Non-classical travelling wave solutions to dynamic capillarity models

C.J. van Duijn^{*a*}, L.A. Peletier^{*b*}, Y. Fan^{*a*},

P.A. Zegeling^c, H. Schuttelaars^d, I.S. Pop^a

^aCASA, TU/e ^bMI, Leiden University ^cMathematics, Utrecht University ^dMathematics, TU Delft

Outline

- Motivation
- The mathematical model
- Travelling waves
- The non-linear/degenerate case
- Saturation overshoot

2/40

1. Motivation

David A. DiCarlo, Experimental measurements of saturation overshoot on infiltration, Water Resources Research, Vol. 40, W04215, doi:10.1029/2003WR002670, 2004

Figure 5. Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand (Accusand) measured using light transmission. At the highest (11.8 cm/min) and lowest (7.9×10^{-4} cm/min) fluxes the profiles are monotonic with distance and no roturation extended in observed while all of the inter-

Figure 1. Cartoon of a preferential flow path and the associated saturation within the flow path. Saturation overshoot occurs when the tip saturation is greater than the tail saturation.

2. The mathematical model

Two-phase flow (wetting/non-wetting)

Homogeneous medium

Horizontal flow, one-dimensional (gravity may be included)

4/40

Equations, quantities (standard approach)

$$\Phi \frac{\partial S_{\alpha}}{\partial t} + \frac{\partial q_{\alpha}}{\partial x} = 0 \quad (\alpha = w, o)$$
$$-q_{\alpha} = K \frac{k_{r\alpha}(S_{\alpha})}{\mu_{\alpha}} \frac{\partial p_{\alpha}}{\partial x}$$
$$S_{o} + S_{w} = 1$$
$$p_{o} - p_{w} = p_{c}(S_{w})$$
$$p_{c}(S_{w}) = \sigma \sqrt{\frac{\Phi}{K}} J(S_{w})$$

.

Φ - porosity K - absolute permeability $S_{\alpha} \in [0,1]$ - normalized saturation q_{α} - specific discharge $k_{r\alpha}$ - relative permeability μ_{α} - dynamic viscosity p_{α} - pressure σ - interfacial tension J - Leverett function

Equations, quantities (dynamic effects, Hassanizadeh & Gray)

$$\Phi \frac{\partial S_{\alpha}}{\partial t} + \frac{\partial q_{\alpha}}{\partial x} = 0 \quad (\alpha = w, o)$$
$$-q_{\alpha} = K \frac{k_{r\alpha}(S_{\alpha})}{\mu_{\alpha}} \frac{\partial p_{\alpha}}{\partial x}$$
$$S_{o} + S_{w} = 1$$
$$p_{o} - p_{w} = p_{c}(S_{w}) + p_{c}^{dyn}(S_{w})$$
$$p_{c}(S_{w}) = \sigma \sqrt{\frac{\Phi}{K}} J(S_{w})$$
$$p_{c}^{dyn}(S_{w}) = \Phi \tilde{\tau} \frac{\partial S_{w}}{\partial t}$$

 Φ - porosity K - absolute permeability $S_{\alpha} \in [0,1]$ - normalized saturation q_{α} - specific discharge $k_{r\alpha}$ - relative permeability μ_{α} - dynamic viscosity p_{α} - pressure σ - interfacial tension J - Leverett function $ilde{ au}$ - damping coefficient

Rem: Total velocity $q = q_w + q_o$ satisfies

$$\frac{\partial q}{\partial x} = \frac{\partial (q_w + q_o)}{\partial x} = 0$$

A₁: $q = q_o + q_w$ - *constant* in time (given)

A₁: $k_{r\alpha}$, J – monotone;

Typical choices:

 $k_{ro} = (S_o)^{1+p};$ $k_{rw} = (S_w)^{1+q};$ p, q > 0 $J(S_w) = (1 - S_w)^{-\frac{1}{\lambda}}, \quad \lambda > 1$

Scaling

Primary variable: $u = S_w$

Characteristic values: $x := \frac{x}{L}, t := \frac{t}{T}$, with $T = \frac{\Phi L}{q}$

Balance equation: $\partial_t u + \partial_x F = 0$

$$F = f(u) - N_c \lambda(u) \frac{\partial}{\partial x} (J(u) + N_c \tau \partial_t u)$$

$$f(u) = \frac{k_{rw}(u)}{k_{rw}(u) + M k_{ro}(u)}$$

$$\lambda(u) = k_{ro}(u) f(u)$$

Rem: capillary number $N_c = \frac{\sigma \sqrt{K\Phi}}{\mu_o q L}$ (capillary/viscous forces) mobility ratio $M = \mu_w/\mu_o$ $\tau = \tilde{\tau} \frac{\mu_w q^2}{\Phi \sigma^2}$

3. Travelling waves

$$(BL_{reg}) \begin{cases} \frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} &= \mathcal{A}_{\varepsilon}(u), \quad \text{in} \quad Q = \{(x,t) : x \in \mathbb{R}, t > 0\}, \\ u(\infty,t) &= u_r, \quad \text{for} \quad t > 0, \\ u(-\infty,t) &= u_\ell, \quad \text{for} \quad t > 0. \end{cases}$$

"Regularized" Riemann problem:

$$\mathcal{A}_{\varepsilon}(u) = \varepsilon \partial_x \big[H(u) \partial_x \big(u + \varepsilon \tau \partial_t u \big) \big].$$

Rem: $\tau = 0, \varepsilon \searrow 0$ - admissible shock solution to hyperbolic conservation laws Q: Changing the regularization leads to different (admissible) shocks/entropy criterium? A: An admissible shock $\{u_\ell, u_r\}$ is the limit $\varepsilon \searrow 0$ of a TW solution $u = u(\eta)$ satisfying

(TW)
$$\begin{cases} -s(u-u_r) + \{f(u) - f(u_r)\} = H(u)(u' - s\tau u''), & \text{in } \mathbb{R}, \\ u(-\infty) = u_\ell, & u(\infty) = u_r, \end{cases}$$

with $\eta = rac{x-st}{arepsilon}$ and $s = rac{f(u_\ell)-f(u_r)}{u_\ell-u_r}$ (RH).

Q: Given $\tau > 0$, for which pairs u_{ℓ}, u_r and $\tau > 0$ do travelling waves exist?

Constants involved in the construction

 $\begin{array}{l} \alpha \text{: "tangent point, lower bound"} \\ \beta \text{: "upper bound"} \\ \bar{u} \text{: } \alpha \leq \bar{u} < \beta \text{, } \tau \text{ - dependent} \\ \underline{u} \text{: middle intersection point} \end{array}$

Wave speed: $s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$

Tangent point: if $u_r = 0$ we have $f'(\alpha) = \frac{f(\alpha)}{\alpha}$

Upper bound: with $g(u) := \frac{s(u-u_r) - (f(u) - f(u_r))}{H(u)}$, β is s.t. $\int_{u_r}^{u_\ell} g(u) du > 0$ for all $u_\ell < \beta$.

Linear ($H(u) \equiv 1$) case

(TW)
$$\begin{cases} -s(u - u_r) + \{f(u) - f(u_r)\} = u' - s\tau u'', & \text{in } \mathbf{R}, \\ u(-\infty) = u_\ell, & u(\infty) = u_r, \end{cases}$$

<u>Theorem 1</u> (Existence of TW, $u_r = 0$):

There exits $\tau_* > 0$ such that

- a. If $0 \le \tau \le \tau_*$, Problem (TW) has a unique solution with $u_\ell = \alpha$ and $u_r = 0$.
- b. If $\tau > \tau_*$, there exists a unique $\overline{u}_{\ell}(\tau) \in (\alpha, \beta)$ such that Problem (TW) has a unique solution with $u_{\ell} = \overline{u}_{\ell}(\tau)$ and $u_r = 0$.
- c. $\overline{u}: [0,\infty) \to [\alpha,\beta)$ defined by

$$\overline{u}(\tau) = \begin{cases} & \alpha & \text{for } 0 \leq \tau \leq \tau_* \\ & \overline{u}_{\ell}(\tau) & \text{for } \tau > \tau_*, \end{cases}$$

is continuous, strictly increasing for $\tau \geq \tau_*$, and $\overline{u}(\infty) = \beta$.

Rem: As $\varepsilon \searrow 0$, the (TW) becomes an admissible shock.

Case a ($0 \le \tau \le \tau_*$) provides classical shocks, dynamic effects can be neglected Case b ($\tau \ge \tau_*$) provides non-standard shocks, violating classical entropy conditions!

The au - $\overline{u}_\ell(au)$ diagram

- Numerically computed (shooting technique);
- Seek for *monotone* waves $u(\eta)$ connecting u_ℓ to $u_r = 0$;

- Then $w(u) = -u'(\eta(u))$ satisfies the *derivative equation*

 $s\tau ww' + w = su - f(u), \text{ on } (0, u_\ell),$

with w > 0 on $(0, u_\ell)$, and $w(0) = w(u_\ell) = 0$.

- Note: first order problem, two boundary conditions. But τ and u_ℓ are related!

Rem: Computed for M = 2, p = q = 1. This gives $\alpha \approx 0.81$, $\beta \approx 1.14$. Numerically we found $\tau_* \approx 0.61$.

Rem: Diagram depends on $u_r!$

(TW)
$$\begin{cases} -s(u-u_r) + \{f(u) - f(u_r)\} = u' - s\tau u'', & \text{in } \mathbb{R}, \\ u(-\infty) = u_\ell, & u(\infty) = u_r, \end{cases}$$

<u>Theorem 2</u> ($u_r = 0$, continued):

Given a $\tau > \tau_*$ we have $\overline{u}(\tau) \in (\alpha, \beta)$ and $\underline{u}(\tau) \in (0, \alpha)$. Then

- a. For each $u_B \in (0, \underline{u}(\tau))$, Problem (TW) has a unique solution with $u_\ell = u_B$ and $u_r = 0$.
- b. For each $u_B \in (\underline{u}(\tau), \overline{u}(\tau))$, Problem (TW) has a unique solution with $u_\ell = u_B$ and $u_r = \overline{u}(\tau)$; no waves are possible for $u_r = 0$.

Both waves are oscillatory.

TU/e Technische Universiteit Eindhoven University of Technology

Travelling waves connecting u_ℓ to u_r

- $(u_{\ell}, \tau) \in \mathcal{A}_1 \cup \mathcal{A}_2, u_r = 0$: no travelling waves.
- $(u_{\ell}, \tau) \in \mathcal{C}_1, u_r = 0$: existence, monotone waves.
- $(u_{\ell}, \tau) \in \mathcal{C}_2, u_r = 0$: existence, oscillatory waves.

•
$$(u_{\ell}, \tau) \in \mathcal{B}$$
:

non-existence for $u_r = 0$;

existence (oscillatory) for $u_{\ell} = \overline{u}(\tau)$, with $s(u_{\ell}, \overline{u}(\tau))$.

14/40

Phase plane analysis

$$s\tau u'' - u' = g(u) := \frac{s(u - u_r) - \left(f(u) - f(u_r)\right)}{H(u)} \quad \text{becomes} \quad \begin{cases} v_1' = v_2, \\ v_2' = \frac{1}{s\tau}(v_2 + g(v_1)). \end{cases}$$

Given $u_r \ge 0$ and $\tau > 0$ let $u_\ell = \bar{u}(\tau)$ and $s = \frac{f(u_\ell) - f(u_r)}{u_\ell - u_r}$. Then the system has three equilibria: $(u_r, 0)$, $(\underline{u}(\tau), 0)$, and $(\bar{u}(\tau), 0)$. The first and the last are saddle points, the intermediate is a spiral or a source.

Rem: Relation to the $\bar{u} - \tau$ diagram:

- $\bar{u}(\tau)$: saddle saddle connection, $u_{\ell} = \bar{u}(\tau)$ to u_r (monotone, downwards);
 - C_1 : source saddle connection, $u_{\ell} \leq \underline{u}(\tau)$ to u_r (monotone, downwards);
 - C_2 : spiral saddle connection $u_{\ell} \leq \underline{u}(\tau)$ to u_r (oscillatory, downwards);
 - \mathcal{B} : "superposition" of two waves, a spiral to saddle connection $u_{\ell} \in (\underline{u}(\tau), \overline{u}(\tau))$ to $\overline{u}(\tau)$ (oscillatory, upwards), and a saddle saddle connection, $u_{\ell} = \overline{u}(\tau)$ to u_r (monotone, downwards).

Phase plane associated to the travelling wave: saddle to saddle connection (blue), spiral to saddle connection (brown)

16/40

Numerical experiments

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2} + \varepsilon^2 \tau \frac{\partial^3 u}{\partial x^2 \partial t} \quad \text{in} \quad \mathbf{R} \times \mathbf{R}^+,$$
$$u(x,0) = u_B \tilde{H}(-x) \qquad \qquad \text{for} \quad x \in \mathbf{R},$$

with \tilde{H} - smooth approximation of the Heaviside graph.

Numerical scheme:

Implicit for higher order terms, first order in time & finite differences;

Explicit for convection, *minmod* flux limiting scheme, upwind & Richtmyer.

Examples:

Case A_1 : $\tau = 0.2$, $u_B = 1.0$

Rem: Since $\tau < \tau_*$, the solution first decays to $\alpha = \bar{u}(\tau)$.

18/40

Non-standard: $\tau = 5 > \tau_*$ cases \mathcal{A}_2 , \mathcal{B} :

Rem: Plateau value ($\overline{u} \approx 0.98$) agrees excellently with the diagram: $u(\tau = 5) \approx 0.98!$

Non-standard: $\tau = 5 > \tau_*$ cases \mathcal{B} , \mathcal{C}_2 :

Rem: As $u_B \searrow \underline{u}(\tau = 5) \approx 0.68$ the plateau vanishes and the solution transforms into an (oscillatory) front $\{u_B, 0\}$!

"Nearly"-standard: $\tau = 5 > \tau_* \operatorname{case} C_2$:

4. The non-linear/degenerate case

$$(BL_{reg}) \begin{cases} \frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} &= \mathcal{A}_{\varepsilon}(u), \quad \text{in} \quad Q = \{(x,t) : x > 0, t > 0\}, \\ u(x,0) &= 0, \quad \text{for} \quad x > 0, \\ u(0,t) &= u_B, \quad \text{for} \quad t > 0, \end{cases}$$

Regularization (J(u) = u):

$$\mathcal{A}_{\varepsilon}(u) = \varepsilon \partial_x \left[H(u) \partial_x \left(u + \varepsilon \tau \partial_t u \right) \right]$$

with

$$f(u) = \frac{k_{ro}(u)}{k_{ro}(u) + Mk_{rw}(u)}$$
 and $H(u) = k_{rw}(u)f(u)$,

for $k_{ro}(u) = u^{1+p}$ and $k_{rw}(u) = (1-u)^{1+q}$.

Rem:

Linear case: H(u) = 1 everywhere.

Non-linear case: *H* is not constant;

Degeneracy (H(u) = 0) occurs if u = 0 (fully oil saturated, no water) or u = 1 (fully water saturated). Physically relevant regime: $0 \le u \le 1$; $H(u \le 0) = H(u \ge 1) = 0$.

<u>TW approach</u>: $u = u(\eta)$ with $\eta = \frac{x-st}{\varepsilon}$ satisfies (after integration over (η, ∞))

(TW)
$$\begin{cases} -s(u-u_r) + \{f(u) - f(u_r)\} = H(u)(u' - s\tau u''), & \text{in } \mathbb{R}, \\ u(-\infty) = u_\ell, & u(\infty) = u_r, \end{cases}$$

with $s = \frac{f(u_\ell) - f(u_r)}{u_\ell - u_r}$ (RH).

Rem: As in the linear case,

$$s\tau u'' - u' = g(u) := \frac{s(u - u_r) - (f(u) - f(u_r))}{H(u)}.$$

For monotone waves, $w(u)=-u'(\eta(u))$ satisfies

(ODE) $s\tau ww' + w = g(u), \text{ on } (u_r, u_\ell),$

with w>0 on (u_r,u_ℓ) , $w(u_r)=0$ and (if possible) $w(u_\ell)=0$.

Rem: Blow up for g as $u \to 0$ or $u \to 1!$

The graph of g, $\alpha < u_l < 1$ (left) and $u_l = 1$ (right).

Results ($u_\ell > u_r$)

Depend on p, q, u_{ℓ} and u_r :

- Existence for $p \in (0,1)$, or $u_r > 0$; $q \in (0,1)$, or $u_\ell < 1$;
- Solution remains bounded $0 \le u \le 1$ ("physically relevant");
- Non-existence for $p \ge 1$ and $u_r = 0$, respectively $q \ge 1$ and $u_\ell = 1$;
- Existence of weak solutions & essential bounds: Mikelić (2010)

<u>Note</u>: Necessary condition for existence: $s\tau u'' - u' = g(u)$ admits a solution if

$$0 < \int_{u_r}^{u_\ell} g(u) du < \infty, \quad ext{where} \quad g(u) := rac{s(u-u_r) - (f(u) - f(u_r))}{H(u)}.$$

Consider $u_{\ell} \geq \alpha$ and define

$$\mathcal{G}: [\alpha, 1] \to 1, \qquad \mathcal{G}(u_l) := \int_{u_r}^{u_\ell} g(u) du.$$

Further

$$\beta = \max \{ u_l \in [\alpha, 1] / \mathcal{G}(u_l) \ge 0 \}.$$

Rem: No travelling waves if $u_{\ell} > \beta$!

Non-linear, non-degenerate case: $u_r > 0$, $\beta < 1$

Similar to the linear case, we have:

- Existence of (monotone) waves with $u_{\ell} \in [u_r, \alpha]$ if $\tau < \tau_*$ (small dynamic effects);
- For any $\tau > \tau_*$ a unique $u_\ell = \bar{u}(\tau) \in (\alpha, \beta)$ exists for which (monotone) travelling waves are possible;
- If $\tau > \tau_*$, (oscillatory) travelling waves also exist for $u_\ell \in (u_r, \underline{u}(\tau))$.

The case \mathcal{A}_2

Rem: Here $\alpha < 0.7$, whereas $\tau = 0.47 > \tau_*$ giving $\bar{u}(\tau) \approx 0.73$. Since $u_B > \bar{u}(\tau)$ (case A_2) the solution approaches first $\bar{u}(\tau)$ before becoming a front $\bar{u}(\tau) \searrow u_r = 0$. For $\tau \le \tau_*$ the front is $\alpha \searrow u_r$, but $\alpha < 0.7$.

The case $\ensuremath{\mathcal{B}}$

Rem: Here $\tau = 0.47 > \tau_*$ giving $\bar{u}(\tau) \approx 0.97 > \alpha$. With $u_B < \bar{u}(\tau)$, two waves are observed $u_B \nearrow \bar{u}(\tau)$ (oscillatory) and $\bar{u}(\tau) \searrow u_r$ (monotone).

Degenerate case: $u_r > 0$, $\beta = 1$

If $\beta = 1$, then $\bar{u}(\tau) \nearrow 1$ as τ is increasing.

<u>*Theorem*</u> (upper bound for τ):

If $\beta = 1$, there exist a $\tau^* > \tau_*$ (both depending on u_r) s.t. for any $\tau \in (\tau_*, \tau^*)$ a unique $u_\ell = \bar{u}(\tau) \in (\alpha, 1)$ exists allowing for monotone travelling waves $\{u_\ell, u_r\}$.

Rem: At τ^* , $u_\ell = 1$ (degeneracy, H(1) = 0).

Rem: Here $\tau^* \approx 0.47$, thus $\bar{u}(\tau) \approx 1$. /department of mathematics and computer science

Diagrams $\tau - u_{\ell} = \bar{u}(\tau)$, for M = 1, 2, 3, 4, $u_r = 0.1$, p = q = 0.5:

M = 1, 2, when $\beta < 1$. For any $\tau > 0$ a unique $\bar{u}(\tau) < 1$ exists allowing for smooth, monotone $TW \{u_{\ell} = \bar{u}(\tau), u_r\}$. M = 3, 4, when $\beta = 1$. Smooth waves are only possible if $\tau < \tau^*$ (here $\tau^* \approx 0.47$, respectively $\tau^* \approx 0.14$).

/ department of mathematics and computer science

30/40

Q: What if $\tau \ge \tau^*$?

A: "Sharp waves": For some $\eta_1 \in \mathbb{R}$ we have $u \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\eta_1\})$, and

 $u(\eta \leq \eta_1) = 1$, while $u(\eta > \eta_1) \in (u_r, 1)$,

leading to (non-standard) waves $\{1, u_r\}$.

Rem: Kink at η_1 , where u = 1. There $u'(\eta_1 - 0) = 0 > u'(\eta_1 + 0)$. Further, at η_1 the capillary pressure $p = u + \tau u'$ becomes discontinuous!

31/40

Degenerate: $u_r = 0.1$, but $\tau = 0.47 > \tau^* \approx 0.14$ yielding $u_\ell = 1$:

Rem: For monotone waves, $w(u)=-u'(\eta(u))$ satisfies

(ODE)
$$s\tau ww' + w = g(u) := \frac{s(u-u_r) - (f(u) - f(u_r))}{H(u)}$$
, on $(u_r, 1)$,

with w > 0 on $(u_r, 1)$, and $w(u_r) = 0$. However, w(1) > 0!

Here we have $w(1) \approx -u'(\eta_1) \approx -1.64!$

TU/e Technische Universiteit Eindhoven University of Technology

Degenerate case, $u_r = 0$

If $\beta < 1$, then (as in the non-degenerate case):

- Standard (monotone) waves $\{u_\ell, 0\}$, if $u_\ell \in (0, \alpha)$ and $\tau < \tau_*$ (small dynamic effects);
- For any $au > au_*$ a unique $u_\ell = ar u(au) \in (lpha, eta)$ allowing for:
 - monotone waves connecting u_ℓ to 0;
 - oscillatory waves connecting $u_{\ell} \in (0, \underline{u}(\tau))$ to 0.

Rem: These waves are smooth (no kinks)!

If $\beta = 1$, then there exists a $\tau^* = \tau^*(0) > \tau_*$ s.t.

- For any $\tau \in (\tau_*, \tau^*)$, a unique $u_{\ell} = \bar{u}(\tau) \in (\alpha, 1)$ exists allowing for travelling waves connecting $u_{\ell} = \bar{u}(\tau)$ to 0. Such waves are smooth and monotone!
- If $\tau \geq \tau^*$, then only *sharp* waves are possible.

Note: Two degeneracy points, $u_r = 0$ and $u_\ell = 1$, many non-smooth solutions are possible (one kink for each degeneracy; there are many slopes possible for each of the kinks).

Q: How to select a wave?

A: As limit $\delta \searrow 0$ of waves $\{1, \delta\}$!

This leads to waves satisfying for some $\eta_1 < \eta_0$, $u \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\eta_1\})$,

 $u(\eta \le \eta_1) = 1$, while $u(\eta_1 < \eta < \eta_0) \in (0, 1)$, and $u(\eta \ge \eta_0) = 0$.

Rem: Kink at η_1 , where u = 1: $u'(\eta_1 - 0) = 0 > u'(\eta_1 + 0)$. However, the wave is smooth at η_0 ; it decays faster than quadratically to 0.

Double degeneracy: $u_r = 0$, $u_\ell = 1$

Rem: Kink (u' = -1.27) at η_1 , smooth transition (u' = 0) at η_0 ; here w(1) = 1.26.

5. Saturation overshoot

Infiltration problem: $u(t, 0) = u_B$, $u(t, "\infty") = u_r$

• The standard Richards model provides monotone profiles:

$$\partial_t u + \nabla \cdot (K(u)\mathbf{g}) = \nabla \cdot (K(u)\nabla P_c(u))$$

• Higher order terms: "dynamic capillarity" C. Cuesta, J. Hulshof, C.J. van Duijn (2000), A. Egorov, J. Nieber, R. Dautov (2003)

$$\partial_t u + \nabla \cdot \left(K(u) \mathbf{g} \right) = \nabla \cdot \left(K(u) \nabla (P_c(u) + \tau \partial_t u) \right)$$

"phase field" L. Cueto-Felgueroso, R. Juanes (2009)

$$\partial_t u + \nabla \cdot \left(K(u) \mathbf{g} \right) = \nabla \cdot \left(K(u) \nabla (P_c(u) + \Delta u) \right)$$

• Multi-phase (percolating/non-percolating) systems R. Hilfer, F. Doster, P. Zegeling (2009)

Rem: The convective term *K* is *convex*!

36/40

One phase flow: water, *K* is convex!

$$\begin{cases} v_1' = v_2, \\ v_2' = \frac{1}{s\tau} (v_2 + g(v_1)). \end{cases}$$

- Only two equilibria are allowed, regardless extension;
- With $u_1 < u_2 < u_3$, upwards wave $\{u_2 \nearrow u_3\}$ travel faster than downwards wave $\{u_3 \searrow u_1\}$

Figure 5. Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand (Accusand) measured using light transmission. At the highest (11.8 cm/min) and lowest (7.9×10^{-4} cm/min) fluxes the profiles are monotonic with distance and no structure augmentatic observation while all of the inter-

TU/e Technische Universiteit Eindhoven University of Technology

Two-phase flow: water and air convex-concave flux, $f(u)(V_t + k_a(u)g)!$

$$\begin{cases} v_1' = v_2, \\ v_2' = \frac{1}{s\tau} (v_2 + g(v_1)) \end{cases}$$

- More than two equilibria are allowed;
- With u₁ < u₂ < u₃, upwards wave {u₂ ∧ u₃} can be combined with downwards wave {u₃ ∖ u₁}

Figure 5. Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand (Accusand) measured using light transmission. At the highest (11.8 cm/min) and lowest (7.9 $\times 10^{-4}$ cm/min) fluxes the profiles are monotonic with distance and no extension extension is observed while all of the inter-

20

VERTICAL DISTANCE [cm]

Rem:

5

Brooks-Corey (two phase), parameters for 20/30 sand, total velocities as in the experiments, Fully nonlinear, degenerate model, τ is fitted (agrees with values reported before).

30

35

25

39/40

/ department of mathematics and computer science

10

15

Conclusions and perspectives

- Travelling waves for different regularizations (equilibrium/dynamic capillary pressure) of the Buckley-Leverett model
- Nonstandard entropy solutions to the hyperbolic Buckley-Leverett equation
- Explains the occurrence of experimental results, ruled out by equilibrium models
- Degenerate terms are required for remaining inside the physically relevant regime
- Parametrization is essential (what if $p \ge 1$ or $q \ge 1$)?
- Agreement with experimental work (saturation overshoot)?
- Mathematical analysis (existence/uniqueness?) of weak solutions
- Numerical analysis (appropriate/convergent numerical schemes)
- Non-smooth data (jumps)
- Heterogeneous media
- Upscaling (pore to core)

Acknowledgement: NDNS+ adviseurschap (University of Utrecht)

40/40