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1. Motivation

David A. DiCarlo, Experimental measurements of saturation overshoot on infiltration, Water Resources
Research, Vol. 40, W04215, doi:10.1029/2003WR002670, 2004
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Figure 5. Snapshots of the saturation profile versus depth overshoot occurs when the tip saturation is greater than

for six different applied fluxes in initially dry 20/30 sand the tail saturation.
(Accusand) measured using light transmission. At the
highest (11.8 cm/min) and lowest (7.9 x 10™* cm/min)
fluxes the profiles are monotonic with distance and no
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2. The mathematical model

water
—

porous co lumn

Two-phase flow (wetting/non-wetting)
Homogeneous medium

Horizontal flow, one-dimensional (gravity may be included)
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Equations, quantities (standard approach)

@% n % 0 (a=uw,o) O - porosity
K - absolute permeability
—q I Fra(Sa) Opa . .
@ fo o Oa Sa € [0, 1] - normalized saturation

S, + 5, 1 q., - specific discharge

Dy —p p(S,) k,. - relative permeability
Lo - dynamic viscosity
Pe(Sw) = Da, - pressure

o - interfacial tension

J - Leverett function
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Equations, quantities (dynamic effects, Hassanizadeh & Gray)

@% 4+ % 0 (a=w,o) ® - porosity
K - absolute permeability

—(, = Kkra apa
o Ho O Sa € [0, 1] - normalized saturation

1 q. - specific discharge
= pu(Sy) P (S,) k,. - relative permeability
Lo - dynamic viscosity

U\/%J(Sw) Do - pressure

— $-95u o - interfacial tension

ot
J - Leverett function

7 - damping coefficient
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Rem: Total velocity ¢ = q,, + ¢, satisfies

9q _ 9dw+9) _
Ox Ox

A: q = q, + q, - constantin time (given)
A;: k,., J — monotone;

Typical choices:

(SO)HP; rw = (Sw>1+q3 p,q >0

J(Su)=(1=8,)7, A>1
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Scaling
Primary variable: uw = S,
Characteristic values: x :=

Balance equation: d,u + 0, F =0

= () = NA@) 5 () + Nerda)
_ Ky (1)

Erw(u) + ME,o(u)
= kro(u)f(u)

ov Ko

Rem: capillary number N .= 7 (capillary/viscous forces)
Hoq

mobility ratio M = pu,/ 1,

e

T=T
o2
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3. Travelling waves

%4_8];5:) A.(uw), in Q={(zt): xRt >0},
(BLieg) u(o0, t) Uy, for t >0,

u(—o00,t) Uy, for ¢>0.
"Regularized" Riemann problem:
Ac(u) = €0, [H(u)0, (u + eTdu)].
Rem: 7 = 0,2\, 0 - admissible shock solution to hyperbolic conservation laws

Q: Changing the regularization leads to different (admissible) shocks/entropy criterium?
A: An admissible shock {u, u,} is the limit e ™\, 0 of a TW solution u = u(n) satisfying

—s(u—u) + {f(u) — f(u,)} = H(u)(u' — sTu"), in R,
o (—o0) = (00) =

. — st
Wlth'r]:m > and s =
€

Q: Given 7 > 0, for which pairs u,, u, and 7 > 0 do travelling waves exist?
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Constants involved in the construction

: "tangent point, lower bound"

05l : "upper bound"

0.4l _r,‘.:;.:;f:::‘.'«‘ :a < u < f,7-dependent
02l ‘:_:_E;e='?5"" : middle intersection point
%_
Rem:

Wave speed: s = {u)—1(ur)

U —Up

Tangent point: if u, = 0 we have f'(«) =

Upper bound: with g(u) := S(“‘“’")‘é{g‘)‘f ) sisst. [ g(u)du > 0forall up < B.
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Linear (H (u) = 1) case

—s(u—u) +{f(u) = fu)} = v’ — s0”,

u(—00) = uy, u(o0) = uy,

(TW)

Theorem 1 (Existence of TW, u, = 0):
There exits 7. > 0 such that

a. If0 < 7 < 7, Problem (TW) has a unique solution with u, = o« and u,. = 0.

b. If 7 > 7., there exists a unique w,(7) € («, ) such that Problem (TW) has a unique solution with
ug = uy(7) and u, = 0.

€. u:[0,00) — [o, 3) defined by

o for 0<7<T7,
w(r) for 7>,

is continuous, strictly increasing for 7 > 7., and u(oc0) = £.

Rem: As ¢ ™\ 0, the (TW) becomes an admissible shock.

Casea (0 < 7 < 7,) provides classical shocks, dynamic effects can be neglected
Case b ( > 7,) provides non-standard shocks, violating classical entropy conditions!
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The 7 - w,(7) diagram

- Numerically computed (shooting technique);

- Seek for monotone waves u(n) connecting u, to u, = 0;

- Then w(u) = —u/(n(u)) satisfies the derivative equation
sTww' +w = su— f(u), on (0, up),

with w > 0 on (0, u,), and w(0) = w(uy) = 0.

- Note: first order problem, two boundary conditions. But 7
and u, are related!

Rem: Computed for M = 2, p = g = 1. This gives a =~ 0.81, 3 ~ 1.14. Numerically we found 7, ~ 0.61.

Rem: Diagram depends on !
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Theorem 2 (u, = 0, continued):
Givena T > 7, we have u(7) € (o, ) and u(7) € (0, «). Then
a. Foreach ug € (0,u(7)), Problem (TW) has a unique solution with v, = ug and u, = 0.

b. For each up € (u(7),u(r)), Problem (TW) has a unique solution with v, = up and u,
waves are possible for u, = 0.

Both waves are oscillatory.

0.8}

0.6¢
0.4}
0.2}
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Travelling waves connecting u, to u,

up, 7) € Ay U Ay, u, = 0: no travelling waves.

ug, 7) € Cy,u, = 0: existence, monotone waves.

uy, 7) € Co, u, = 0: existence, oscillatory waves.

ug, ) €
non-existence for u, = 0;

existence (oscillatory) for u, = (), with s(u,, u(7)).
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Phase plane analysis

becomes

Givenu, > 0and 7 > 0 letu, = u(7)and s = % Then the system has three equilibria: (u,,0),
(u(7),0), and (u(7),0). The first and the last are saddle points, the intermediate is a spiral or a source.

Rem: Relation to the & — 7 diagram:

u(7): saddle - saddle connection, u, = u(7) to u,. (monotone, downwards);
C,: source - saddle connection, u, < u(7) to u, (monotone, downwards);
Cy: spiral - saddle connection u, < u(7) to u, (oscillatory, downwards);

B: "superposition" of two waves, a spiral to saddle connection u, € (u(7), (7)) to u(7) (oscillatory,
upwards), and a saddle - saddle connection, u, = @(7) to u, (monotone, downwards).
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Phase plane associated to the travelling wave: saddle to saddle connection (blue), spiral to saddle
connection (brown)
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Numerical experiments

ou Of(u)  Pu 5, Fu
o " 9220t

—— =¢e55 t¢ in RxRT,
T
u(z,0) = ugH(—x) for » eR,

ot Ox 0
with A - smooth approximation of the Heaviside graph.

Numerical scheme:

Implicit for higher order terms, first order in time & finite differences;

Explicit for convection, minmod flux limiting scheme, upwind & Richtmyer.
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Examples:

Case A;: 7 =02, ug =1.0

0.2 0.4 0.6 0.8

Rem: Since 7 < T,, the solution first decays to a = u(7).
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Non-standard: 7 = 5 > T, cases A, B:

Rem: Plateau value (w =~ 0.98) agrees excellently with the diagram:
u(t =5) ~ 0.98!
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Non-standard: 7 = 5 > 7, cases B, C,:

Rem: As up \, u(7 = 5) = (.68 the plateau vanishes and the solution
transforms into an (oscillatory) front {up, 0}!
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"Nearly"-standard: 7 = 5 > 7, case C:

0.76 0.77
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4. The non-linear/degenerate case

%+%§:‘) — A), in Q={(xt):x>01t>0}

(BLicg) u(z,0) = 0, for x>0,
u(0,t) = ug, for t>0,
Regularization (J(u) = u):
A (u) = 0, [H(u)0, (u + eTdu)]

with o)
f<u> B kro(u) —T:Mkrw(u)

for k,.o(u) = u'™ and k., (u) = (1 — u)'*e.

and  H(u) = kpp(u) f(u),

Rem:

Linear case: H(u) = 1 everywhere.

Non-linear case: H is not constant;

Degeneracy (H(u) = 0) occurs if u = 0 (fully oil saturated, no water) or u = 1 (fully water saturated).
Physically relevant regime: 0 <u < 1; H(u <0) = H(u > 1) =0.
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TW approach: u = u(n) with n = 2=t satisfies (after integration over (1, c0))

—s(u—u) +{f(u) = f(u)} = H(u)(u = sTu”),

u(—00) = uy, u(o0) = uy,

(TW)

with s = Hud=Sle) (RH),

u

Rem: As in the linear case,

stu" —u' = g(u) ==

For monotone waves, w(u) = —u'(n(u)) satisfies

(ODE) ST’U}'UJ/ +w = g(u)7 on (umuf))

with w > 0 on (u,, u¢), w(u,) = 0 and (if possible) w(u,) = 0.
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Rem: Blow up for gas u — O oru — 1!

uL=0.95,uR=0,p=q=2.5 uR:l’uL:O'p:q:2'5

The graph of g, o < u; < 1 (left) and u; = 1 (right).
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Results (u, > u,)

Depend on p, ¢, uy and u,.:
e Existence forp € (0,1), oru, > 0; ¢ € (0,1), 0ru, < 1;
e Solution remains bounded 0 < u < 1 ("physically relevant");
e Non-existence forp > 1 and u, = 0, respectively ¢ > 1 and u, = 1;

e Existence of weak solutions & essential bounds: Mikelic (2010)

Note: Necessary condition for existence: stu” — v’ = g(u) admits a solution if

s(u—u,) — (f(u) = f(u,))
H (u) '

Uy
0 </ g(u)du < 0o, where g(u):=

Consider u, > « and define
Upg
G:la, 1] — 1, G(u) ::/ g(u)du.

Further
B =max{u; € |, 1]/G(w;) > 0}.

Rem: No travelling waves if u, > 3!
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Non-linear, non-degenerate case: u, > 0, 6 < 1

Similar to the linear case, we have:

e Existence of (monotone) waves with u, € [u,, a] if 7 < 7. (small dynamic effects);

e For any 7 > 7, a unique u, = @(7) € («,[3) exists for which (monotone) travelling waves are
possible;

e If 7 > 7, (oscillatory) travelling waves also exist for u, € (u,, u(7)).
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The case A,

u=01,M=1,p=g=05 p=q=0.5,tau=0.47, u; = 0.1, M = 1, u(tau) = 0.73..., beta = 0.9

45 05 055 06 065 07 0.75 08 085 09 0.0

Rem: Here o < 0.7, whereas 7 = 0.47 > 7, giving u(7) ~ 0.73. Since up > u(7) (case A,) the solution
approaches first u(7) before becoming a front w(7) \, u, = 0. For 7 < 7, the frontis o \, w,, but
a < 0.7.
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The case 5

U,=01,M=2,p=q=05 p=q=05,tau=0.47,u, =0.1, M =2, u (tau) = 0.968..., beta = 1

Rem: Here 7 = 0.47 > 7, giving u(7) ~ 0.97 > a. With ug < u(7), two waves are observed up " ()
(oscillatory) and @(7) “\, u, (monotone).
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Degenerate case: u, > 0,3 =1

If 5 =1,thenu(r) / 1asisincreasing.

Theorem (upper bound for 7):

If 3 = 1, there exist a 7* > 7, (both depending on u,) s.t. forany 7 € (7., 7*) a unique u, = a(7) € (a, 1)
exists allowing for monotone travelling waves {u,, u, }.

Rem: At 7*, u, = 1 (degeneracy, H(1) = 0).

u=01,M=3,p=q=05 p=q=05,tau=0.47,u = 0.1, M=3, u'(tau) = 1, beta= 1

8 088

Rem: Here T* ~ 047, thUS TL(T) = 1. Technische Universiteit
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u=01,M=1,..,4,p=9q=05

14
12

1
0.8
0.6
0.4
0.2

Q55 06 o065 07 075

Diagrams 7 — uy = u(7), for M =1,2,3,4,u, = 0.1,p = ¢ = 0.5:

M =1,2,when g < 1.
Forany 7 > 0 a unique u(7) < 1 exists allowing for smooth, monotone TW {u, = u(7), u, }.

M = 3,4,when G = 1.
Smooth waves are only possible if 7 < 7* (here 7* ~ 0.47, respectively 7* ~ 0.14).
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Q: What if 7 > 7*?

A: "Sharp waves": For some r; € R we have u € C(R) N C*(R\{n;}), and

win<m)=1, while u(n>mn)e (u,l),

leading to (non-standard) waves {1, u,}.

Rem: Kink at n;, where v = 1. There u/(n; — 0) = 0 > «/(n; + 0). Further, at ; the capillary pressure
p = u + Tu’ becomes discontinuous!
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Degenerate: u, = 0.1, but 7 = 0.47 > 7* ~ 0.14 yielding u, = 1:

u=01,M=4p=q=05 p=q=05,u =01, M=4, tau=0.47 >tau" = 0.14, beta = 1, ug = 0.97

11
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Rem: For monotone waves, w(u) = —u'(n(u)) satisfies

(ODE) stww +w = g(u) := s(u — ur) _H((fu()U) - f(UT)), on (u,, 1),

with w > 0 on (u,, 1), and w(u,) = 0. However, w(1) > 0!

Here we have w(1l) ~ —u/(n;) ~ —1.64!
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Degenerate case, u, = 0

If 5 < 1, then (as in the non-degenerate case):

e Standard (monotone) waves {u,, 0}, if u, € (0,«) and 7 < 7, (small
dynamic effects);

e Forany 7 > 7, a unique u, = u(7) € («, 3) allowing for:
— monotone waves connecting u, to 0;

— oscillatory waves connecting u, € (0, u(7)) to 0.

Rem: These waves are smooth (no kinks)!
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If 3 =1, then there exists a 7" = 7(0) > 7. s.t.

e Forany 7 € (7.,7%), a unique u, = u(7) € («, 1) exists allowing for travelling waves connecting
uy = u(7) to 0. Such waves are smooth and monotone!

e If 7 > 7*, then only sharp waves are possible.

Note: Two degeneracy points, v, = 0 and u, = 1, many non-smooth solutions are possible (one kink for
each degeneracy; there are many slopes possible for each of the kinks).

Q: How to select a wave?
A: As limit § ™\, 0 of waves {1,J}!
This leads to waves satisfying for some 1, < g, u € C(R) N CH(R\{n}),

u(n <m)=1, while u(mp <n<mn)€(0,1), and wu(n>mn)=0.

Rem: Kink at ;, where u = 1: «/(n; — 0) = 0 > «/(n; + 0). However, the wave is smooth at 7; it decays

faster than quadratically to 0.
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Double degeneracy: v, =0, u, = 1

Rem: Kink (u' = —1.27) at i1, smooth transition (v’ = 0) at ng; here w(1) = 1.26.
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5. Saturation overshoot
Infiltration problem: w(t,0) = ug, u(t,”o0”) = u,

e The standard Richards model provides monotone profiles:

du+ V- (K(wg) =V - (Ku)VPE.(u))

e Higher order terms: "dynamic capillarity" C. Cuesta, J. Hulshof, C.J. van Duijn (2000), A. Egorov, |.
Nieber, R. Dautov (2003)

du+V - (K(wg) =V - (Kw)V(P:(u) + 70,u))
"phase field" L. Cueto-Felgueroso, R. Juanes (2009)

du+ V- (K(wg) =V - (Ku)V(P:(u) + Au))

e Multi-phase (percolating/non-percolating) systems R. Hilfer, F. Doster, P. Zegeling (2009)

Rem: The convective term K is convex!
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One phase flow: water, K is convex!
V2,

= i(% + g(v1)).

e Only two equilibria are allowed, re-
gardless extension;

e With u; < uy < wus, upwards wave
{uy " usz} travel faster than down-
wards wave {us \, u; }

20/30 Sand
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Figure 5. Snapshots of the saturation profile versus depth
for six different applied fluxes in initially dry 20/30 sand
(Accusand) measured using light transmission. At the
highest (11.8 cm/min) and lowest (7.9 x 107 cm/min)

fluxes the profiles are monotonic with distance and no
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Two-phase flow: water and air
convex-concave flux, f(u)(V; + kq(u)g)!

V2,

vy = o (02 + g(v1)).

e More than two equilibria are al-
lowed;

With u; < us < us, upwards wave
{us " wus} can be combined with
downwards wave {uz \ u; }

20/30 Sand

=0.0079

Volumetric Water Saturation

15 20 25 30 35
Vertical Distance (cm)

Figure 5. Snapshots of the saturation profile versus depth
for six different applied fluxes in initially dry 20/30 sand
(Accusand) measured using light transmission. At the
highest (11.8 cm/min) and lowest (7.9 X 10~ cm/min)
fluxes the profiles are monotonic with distance and no
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Experiments by DiCarlo vs Numerical PDE solutions
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Brooks-Corey (two phase), parameters for 20/30 sand, total velocities as in the experiments,

Fully nonlinear, degenerate model, 7 is fitted (agrees with values reported before).
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Conclusions and perspectives

o Travelling waves for different regularizations (equilibrium/dynamic capillary pressure) of
the Buckley-Leverett model

Nonstandard entropy solutions to the hyperbolic Buckley-Leverett equation
Explains the occurrence of experimental results, ruled out by equilibrium models
Degenerate terms are required for remaining inside the physically relevant regime
Parametrization is essential (whatif p > 1 orq > 1)?

Agreement with experimental work (saturation overshoot)?

Mathematical analysis (existence/uniqueness?) of weak solutions

Numerical analysis (appropriate/convergent numerical schemes)

Non-smooth data (jumps)

Heterogeneous media

Upscaling (pore to core)
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