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Direct motivation: vegetation patterns. Below in Sahel

Figure: Spotted patterns
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The Model

I We model these patterns by

Ut = DUγ
xx + A(1− U)− UV 2 + CUx

Vt = δ2Vxx − BV + UV 2.

(γ depending on the kind of soil, C = 0 on flat terrain)

I This is a generalization of the system introduced by the ecologist C.
Klausmeier (’99) (D=0, parameters in Klausmeier’s original scaling)

Ut = Ux + n − U − UV 2

Vt = δ2Vxx −mV + UV 2;

I It also generalises the Gray-Scott system (C = 0,D = 1, γ = 1)

Ut = Uxx + A(1− U)− UV 2

Vt = δ2Vxx − BV + UV 2.
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Birth of patterns

I We consider A as the critical parameter. A corresponds to the
rainfall.

I For A below some critical value Ac , the (stable) homogeneous
background state looses its stability with respect to periodic
perturbations. This is called a Turing-Hopf bifurcation.

Figure: The branches u± of homogeneous steady state.
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The Eckhaus band: symmetric (Gray-Scott) case

Let A be the amplitude of the emerging pattern. Then the pattern can
be written out as

U ∝ U0 + εA(ξ, τ)e ikcx + c.c. + h.o.t.

In the case of the Gray-Scott system, e.g., we find for A a real GLE:
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Let k be the wavenumber of a pattern born at the Turing bifurcation.
For |A−Ac | = O(ε), the Eckhaus band describes a region in (A, k)-space
where stable patterns exist.

Existence band

Eckhaus band

A

k
A=A Turing

Figure: The Eckhaus band.
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The Eckhaus band: nonsymmetric case (C > 0)

Let A be the amplitude of the emerging pattern. The evolution of A is
now described by the Complex GLE :

Aτ = (α1 + iα2)Aξξ + (β1 + iβ2)A + (γ1 + iγ2)|A|2A.

Spatially periodic patterns appear at a Turing-Hopf bifurcation and are
now travelling:

A(ξ, τ) = Re i(kcx+ωc t)

The Turing-Hopf bifurcation is subcritical if the so-called Landau
coefficient satisfies

1 +
α2γ2

α1γ2
> 0.
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Super- vs. subcritical bifurcation

k k

A A

Figure: Schematic picture of supercritical bifurcation (left) and
subcritical bifurcation (right).
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Results: calculation of Landau-coefficient
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Figure: plots of b against C , for γ = 1 (supercritical) and γ = 2
(subcritical for some values of b if C > 0)
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Busse balloon

I The Eckhaus band is only the beginning! The complete region of
stable patterns in (A, k)-space is called the Busse balloon.

I No mathematical analysis possible! → but numerics! Continuation
and bifurcation software (Auto)
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Example: Busse balloon for Gray-Scott system
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Figure: A Busse balloon for the Gray-Scott model with b = ... and γ = 1.
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The ‘Hopf dance’
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Figure: (a) The Hopf-dance enlarged, schematically. (b) Oscillations in or
out of phase (i.e. for γ = 0 or γ = 1).
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Spectrum of solution at Hopf instability
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Figure: Spectrum for a solution that undergoes a Hopf instability. Left
the case for reversible systems (like Gray-Scott), right the case for
nonreversible systems.
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Spectrum of solution at sideband instability
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Figure: Spectrum for a solution that undergoes a sideband instability.
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Busse balloon for C > 0
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Figure: (Nonedited version of the) Busse balloon for C = 0.4, B = 0.2,
γ = 1.

Sjors van der Stelt Busse balloons



Introduction
Rise of Patterns

The Busse balloon
Conclusions and ongoing research

Disappearing Hopf dance with increasing C

Figure: Schematic picture showing the Hopf instabilities with
γ-eigenvalues for γ = 0 and γ = π and the sideband instability in the
neighbourhood of the origin, for C = 0.0 (left), C = 0.2 (middle) and
C = 0.4 (right).
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Conclusions

I for γ = 2 and C > 0 there are choices for B such that the
Turing-Hopf bifurcation becomes subcritical (stable patterns and
stable background state)

I for γ = 1 and C = 0 (Gray-Scott) the boundary of the full Busse
balloon consists of a complex interplay of different instabilities
(Hopf, sideband, fold...)

I for C > 0 (and γ = 1), the Hopf dance moves out of the stable
Busse region
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Ongoing research

I what exactly happens at the right side of the Busse balloon?
Possible new Hopf instabilies .....

I how does the Busse balloon look like for γ = 2?
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Ongoing research

II what exactly happens at the right side of the Busse balloon?
Possible new Hopf instabilies .....

I how does the Busse balloon look like for γ = 2?
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