Existence of traveling waves in the Diffusive VSC model

R. Nolet (VU), J. Hulshof (VU) and G. Prokert (TUE)

Eindhoven - Apr 14, 2010

vrije Universiteit amsterdam

э

Fungal Hyphae

Fungal hyphae are tubular cells with highly localized growth in the tip of the cell. Hypha are typically $3 - 10\mu m$ wide, $50 - 400\mu m$ long, and grow at a rate of 0.1 - 6mm per hour.

- The VSC model was first proposed by Bartnicki-Garcia *et al.* (1989)
- Numerical work was done on the diffusive VSC model by Bela Mulder *et al.* (2006)

1

¹Movie credits: Prof. N. Read, University of Edinburgh, http://129.215.156.68/Movies/hypha.htm

R. Nolet (VU), J. Hulshof (VU) and G. ProExistence of traveling waves in the Diffusive Ein

• The surface of the cell, $\partial \Omega \subset \mathbb{R}^3$, is symmetric around the *z* axis.

- The surface of the cell, $\partial \Omega \subset \mathbb{R}^3$, is symmetric around the *z* axis.
- The vesicle supply center (VSC) moves at a velocity of 1 in the *z* direction and is the source of a flux *F* of material arriving at the cell wall.

- The surface of the cell, $\partial \Omega \subset \mathbb{R}^3$, is symmetric around the *z* axis.
- The vesicle supply center (VSC) moves at a velocity of 1 in the *z* direction and is the source of a flux *F* of material arriving at the cell wall.
- The flux creates new surface area. The cell wall expands orthogonaly to the surface of the cell wall.

- The surface of the cell, $\partial \Omega \subset \mathbb{R}^3$, is symmetric around the z axis.
- The vesicle supply center (VSC) moves at a velocity of 1 in the *z* direction and is the source of a flux *F* of material arriving at the cell wall.
- The flux creates new surface area. The cell wall expands orthogonaly to the surface of the cell wall.

The normal velocity v_n can then be expressed in terms of the flux and the mean curvature H.

$$v_n = -\frac{F}{H}$$

Ballistic and diffusive flux

There are several possibilities for modeling the flux of vesicles emanated from the VSC.

Ballistic and diffusive flux

There are several possibilities for modeling the flux of vesicles emanated from the VSC.

• Ballistic flux :

$$F = \frac{\hat{n} \cdot (x - x_{VSC})}{|x - x_{VSC}|^3}.$$

Ballistic and diffusive flux

There are several possibilities for modeling the flux of vesicles emanated from the VSC.

• Ballistic flux :

$$F = \frac{\hat{n} \cdot (x - x_{VSC})}{|x - x_{VSC}|^3}$$

• Diffusive flux :

$$\begin{aligned} \Delta u &= -4\pi\delta(x - x_{VSC}) & \text{in } \Omega, \\ u &= 0 & \text{on } \partial\Omega. \end{aligned}$$

Traveling waves

z

R. Nolet (VU), J. Hulshof (VU) and G. Pro Existence of traveling waves in the Diffusive Eindhoven - Apr 14, 2010 6 / 11

э

Traveling waves

In a co-moving coordinate frame, $\partial \Omega$ is the path (r(s), z(s)), with s pathlength, rotated around the z axis. An equilibrium ansatz then yields

$$\frac{\mathrm{d}r}{\mathrm{d}s} = \sqrt{1 - \left(\frac{G(s)}{r(s)}\right)^2}, \qquad \qquad \frac{\mathrm{d}z}{\mathrm{d}s} = -\frac{G(s)}{r(s)},$$

where,

$$G(s) = \int_0^s F(\sigma) r(\sigma) \mathrm{d}\sigma.$$

R. Nolet (VU), J. Hulshof (VU) and G. ProExistence of traveling waves in the Diffusive Eindhoven - Apr 14, 2010 6 / 11

Fixed point

To solve this we construct the following map,

$$\partial \Omega \xrightarrow{\text{PDE}} G_{\xi}$$

• Starting with a boundary $\partial \Omega$ we place the VSC at distance ξ from the tip and solve the Dirichlet problem to find the cumulative flux G_{ξ} .

Fixed point

To solve this we construct the following map,

$$\partial \Omega \xrightarrow{\text{PDE}} G_{\xi} \xrightarrow{\text{ODE, } \xi^*} \partial \Omega'$$

- Starting with a boundary $\partial \Omega$ we place the VSC at distance ξ from the tip and solve the Dirichlet problem to find the cumulative flux G_{ξ} .
- For a specific distance ξ^* we can solve the ODE such that its solution defines a new boundary $\partial \Omega'$ with the desired properties.

Fixed point

To solve this we construct the following map,

- Starting with a boundary $\partial \Omega$ we place the VSC at distance ξ from the tip and solve the Dirichlet problem to find the cumulative flux G_{ξ} .
- For a specific distance ξ^* we can solve the ODE such that its solution defines a new boundary $\partial \Omega'$ with the desired properties.
- A fixed point of this map is a solution to the traveling wave problem.

Schauder's fixed point Theorem

Theorem (Schauder)

Let X be a closed convex set in a Banach space B and let T be a continuous mapping of X into itself such that the image TX is precompact. Then T has a fixed point.

Schauder's fixed point Theorem

Theorem (Schauder)

Let X be a closed convex set in a Banach space B and let T be a continuous mapping of X into itself such that the image TX is precompact. Then T has a fixed point.

X is defined by the following restrictions on r(s)

$0 \leq r(s) \leq 2$	for all <i>s</i> ,
$0 \leq r'(s) \leq 1$	for all <i>s</i> ,
$-M \leq r''(s) \leq A$	for all <i>s</i> ,
$r(s) \geq s - \frac{1}{9}C^2s^3$	for $0\leq s\leq C^{-1}$,

for suitable constants M, A, C.

The cumulative flux

In the tip,

$$G_{\xi}(s) \leq 4 \frac{s^2}{\xi^2}.$$

The cumulative flux is monotone in ξ .

$$\frac{\partial G_{\xi}}{\partial \xi}(s) < 0$$

Given $G_{\xi}(s)$ we solve the ODE to find

Given G_ξ(s) we solve the ODE to find
a solution r_{ξ,tip} coming from the tip,

Given $G_{\xi}(s)$ we solve the ODE to find

- a solution $r_{\xi,tip}$ coming from the tip,
- and a solution $r_{\xi,asy}$ coming from the asymptote.

Given $G_{\xi}(s)$ we solve the ODE to find

- a solution $r_{\xi,tip}$ coming from the tip,
- and a solution $r_{\xi,asy}$ coming from the asymptote.

Since these solutions are monotone in ξ , there is an unique value ξ^* such that these match.

Given $G_{\xi}(s)$ we solve the ODE to find

- a solution $r_{\xi,tip}$ coming from the tip,
- and a solution $r_{\xi,asy}$ coming from the asymptote.

Since these solutions are monotone in ξ , there is an unique value ξ^* such that these match.

Using the implicit function theorem, one can show that $G_{\xi} \rightarrow (\xi^*, r)$ is continuous.

There are still a lot of open problems.

P

< ∃⇒

3

There are still a lot of open problems.

• Schauder's fixed point theorem does not give uniqueness of the fixed point. Does this model have a unique solution?

To do...

There are still a lot of open problems.

- Schauder's fixed point theorem does not give uniqueness of the fixed point. Does this model have a unique solution?
- Is this solution stable?

There are still a lot of open problems.

- Schauder's fixed point theorem does not give uniqueness of the fixed point. Does this model have a unique solution?
- Is this solution stable?
- Modifications to the model.