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1. Motivation
David A. DiCarlo, Experimental measurements of saturation overshoot on infiltration, Water Resources

Research, Vol. 40, W04215, doi:10.1029/2003WR002670, 2004
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2. The mathematical model

Two-phase flow (wetting/non-wetting)

Homogeneous medium

Horizontal flow, one-dimensional (gravity may be included)
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Equations, quantities (standard approach)

Φ∂Sα
∂t

+ ∂qα
∂x

= 0 (α = w, o)

−qα = K krα(Sα)
µα

∂pα
∂x

So + Sw = 1

po − pw = pc(Sw)

pc(Sw) = σ
√

Φ
K
J(Sw)

Φ - porosity

K - absolute permeability

Sα ∈ [0, 1] - normalized saturation

qα - specific discharge

krα - relative permeability

µα - dynamic viscosity

pα - pressure

σ - interfacial tension

J - Leverett function
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Equations, quantities (dynamic effects, Hassanizadeh & Gray)

Φ∂Sα
∂t

+ ∂qα
∂x

= 0 (α = w, o)

−qα = K krα(Sα)
µα

∂pα
∂x

So + Sw = 1

po − pw = pc(Sw)+pdync (Sw)

pc(Sw) = σ
√

Φ
K
J(Sw)

pdync (Sw) = Φτ̃ ∂Sw
∂t

Φ - porosity

K - absolute permeability

Sα ∈ [0, 1] - normalized saturation

qα - specific discharge

krα - relative permeability

µα - dynamic viscosity

pα - pressure

σ - interfacial tension

J - Leverett function

τ̃ - damping coefficient
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Rem: Total velocity q = qw + qo satisfies

∂q

∂x
=
∂(qw + qo)

∂x
= 0

A1: q = qo + qw - constant in time (given)

A1: krα, J – monotone;

Typical choices:

kro = (So)
1+p; krw = (Sw)1+q; p, q > 0

J(Sw) = (1− Sw)−
1
λ , λ > 1
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Scaling

Primary variable: u = Sw

Characteristic values: x := x
L
, t := t

T
, with T = ΦL

q

Balance equation: ∂tu + ∂xF = 0

F = f(u)−Ncλ(u)
∂

∂x
(J(u) +Ncτ∂tu)

f(u) =
krw(u)

krw(u) +Mkro(u)

λ(u) = kro(u)f(u)

Rem: capillary numberNc=
σ
√
KΦ

µoqL
(capillary/viscous forces)

mobility ratio M = µw/µo

τ = τ̃
µwq

2

Φσ2
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3. Travelling waves

(BLreg)


∂u

∂t
+
∂f(u)

∂x
= Aε(u), in Q = {(x, t) : x ∈ R, t > 0},

u(∞, t) = ur, for t > 0,

u(−∞, t) = u`, for t > 0.

"Regularized" Riemann problem:

Aε(u) = ε∂x
[
H(u)∂x

(
u+ ετ∂tu

)]
.

Rem: τ = 0, ε↘ 0 - admissible shock solution to hyperbolic conservation laws

Q: Changing the regularization leads to different (admissible) shocks/entropy criterium?

A: An admissible shock {u`, ur} is the limit ε↘ 0 of a TW solution u = u(η) satisfying

(TW)

 −s(u− ur) + {f(u)− f(ur)} = H(u)(u′ − sτu′′), in R,

u(−∞) = u`, u(∞) = ur,

with η =
x− st
ε

and s =
f(u`)− f(ur)

u` − ur
(RH).

Q: Given τ > 0, for which pairs u`, ur and τ > 0 do travelling waves exist?



10/40

/ department of mathematics and computer science

Constants involved in the construction

α: "tangent point, lower bound"

β: "upper bound"

ū: α ≤ ū < β, τ - dependent

u: middle intersection point

Rem:

Wave speed: s = f(ul)−f(ur)
ul−ur

Tangent point: if ur = 0 we have f ′(α) = f(α)
α

Upper bound: with g(u) :=
s(u−ur)−

(
f(u)−f(ur)

)
H(u)

, β is s.t.
∫ u`

ur
g(u)du > 0 for all u` < β.
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Linear (H(u) ≡ 1) case

(TW)

 −s(u− ur) + {f(u)− f(ur)} = u′ − sτu′′, in R,

u(−∞) = u`, u(∞) = ur,

Theorem 1 (Existence of TW, ur = 0):

There exits τ∗ > 0 such that

a. If 0 ≤ τ ≤ τ∗, Problem (TW) has a unique solution with u` = α and ur = 0.

b. If τ > τ∗, there exists a unique u`(τ) ∈ (α, β) such that Problem (TW) has a unique solution with
u` = u`(τ) and ur = 0.

c. u : [0,∞)→ [α, β) defined by

u(τ) =

{
α for 0 ≤ τ ≤ τ∗
u`(τ) for τ > τ∗,

is continuous, strictly increasing for τ ≥ τ∗, and u(∞) = β.

Rem: As ε↘ 0, the (TW) becomes an admissible shock.

Case a (0 ≤ τ ≤ τ∗) provides classical shocks, dynamic effects can be neglected

Case b (τ ≥ τ∗) provides non-standard shocks, violating classical entropy conditions!
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The τ - u`(τ ) diagram

0 1 2 3 4 5
0.6

0.7

0.9

1

1.1

τ

u
B

α

β

τ
*

u(τ)−

u(τ)−

- Numerically computed (shooting technique);

- Seek for monotone waves u(η) connecting u` to ur = 0;

- Then w(u) = −u′(η(u)) satisfies the derivative equation

sτww′ + w = su− f(u), on (0, u`),

with w > 0 on (0, u`), and w(0) = w(u`) = 0.

- Note: first order problem, two boundary conditions. But τ
and u` are related!

Rem: Computed for M = 2, p = q = 1. This gives α ≈ 0.81, β ≈ 1.14. Numerically we found τ∗ ≈ 0.61.

Rem: Diagram depends on ur!
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(TW)

 −s(u− ur) + {f(u)− f(ur)} = u′ − sτu′′, in R,

u(−∞) = u`, u(∞) = ur,

Theorem 2 (ur = 0, continued):

Given a τ > τ∗ we have u(τ) ∈ (α, β) and u(τ) ∈ (0, α). Then

a. For each uB ∈ (0, u(τ)), Problem (TW) has a unique solution with u` = uB and ur = 0.

b. For each uB ∈ (u(τ), u(τ)), Problem (TW) has a unique solution with u` = uB and ur = u(τ); no
waves are possible for ur = 0.

Both waves are oscillatory.
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Travelling waves connecting u` to ur

0.6 0.7 0.9 1 1.10

1

2

3

4

5
τ

uB

α β

τ*

u(τ)− u(τ)−

C2

C1

A2

A1

B

• (u`, τ) ∈ A1 ∪ A2, ur = 0: no travelling waves.

• (u`, τ) ∈ C1, ur = 0: existence, monotone waves.

• (u`, τ) ∈ C2, ur = 0: existence, oscillatory waves.

• (u`, τ) ∈ B:

non-existence for ur = 0;

existence (oscillatory) for u` = u(τ), with s(u`, u(τ)).
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Phase plane analysis

sτu′′ − u′ = g(u) :=
s(u− ur)−

(
f(u)− f(ur)

)
H(u)

becomes

 v′1 = v2,

v′2 = 1
sτ

(v2 + g(v1)).

Given ur ≥ 0 and τ > 0 let u` = ū(τ) and s = f(u`)−f(ur)
u`−ur

. Then the system has three equilibria: (ur, 0),
(u(τ), 0), and (ū(τ), 0). The first and the last are saddle points, the intermediate is a spiral or a source.

Rem: Relation to the ū− τ diagram:

ū(τ): saddle - saddle connection, u` = ū(τ) to ur (monotone, downwards);

C1: source - saddle connection, u` ≤ u(τ) to ur (monotone, downwards);

C2: spiral - saddle connection u` ≤ u(τ) to ur (oscillatory, downwards);

B: "superposition" of two waves, a spiral to saddle connection u` ∈ (u(τ), ū(τ)) to ū(τ) (oscillatory,
upwards), and a saddle - saddle connection, u` = ū(τ) to ur (monotone, downwards).
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Phase plane associated to the travelling wave: saddle to saddle connection (blue), spiral to saddle

connection (brown)
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Numerical experiments


∂u

∂t
+
∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
in R×R+,

u(x, 0) = uBH̃(−x) for x ∈ R,

with H̃ - smooth approximation of the Heaviside graph.

Numerical scheme:

Implicit for higher order terms, first order in time & finite differences;

Explicit for convection, minmod flux limiting scheme, upwind & Richtmyer.
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Examples:

CaseA1: τ = 0.2, uB = 1.0

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Rem: Since τ < τ∗, the solution first decays to α = ū(τ ).
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Non-standard: τ = 5 > τ∗ casesA2, B:

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Rem: Plateau value (u ≈ 0.98) agrees excellently with the diagram:
u(τ = 5) ≈ 0.98!
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Non-standard: τ = 5 > τ∗ cases B, C2:

0.92 0.94 0.96 0.98 1 1.02 1.040

0.2

0.4

0.6

0.8

0.92 0.94 0.96 0.98 1 1.02 1.040

0.2

0.4

0.6

0.8

Rem: As uB ↘ u(τ = 5) ≈ 0.68 the plateau vanishes and the solution
transforms into an (oscillatory) front {uB, 0}!
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"Nearly"-standard: τ = 5 > τ∗ case C2:

0.75 0.76 0.77 0.78 0.79 0.80

0.2

0.4

0.6

0.8
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4. The non-linear/degenerate case

(BLreg)


∂u

∂t
+
∂f(u)

∂x
= Aε(u), in Q = {(x, t) : x > 0, t > 0},

u(x, 0) = 0, for x > 0,

u(0, t) = uB, for t > 0,

Regularization (J(u) = u):
Aε(u) = ε∂x

[
H(u)∂x

(
u+ ετ∂tu

)]
with

f(u) =
kro(u)

kro(u) +Mkrw(u)
and H(u) = krw(u)f(u),

for kro(u) = u1+p and krw(u) = (1− u)1+q.

Rem:

Linear case: H(u) = 1 everywhere.

Non-linear case: H is not constant;

Degeneracy (H(u) = 0) occurs if u = 0 (fully oil saturated, no water) or u = 1 (fully water saturated).

Physically relevant regime: 0 ≤ u ≤ 1; H(u ≤ 0) = H(u ≥ 1) = 0.
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TW approach: u = u(η) with η = x−st
ε

satisfies (after integration over (η,∞))

(TW)

 −s(u− ur) + {f(u)− f(ur)} = H(u)(u′ − sτu′′), in R,

u(−∞) = u`, u(∞) = ur,

with s = f(u`)−f(ur)
u`−ur

(RH).

Rem: As in the linear case,

sτu′′ − u′ = g(u) :=
s(u− ur)− (f(u)− f(ur))

H(u)
.

For monotone waves, w(u) = −u′(η(u)) satisfies

(ODE) sτww′ + w = g(u), on (ur, u`),

with w > 0 on (ur, u`), w(ur) = 0 and (if possible) w(u`) = 0.
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Rem: Blow up for g as u→ 0 or u→ 1!
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 = 1, u
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 = 0, p = q = 2.5

The graph of g, α < ul < 1 (left) and ul = 1 (right).
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Results (u` > ur)

Depend on p, q, u` and ur:

• Existence for p ∈ (0, 1), or ur > 0; q ∈ (0, 1), or u` < 1;

• Solution remains bounded 0 ≤ u ≤ 1 ("physically relevant");

• Non-existence for p ≥ 1 and ur = 0, respectively q ≥ 1 and u` = 1;

• Existence of weak solutions & essential bounds: Mikelić (2010)

Note: Necessary condition for existence: sτu′′ − u′ = g(u) admits a solution if

0 <

∫ u`

ur

g(u)du <∞, where g(u) :=
s(u− ur)− (f(u)− f(ur))

H(u)
.

Consider u` ≥ α and define

G : [α, 1]→ 1, G(ul) :=

∫ u`

ur

g(u)du.

Further
β = max {ul ∈ [α, 1]/G(ul) ≥ 0}.

Rem: No travelling waves if u` > β!
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Non-linear, non-degenerate case: ur > 0, β < 1

Similar to the linear case, we have:

• Existence of (monotone) waves with u` ∈ [ur, α] if τ < τ∗ (small dynamic effects);

• For any τ > τ∗ a unique u` = ū(τ) ∈ (α, β) exists for which (monotone) travelling waves are
possible;

• If τ > τ∗, (oscillatory) travelling waves also exist for u` ∈ (ur, u(τ)).
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The caseA2

 0

 1
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 10

 0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95

ur = 0.1, M = 1, p = q = 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20  0  20  40  60  80  100

p = q = 0.5, tau = 0.47, ur = 0.1, M = 1, u*(tau) = 0.73..., beta = 0.9

Rem: Here α < 0.7, whereas τ = 0.47 > τ∗ giving ū(τ) ≈ 0.73. Since uB > ū(τ) (case A2) the solution

approaches first ū(τ) before becoming a front ū(τ) ↘ ur = 0. For τ ≤ τ∗ the front is α ↘ ur, but

α < 0.7.
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The case B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.75  0.8  0.85  0.9  0.95  1  1.05

ur = 0.1, M = 2, p = q = 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20  0  20  40  60  80  100

p = q = 0.5, tau = 0.47, ur = 0.1, M = 2, u*(tau) = 0.968..., beta = 1

Rem: Here τ = 0.47 > τ∗ giving ū(τ) ≈ 0.97 > α. With uB < ū(τ), two waves are observed uB ↗ ū(τ)

(oscillatory) and ū(τ)↘ ur (monotone).
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Degenerate case: ur > 0, β = 1

If β = 1, then ū(τ)↗ 1 as τ is increasing.

Theorem (upper bound for τ ):

If β = 1, there exist a τ ∗ > τ∗ (both depending on ur) s.t. for any τ ∈ (τ∗, τ
∗) a unique u` = ū(τ) ∈ (α, 1)

exists allowing for monotone travelling waves {u`, ur}.

Rem: At τ ∗, u` = 1 (degeneracy, H(1) = 0).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.86  0.88  0.9  0.92  0.94  0.96  0.98  1  1.02

ur = 0.1, M = 3, p = q = 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4  5  6  7  8  9  10  11  12

p = q = 0.5, tau = 0.47, ur = 0.1, M = 3, u*(tau) = 1, beta = 1

Rem: Here τ ∗ ≈ 0.47, thus ū(τ) ≈ 1.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

ur = 0.1, M = 1, ..., 4, p = q = 0.5

Diagrams τ − u` = ū(τ), for M = 1, 2, 3, 4, ur = 0.1, p = q = 0.5:

M = 1, 2, when β < 1.
For any τ > 0 a unique ū(τ) < 1 exists allowing for smooth, monotone TW {u` = ū(τ), ur}.

M = 3, 4, when β = 1.
Smooth waves are only possible if τ < τ ∗ (here τ ∗ ≈ 0.47, respectively τ ∗ ≈ 0.14).
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Q: What if τ ≥ τ ∗?

A: "Sharp waves": For some η1 ∈ R we have u ∈ C(R) ∩ C1(R\{η1}), and

u(η ≤ η1) = 1, while u(η > η1) ∈ (ur, 1),

leading to (non-standard) waves {1, ur}.

Rem: Kink at η1, where u = 1. There u′(η1 − 0) = 0 > u′(η1 + 0). Further, at η1 the capillary pressure

p = u+ τu′ becomes discontinuous!
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Degenerate: ur = 0.1, but τ = 0.47 > τ ∗ ≈ 0.14 yielding u` = 1:

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99  1  1.01

ur = 0.1, M = 4, p = q = 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10  12  14  16  18  20  22  24  26

p = q = 0.5, ur = 0.1, M = 4, tau = 0.47 > tau* = 0.14, beta = 1, uB = 0.97

Rem: For monotone waves, w(u) = −u′(η(u)) satisfies

(ODE) sτww′ + w = g(u) :=
s(u− ur)− (f(u)− f(ur))

H(u)
, on (ur, 1),

with w > 0 on (ur, 1), and w(ur) = 0. However, w(1) > 0!

Here we have w(1) ≈ −u′(η1) ≈ −1.64!
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Degenerate case, ur = 0

If β < 1, then (as in the non-degenerate case):

• Standard (monotone) waves {u`, 0}, if u` ∈ (0, α) and τ < τ∗ (small
dynamic effects);

• For any τ > τ∗ a unique u` = ū(τ ) ∈ (α, β) allowing for:

−monotone waves connecting u` to 0;

− oscillatory waves connecting u` ∈ (0, u(τ )) to 0.

Rem: These waves are smooth (no kinks)!
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If β = 1, then there exists a τ ∗ = τ ∗(0) > τ∗ s.t.

• For any τ ∈ (τ∗, τ
∗), a unique u` = ū(τ) ∈ (α, 1) exists allowing for travelling waves connecting

u` = ū(τ) to 0. Such waves are smooth and monotone!

• If τ ≥ τ ∗, then only sharp waves are possible.

Note: Two degeneracy points, ur = 0 and u` = 1, many non-smooth solutions are possible (one kink for
each degeneracy; there are many slopes possible for each of the kinks).

Q: How to select a wave?

A: As limit δ ↘ 0 of waves {1, δ}!
This leads to waves satisfying for some η1 < η0, u ∈ C(R) ∩ C1(R\{η1}),

u(η ≤ η1) = 1, while u(η1 < η < η0) ∈ (0, 1), and u(η ≥ η0) = 0.

Rem: Kink at η1, where u = 1: u′(η1 − 0) = 0 > u′(η1 + 0). However, the wave is smooth at η0; it decays

faster than quadratically to 0.
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Double degeneracy: ur = 0, u` = 1
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0
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Rem: Kink (u′ = −1.27) at η1, smooth transition (u′ = 0) at η0; here w(1) = 1.26.
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5. Saturation overshoot
Infiltration problem: u(t, 0) = uB, u(t, ”∞”) = ur

• The standard Richards model provides monotone profiles:

∂tu+∇ ·
(
K(u)g

)
= ∇ ·

(
K(u)∇Pc(u)

)
• Higher order terms: "dynamic capillarity" C. Cuesta, J. Hulshof, C.J. van Duijn (2000), A. Egorov, J.

Nieber, R. Dautov (2003)

∂tu+∇ ·
(
K(u)g

)
= ∇ ·

(
K(u)∇(Pc(u) + τ∂tu)

)
"phase field" L. Cueto-Felgueroso, R. Juanes (2009)

∂tu+∇ ·
(
K(u)g

)
= ∇ ·

(
K(u)∇(Pc(u) + ∆u)

)
• Multi-phase (percolating/non-percolating) systems R. Hilfer, F. Doster, P. Zegeling (2009)

Rem: The convective term K is convex!
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One phase flow: water, K is convex! v′1 = v2,

v′2 = 1
sτ

(v2 + g(v1)).

• Only two equilibria are allowed, re-
gardless extension;

• With u1 < u2 < u3, upwards wave
{u2 ↗ u3} travel faster than down-
wards wave {u3 ↘ u1}
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Two-phase flow: water and air
convex-concave flux, f(u)(Vt + ka(u)g)! v′1 = v2,

v′2 = 1
sτ

(v2 + g(v1)).

• More than two equilibria are al-
lowed;

• With u1 < u2 < u3, upwards wave
{u2 ↗ u3} can be combined with
downwards wave {u3 ↘ u1}
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Experiments by DiCarlo vs Numerical PDE solutions

Rem:

Brooks-Corey (two phase), parameters for 20/30 sand, total velocities as in the experiments,

Fully nonlinear, degenerate model, τ is fitted (agrees with values reported before).
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Conclusions and perspectives
• Travelling waves for different regularizations (equilibrium/dynamic capillary pressure) of

the Buckley-Leverett model

• Nonstandard entropy solutions to the hyperbolic Buckley-Leverett equation

• Explains the occurrence of experimental results, ruled out by equilibrium models

• Degenerate terms are required for remaining inside the physically relevant regime

• Parametrization is essential (what if p ≥ 1 or q ≥ 1)?

• Agreement with experimental work (saturation overshoot)?

• Mathematical analysis (existence/uniqueness?) of weak solutions

• Numerical analysis (appropriate/convergent numerical schemes)

• Non-smooth data (jumps)

• Heterogeneous media

• Upscaling (pore to core)
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