Daphnia revisited: an example of local stability and bifurcation analyses for physiologically structured population models

NDNS+ workshop Wednesday 14th April @Eindhoven TU Shinji Nakaoka Thanks to JSPS fellowship fund!

Based on the paper Odo Diekmann, Mats Gyllenberg, Hans Metz, SN, Andre de Roos Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. Journal of Mathematical Biology *in press*.

Delay equations

A couple system of renewal and delay differential equation

Space

$$X := L^1([-h, 0]; \mathbb{R}), \quad Y := C(([-h, 0]; \mathbb{R}).$$

Initial condition

$$(\varphi, \psi) \in X \times Y$$
, $b(t) = \varphi(t)$ and $S(t) = \psi(t)$, $-h \le t \le 0$

A general form for a finite delay case

$$\begin{cases} b(t) = F_1(b_t, S_t), \\ \frac{dS}{dt}(t) = F_2(b_t, S_t) \end{cases}$$

where
$$S_t(\sigma)$$
: $\sigma \mapsto S(t+\sigma), \quad \sigma \leq 0$

Mathematical theory

O. Diekmann *et al*, Delay equations: functional, complex, and nonlinear analysis, Springer, 1995

☑ A finite delay case

O. Diekmann *et al*, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal. 39: 1023--1069, 2007

An infinite delay case

- O. Diekmann *et al*, Abstract delay equations inspired by population dynmics, in Functional analysis and evolution equations. 187--200, 2008
- O. Diekmann et al, Equations in infinite delay, submitted.

Resource-consumer system

S(t): food (algae) concentration (resource)

b(t): Daphnia population birth rate (consumer)

$$b(t) = \int_0^\infty b(t-a)\beta(\Xi(a; S_t), S(t))\mathcal{F}(a; S_t)da,$$

$$\frac{dS}{dt}(t) = f(S(t)) - \int_0^\infty b(t-a)\gamma(\Xi(a;S_t),S(t))\mathcal{F}(a;S_t)da.$$

 $\Xi(a; S_t)$: The current body size of an individual with age a $\beta(\Xi(a; S_t), S(t))$: the probability per unit of time of giving birth $\gamma(\Xi(a; S_t), S(t))$: the rate of food consumption of an individual

 $\mathcal{F}(a; S_t)$: the survival probability of an individual

Model ingredients

Individual body size growth and survival

An individual has age a at the current time t

 $\Xi(a; S_t)$: The current body size of an individual with age a

$$\begin{cases} \frac{d\xi}{d\tau}(\tau) = g(\xi(\tau), \psi(-a+\tau)), & \xi(0) = \xi_b. \\ \Xi(a; \psi) := \xi(a; a, \psi) \end{cases}$$

 $\mathcal{F}(a; S_t)$: the survival probability of an individual

$$\begin{cases} \frac{d\mathcal{G}}{d\tau}(\tau) = -\mu(\xi(\tau; a, \psi), \psi(-a + \tau))\mathcal{G}(\tau), \, \mathcal{G}(0) = 1 \\ \mathcal{F}(a; \psi) = \mathcal{G}(a; a, \psi) \end{cases}$$

Linearised stability

Steady state (\bar{b}, \bar{S})

 R_0 : the basic reproduction number of the Daphnia

$$R_0(\overline{S}) = \int_0^\infty \beta(\Xi(a; \overline{S}), \overline{S}) \mathcal{F}(a; \overline{S}) da$$

A steady *Daphnia* population

$$R_0(\overline{S}) = 1$$

$$\overline{b} = f(\overline{S}) / \int_0^\infty \gamma(\Xi(a; \overline{S}), \overline{S}) \mathcal{F}(a; \overline{S}) da$$

We can derive steady state age-size relation and survival probability (not shown)

Linearised stability

Linearised system

$$\begin{cases} y(t) = c_1 z(t) + \int_0^\infty (k_{11}(a)y(t-a) + k_{12}(a)z(t-a))da, \\ \frac{dz}{dt}(t) = c_2 z(t) + \int_0^\infty (k_{21}(a)y(t-a) + k_{22}(a)z(t-a))da \end{cases}$$

Characteristic equation

$$\left(1 - \widehat{k}_{11}(\lambda)\right) \left(\lambda - c_2 - \widehat{k}_{22}(\lambda)\right) = \widehat{k}_{21}(\lambda) \left(c_1 + \widehat{k}_{12}(\lambda)\right)$$

where
$$\widehat{k}_{ij}(\lambda) := \int_0^\infty e^{-\lambda a} k_{ij}(a) da$$

A special case: stage structure

Maturation

 $\overline{a} = \overline{a}(\psi)$: the age of the individuals that mature exactly now

$$b(t) = \int_{\overline{a}(S_t)}^{\infty} b(t-a)\beta(\Xi(a; S_t), S(t))\mathcal{F}(a; S_t)da.$$

A special case: stage structure

C.f., De Roos et al, Theor. Pop. Biol. 2003

Variable maturation delay

Assumption

Model ingredients g, μ, β and γ are indipendent of ξ

$$\int_{-\tau}^{0} g(S_t(\theta))d\theta = \xi_A - \xi_b$$

variable maturation delay

Numerical bifurcation analysis

Hopf bifurcation and population cycles

Characteristic equation: $P(\lambda; a, b) = 0$ $a, b \in \mathbb{R}$

 $\lambda = i\omega$: a parametrized curve $(a(\omega), b(\omega))$

Example:

$$g(S) = g_0((1 - \alpha)A + \alpha S)$$

 α : A fraction of juveniles to exploit S

C.f., Diekmann Springer 1995

Numerical simulation

By Escalator Boxcar Train method De Roos et al, Am Nat 1992

Future work

✓ Numerical analysis

De Roos et al, Bull. Math. Biol. 2009

Numerical equilibrium analysis for structured consume-resource models

Future work: numerical continuation of periodic orbits etc...

Application of the theory of physiologically structured population models and delay equations TO

epidemiological model, cell biological context etc...