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Fungal Hyphae
Fungal hyphae are tubular cells with highly localized growth in the tip of
the cell. Hypha are typically 3− 10µm wide, 50− 400µm long, and grow
at a rate of 0.1− 6mm per hour.

The VSC model was first proposed by Bartnicki-Garcia et al. (1989)

Numerical work was done on the diffusive VSC model by Bela Mulder
et al. (2006)

1

1Movie credits: Prof. N. Read, University of Edinburgh,
http://129.215.156.68/Movies/hypha.htm
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The VSC model

The surface of the cell, ∂Ω ⊂ R3, is symmetric around the z axis.

The vesicle supply center (VSC) moves at a velocity of 1 in the z
direction and is the source of a flux F of material arriving at the cell
wall.

The flux creates new surface area. The cell wall expands orthogonaly
to the surface of the cell wall.

The normal velocity vn can then be expressed in terms of the flux and the
mean curvature H.

vn = −F

H
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Ballistic and diffusive flux

There are several possibilities for modeling the flux of vesicles emanated
from the VSC.

Ballistic flux :

F =
n̂ · (x − xVSC )

|x − xVSC |3
.

Diffusive flux :

∆u = −4πδ(x − xVSC ) in Ω,

u = 0 on ∂Ω.
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Traveling waves

z

r

ξVSC

s

In a co-moving coordinate frame, ∂Ω is the path (r(s), z(s)), with s
pathlength, rotated around the z axis. An equilibrium ansatz then yields

dr

ds
=

√
1−

(
G (s)

r(s)

)2

,
dz

ds
= −G (s)

r(s)
,

where,

G (s) =

∫ s

0
F (σ)r(σ)dσ.
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Fixed point

To solve this we construct the following map,

∂Ω
PDE // Gξ

Starting with a boundary ∂Ω we place the VSC at distance ξ from the
tip and solve the Dirichlet problem to find the cumulative flux Gξ.

For a specific distance ξ∗ we can solve the ODE such that its solution
defines a new boundary ∂Ω′ with the desired properties.

A fixed point of this map is a solution to the traveling wave problem.
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Schauder’s fixed point Theorem

Theorem (Schauder)

Let X be a closed convex set in a Banach space B and let T be a
continuous mapping of X into itself such that the image TX is
precompact. Then T has a fixed point.

X is defined by the following restrictions on r(s)

0 ≤ r(s) ≤ 2 for all s,

0 ≤ r ′(s) ≤ 1 for all s,

−M ≤ r ′′(s) ≤ A for all s,

r(s) ≥ s − 1

9
C 2s3 for 0 ≤ s ≤ C−1,

for suitable constants M,A,C .
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The cumulative flux

0

2

s

G
ξ
(s

)

In the tip,

Gξ(s) ≤ 4
s2

ξ2
.

The cumulative flux is monotone in ξ.

∂Gξ

∂ξ
(s) < 0
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Matching

0

2

s

r

rξ,tip(s)

rξ,asy(s)

Given Gξ(s) we solve the ODE to find

a solution rξ,tip coming from the tip,

and a solution rξ,asy coming from the asymptote.

Since these solutions are monotone in ξ, there is an unique value ξ∗ such
that these match.
Using the implicit function theorem, one can show that Gξ → (ξ∗, r) is
continuous.
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To do...

There are still a lot of open problems.

Schauder’s fixed point theorem does not give uniqueness of the fixed
point. Does this model have a unique solution?

Is this solution stable?

Modifications to the model.
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