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Background

* There exists an intimate link between psychological
processes and electrical brain activity

* One of the major goals of cognitive neuroscience is
to characterize this link

* Most of the studies however, use only simple
statistical properties of the recorded brain signals

* Not much is known about their dynamics and its
relation to cognition

* We therefore advocate explicit dynamical
modeling of neuronal activity

* A recent development within this context is the
use of stochastic differential equations
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Stochastic differential equations

General form: dx, = b,(x,)dt + 0, (x,)dW, with
drift function b, : R" — R,
diffusion function o, : R" — Mat, (R),

driving n-dimensional Brownian motion W, , and
parameter vector @ J R“.

* The drift function models the deterministic dynamics

of the system

* The diffusion function models the stochastic fluctuations
affecting the system

* Problem statement: Estimate 8 from discretely-sampled
observations X ,, X »,..., X 5-
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Mouse hippocampal activity in vitro

Human hippocampus

* The hippocampus is a cortical structure
known to play a fundamental role in the
formation of memories

* In vitro activity in mouse hippocampus slices
has characteristics comparable with activity
in intact hippocampus
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* In vitro recordings are used to investigate the
genetics underlying hippocampal activity

Electrode grid over
hippocampal slice
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Mathematical model

One-dimensional system with parabolic diffusion

dx, = —06,x,dt + \/92 +0,x +0,x"dW
thus 6 =(6,,6,,6,,6,)
drift function b,(x) =—-6x, and

diffusion function @, (x) =+/6, +6,x+6,x*.
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Statistical inference

Numerically solve the estimating equation G, () =0 where

. XA _ml(X(i—l)A;H)
= X A
@) ZZI W% ona Q)Exm - ml(X(i—l)A)§9)2 B mz(X(i-l)A;H)E

where m, (x;6) =IypA(y | x;60)dy
and m, (x;6) = [(y =m (x; 6))° pa(y1x;0)dy
are the first and second conditional centered moments (Bibby & Sorensen, 1998).
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Preliminary results

Estimated drift functions
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Preliminary results

: Empirical CDF
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Human brain rhythms

* Electrical activity from human brains is
measured with EEG or MEG

* The measured signals reflect the summed
activity of local cortical patches

* And is typically rhythmic
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Mathematical model

* Damped harmonic oscillator driven by additive white noise:

X+ +wx=0é{).

- xl t 0 _1
*Let v =x then —-A t+0 W. where A:%OZ E
Vv, , y
t
* Which has solution @t E: e @0 E*U_[e_w—s) % E’Ws-
t 0 0

* The covariance function of x can be explicitly calculated.

* The parameter vector 8 = (y, w,0) is estimated by matching
the theoretical and observed covariance functions
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Preliminary results
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Preliminary results

Autocovariance function Power spectrum
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Conclusions

* The dynamics of diverse ongoing neuronal activity
can be described by stochastic differential equations
(mouse hippocampus activity in vitro, spontaneous
human alpha rhythm)

* The statistical techniques to estimate the model parameters
heavily depend on the type of model (estimation equations,
generalized moments estimation)

* The neuroscientific relevance of these models has to be
established by applying them to different experimental
paradigms (genetic mouse lines, cognitive conditions)
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