
A trivia question

What is in common between the following locations:

Eindhoven
Leiden
Sydney
Amsterdam
Hadera
Haifa
France
Shfayim



DROS

Discriminatory random order service:

Each customers possesses a parameter pi

Upon service commencement (no preemption),
customer i enter service with probability pi/Σjpj.

Haviv and van der Wal 1997: M/M/1, parameter x, costs x.
What is the equilibrium purchasing strategy?

Answer: pure strategy. Pay

Cρ2

µ(1 − ρ)(2 − ρ)



DPS

Similar result for DPS: In DROS lotteries at service
commencements, in DPS it is at service completions.

Still open: Equilibrium payment in case of M/G/1? (for both
DROS and DPS)



M/G/1 with relative priority

Class i: λi, xi, x2
i, pi.

Mean value analysis: Haviv and Van der Wal (2008).

The same if HOL is assumed among classes.

Higher moments: A paper by .... (under review).

Higher moments in case of HOL?
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Concert hall with early birds

gate opens at zero and closes at T

FCFS, inclusive of early birds

all arrivals prior to T are served

single server

service exp(µ)

N= no. of arrivals Poisson(λ)

α= cost per unit of queueing

β > 0= cost per unit of tardiness (from zero)



Equilibrium

Symmetric (Nash) equilibrium: an arrival strategy (mixing is
possible), if used by all, nobody has an incentive to do
otherwise

Hassin and Glazer (1983): β = 0 and T finite

Jain, Juneja and Shimkin, (2010): Fluid approximation,
T = ∞

Juneja and Shimkin (2010+): β > 0, T = ∞, any distribution
for N



Equilibrium, β > 0, T = ∞

not a pure strategy

mixed strategy but without atoms

mixed strategy with a positive density along an interval

the arrival interval [−w, Te]

uniform density along [−w, 0)

continuous density but not at zero (downwards)

Assume β > 0: Otherwise, Te = ∞ and zero waiting costs



Equilibrium conditions, T = ∞

f(t): density of the arrival strategy

∫ Te

−w

f(t) dt = 1

f(t) determines the queueing process

w(t) =mean queueing time if arrive at t

Equilibrium conditions:

(α + β)w(t) + βt = Constant, −w ≤ t ≤ Te

(α + β)w(t) + βt ≥ Constant, t < w, t > Te

Reverse engineering: Find w, Te and f(t) such that the
equilibrium conditions hold



Equilibrium

Equilibrium:

f(t) =
µ

λ

α

α + β
, −w ≤ t < 0

f(t) is discontinuous at t = 0−

∫ Te

0

f(t) dt = 1 − w
µ

λ

α

α + β



Initial conditions:

Pk(0) = e
−wµ α

α+β

(wµ α
α+β

)k

k!
, k ≥ 0

Equilibrium:
f(t) =

(1 − P0(t))µ

λ
−

βµ

(α + β)λ
, 0 ≤ t ≤ Te

Dynamics:
P ′

0(t) = P1(t)µ − P0(t)λf(t), 0 < t < Te

P ′

k(t) = Pk−1(t)λf(t) + Pk+1(t)µ − Pk(t)(λf(t) + µ), 0 < t < Te, k ≥ 1

Equilibrium:
α(1 − P0(Te)) = βP0(Te) (or f(Te) = 0)



Equilibrium, T < ∞

If T > Te, as T = ∞

If T < Te, replace Te with T and ignore the last condition

α(1 − P0(Te)) = βP0(Te)

In fact,
α(1 − P0(T )) > βP0(T )

Social cost: λαw



Concert hall w/o early birds

gate opens at zero and closes at T

FCFS, exclusive of early birds

early birds enter at random

all arrivals prior to T are served

single server

service exp(µ)

N= no. of arrivals Poisson(λ)

α= cost per unit of queueing

β > 0= cost per unit of tardiness (from zero)

Hassin and Kleiner (2010): β = 0, T finite



Equilibrium

1. if T ≤ T1, pure: arrive at zero
T1 = ∞ is possible

2. if T1 < T ≤ Te,
atom at zero
positive density along [t′, T ]

3. if T > Te

atom at zero
positive density along [t′, Te]



Equilibrium

Np Poisson(λp)
Xi, iid, exp(µ)

g(t) = (α + β)E(
N1∑
i=0

Xi − t)+ + βt, t ≥ 0

t∗ = arg min
t≥0

g(t)

If g(t∗) ≥ λ(α + β)/2µ

⇓

Pure equilibrium: arrive at t = 0 (for any T )



Equilibrium, T < ∞

Assume g(t∗) ≤ λ(α + β)/2µ

T1= the smallest (among two) t such that

g(t) = (α + β)
λ

2µ

Te= the latest time to arrive in equilibrium when T = ∞

(needs to be determined).

The shape of the equilibrium depends if

T ≤ T1 (pure), or

T1 ≤ T ≤ Te (mixed), or

T ≥ Te as for Te



Equilibrium

If T ≤ T1 ⇒ pure strategy: arrive at t = 0

If T1 ≤ T ≤ Te,

atom of size p0 at zero

zero density along (0, t′)

positive density along [t′, T ]

(α + β)
λp0

2µ
= (α + β)E(

Np0∑
i=0

Xi − t′)+ + βt′,

One dimensional search for p0 based on

∫ T

t′
f(t) dt = 1 − p0



Equilibrium

If T ≥ Te as in Te.

Finding T2:

For any T ∈ (T1, Te), α(1 − P0(T ) > βP0(T ) : A bit after T
is a better response (yet, not feasible)

Te is the smallest T with α(1 − P0(T )) = βP0(T )

The social cost=λαw.



Fluid approximation

A mass of water of size Λ

rate of service µ units of water per unit of time

each drop needs to decide when to arrive



With early birds, fluid, T ≥ Λ/µ

Jain, Juneja and Shimkin, 2010

Equilibrium:

uniform arrival along [−Λβ/(µα),Λ/µ], rate µ α
α+β

social cost = Λ2β/µ (no α)

Social optimization:

uniform arrival along [0,Λ/µ], rate µ

social cost Λ2β/2µ (no waiting)

PoA=2, constantly



With early birds, fluid, T < Λ/µ

Equilibrium:

Shift all to the left, make T the upper end of the arrival
interval

Social cost: Λ(Λ(α + β) − αµT )/µ

Social optimization:

Arrive with rate µ along [0, T ]. The rest at T .



Without early birds, fluid

Social optimization: As with early birds

Equilibrium:

If β > α,
pure strategy: arrive at 0

social cost: Λ2(α + β)/2µ (an improvement)
PoA=(α + β)/β

If β ≤ α,
an atom of 2β/(α + β) at zero
a gap along (0,Λβ/(αµ)) (length as early birds
horizon)
constant rate of µα/(α + β) along [Λβ/(αµ),Λ/µ]

social cost Λ2β/µ (as with early birds)
PoA= 2



Why Poisson?

huge potential arrivals n

each comes with a tiny probability p

number of arrivals is Poisson with mean np

An external inspector believes that the number of arrivals is
Poisson

Each arrival believe the same (and same parameter)
regarding the number of other arrivals



Common prior

Suppose

pk =
(k + 1)qk+1

m
, k ≥ 0.

qk ≥ 0, k ≥ 0, Σ∞
k=0

qk = 1, m = Σ∞
k=0

kqk

The pk’s are the (common) posterior of the (common) prior
qk’s



Common prior

Up to the choice of q0, any nonnegative distribution is a
posterior of a unique prior

Families closed under posterior operation:

Poisson(λ) ⇒ Poisson(λ). Unique!

Binomial(n, p) ⇒ Binomial(n − 1, p)

Negative binomial(n, p) ⇒ Negative binomial(n + 1, p)



Thank You
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