a∂

2
λE(0,0)
2!2! a2

)
+ . . .

From derivatives of Evans function we can determine λ(a)
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Derivatives Evans Function

Derivatives depend on persistence of eigenfunctions up to
order a2 and the asymptotics up to O(a3)

Working out these expressions gives hundreds of terms,
thus we use Mathematica (not straightforward)
Depends on: d = 2 . . . 4,b > −1

4 .
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Matching condition: Re λ
a > −1 (algebraic decay)

For Re λ
a = −1: bounded solution (on the whole domain!)
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Applications

Laser in a nonlinear medium
Refraction index of the medium depends on light intensity

In: , Out:

In: , Out:
Figures are from Gaeta, Eliel et al 2006.
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Also allow for perturbations in the azimuthal direction

iQτ − ωQ + (1 − iε)
(
Qξξ +

d − 1
ξ

Qξ +
1
ξ2

Qθθ

)
+ ia

(
1
σ

Q + ξQξ

)
+(1 + ibε)|Q|2σQ = 0
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Conclusions and further research

Conclusion
The Evans function can be used to analyse stability
analytically.
Numerical simulations indicate instability w.r.t. non-radially
symmetric perturbations.
The ring solution can break up into spots.
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Appendix For Further Reading

Questions and References

Question?

C.J. Budd, V Rottschäfer and J.F. Williams (2005),
Multi-bump, blow-up, self-similar solutions of the complex
Ginzburg-Landau equation

C.J. Budd, Asymptotics of multi-bump blow-up self-similar
solutions of the nonlinear Schrödinger equation

T. Kapitula (1999), The Evans function and generalized
Melnikov integrals

Collapse of optical vortices, Vuong, L.T. and Grow, T.D. and
Ishaaya, A. and Gaeta, A.L. and t Hooft, G.W. and Eliel,
E.R. and Fibich, G.
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