A trivia question

What is in common between the following locations:
Eindhoven
Leiden
Sydney
Amsterdam
Hadera
Haifa
France
Shfayim

DROS

Discriminatory random order service:

- Each customers possesses a parameter p_{i}
- Upon service commencement (no preemption), customer i enter service with probability $p_{i} / \Sigma_{j} p_{j}$.

Haviv and van der Wal 1997: M/M/1, parameter x, costs x.
What is the equilibrium purchasing strategy?
Answer: pure strategy. Pay

$$
\frac{C \rho^{2}}{\mu(1-\rho)(2-\rho)}
$$

DPS

Similar result for DPS: In DROS lotteries at service commencements, in DPS it is at service completions.

Still open: Equilibrium payment in case of $\mathrm{M} / \mathrm{G} / 1$? (for both DROS and DPS)

M/G/1 with relative priority

Class i: $\lambda_{i}, \bar{x} i, \overline{x^{2}}{ }_{i}, p_{i}$.
Mean value analysis: Haviv and Van der Wal (2008).
The same if HOL is assumed among classes.
Higher moments: A paper by (under review).
Higher moments in case of HOL?

When to arrive at a queue with tardiness costs?

Moshe Haviv

The Hebrew University of Jerusalem
Eindhoven, 30.09.10

Concert hall with early birds

- gate opens at zero and closes at T
- FCFS, inclusive of early birds
- all arrivals prior to T are served
- single server
- service $\exp (\mu)$
- $N=$ no. of arrivals Poisson (λ)
- $\alpha=$ cost per unit of queueing
- $\beta>0=$ cost per unit of tardiness (from zero)

Equilibrium

Symmetric (Nash) equilibrium: an arrival strategy (mixing is possible), if used by all, nobody has an incentive to do otherwise

Hassin and Glazer (1983): $\beta=0$ and T finite Jain, Juneja and Shimkin, (2010): Fluid approximation, $T=\infty$
Juneja and Shimkin (2010+): $\beta>0, T=\infty$, any distribution for N

Equilibrium, $\beta>0, T=\infty$

- not a pure strategy
- mixed strategy but without atoms
- mixed strategy with a positive density along an interval
- the arrival interval $\left[-w, T_{e}\right]$
- uniform density along $[-w, 0)$
- continuous density but not at zero (downwards)

Assume $\beta>0$: Otherwise, $T_{e}=\infty$ and zero waiting costs

Equilibrium conditions, $T=\infty$

$f(t)$: density of the arrival strategy

$$
\int_{-w}^{T_{e}} f(t) d t=1
$$

$f(t)$ determines the queueing process
$w(t)=$ mean queueing time if arrive at t

Equilibrium conditions:

$$
\begin{array}{ll}
(\alpha+\beta) w(t)+\beta t=\text { Constant }, & -w \leq t \leq T_{e} \\
(\alpha+\beta) w(t)+\beta t \geq \text { Constant }, & t<w, t>T_{e}
\end{array}
$$

Reverse engineering: Find w, T_{e} and $f(t)$ such that the equilibrium conditions hold

Equilibrium

Equilibrium:

$$
f(t)=\frac{\mu}{\lambda} \frac{\alpha}{\alpha+\beta}, \quad-w \leq t<0
$$

$f(t)$ is discontinuous at $t=0-$

$$
\int_{0}^{T_{e}} f(t) d t=1-w \frac{\mu}{\lambda} \frac{\alpha}{\alpha+\beta}
$$

Initial conditions:

$$
P_{k}(0)=e^{-w \mu \frac{\alpha}{\alpha+\beta}} \frac{\left(w \mu \frac{\alpha}{\alpha+\beta}\right)^{k}}{k!}, k \geq 0
$$

Equilibrium:

$$
f(t)=\frac{\left(1-P_{0}(t)\right) \mu}{\lambda}-\frac{\beta \mu}{(\alpha+\beta) \lambda}, \quad 0 \leq t \leq T_{e}
$$

Dynamics:

$$
\begin{gathered}
P_{0}^{\prime}(t)=P_{1}(t) \mu-P_{0}(t) \lambda f(t), 0<t<T_{e} \\
P_{k}^{\prime}(t)=P_{k-1}(t) \lambda f(t)+P_{k+1}(t) \mu-P_{k}(t)(\lambda f(t)+\mu), \quad 0<t<T_{e}, k \geq 1
\end{gathered}
$$

Equilibrium:

$$
\alpha\left(1-P_{0}\left(T_{e}\right)\right)=\beta P_{0}\left(T_{e}\right) \quad\left(\text { or } f\left(T_{e}\right)=0\right)
$$

Equilibrium, $T<\infty$

- If $T>T_{e}$, as $T=\infty$
- If $T<T_{e}$, replace T_{e} with T and ignore the last condition

$$
\alpha\left(1-P_{0}\left(T_{e}\right)\right)=\beta P_{0}\left(T_{e}\right)
$$

In fact,

$$
\alpha\left(1-P_{0}(T)\right)>\beta P_{0}(T)
$$

Social cost: $\lambda \alpha w$

Concert hall w/o early birds

- gate opens at zero and closes at T
- FCFS, exclusive of early birds
- early birds enter at random
- all arrivals prior to T are served
- single server
- service $\exp (\mu)$
- $N=$ no. of arrivals Poisson (λ)
- $\alpha=$ cost per unit of queueing
- $\beta>0=$ cost per unit of tardiness (from zero)

Hassin and Kleiner (2010): $\beta=0, T$ finite

Equilibrium

1. if $T \leq T_{1}$, pure: arrive at zero
$T_{1}=\infty$ is possible
2. if $T_{1}<T \leq T_{e}$,

- atom at zero
- positive density along $\left[t^{\prime}, T\right]$

3. if $T>T_{e}$

- atom at zero
- positive density along $\left[t^{\prime}, T_{e}\right]$

Equilibrium

N_{p} Poisson (λp)
X_{i}, iid, $\exp (\mu)$

$$
\begin{gathered}
g(t)=(\alpha+\beta) \mathrm{E}\left(\sum_{i=0}^{N_{1}} X_{i}-t\right)^{+}+\beta t, \quad t \geq 0 \\
t^{*}=\arg \min _{t \geq 0} g(t) \\
\text { If } g\left(t^{*}\right) \geq \lambda(\alpha+\beta) / 2 \mu \\
\Downarrow
\end{gathered}
$$

Pure equilibrium: arrive at $t=0$ (for any T)

Equilibrium, $T<\infty$

Assume $g\left(t^{*}\right) \leq \lambda(\alpha+\beta) / 2 \mu$
$T_{1}=$ the smallest (among two) t such that

$$
g(t)=(\alpha+\beta) \frac{\lambda}{2 \mu}
$$

$T_{e}=$ the latest time to arrive in equilibrium when $T=\infty$ (needs to be determined).
The shape of the equilibrium depends if

- $T \leq T_{1}$ (pure), or
- $T_{1} \leq T \leq T_{e}$ (mixed), or
- $T \geq T_{e}$ as for T_{e}

Equilibrium

If $T \leq T_{1} \Rightarrow$ pure strategy: arrive at $t=0$
If $T_{1} \leq T \leq T_{e}$,

- atom of size p_{0} at zero
- zero density along $\left(0, t^{\prime}\right)$
- positive density along $\left[t^{\prime}, T\right]$

$$
(\alpha+\beta) \frac{\lambda p_{0}}{2 \mu}=(\alpha+\beta) \mathrm{E}\left(\sum_{i=0}^{N_{p_{0}}} X_{i}-t^{\prime}\right)^{+}+\beta t^{\prime},
$$

One dimensional search for p_{0} based on

$$
\int_{t^{\prime}}^{T} f(t) d t=1-p_{0}
$$

Equilibrium

If $T \geq T_{e}$ as in T_{e}.
Finding T_{2} :

- For any $T \in\left(T_{1}, T_{e}\right), \alpha\left(1-P_{0}(T)>\beta P_{0}(T): A\right.$ bit after T is a better response (yet, not feasible)
- T_{e} is the smallest T with $\alpha\left(1-P_{0}(T)\right)=\beta P_{0}(T)$

The social cost= $=\lambda \alpha$.

Fluid approximation

- A mass of water of size Λ
- rate of service μ units of water per unit of time
- each drop needs to decide when to arrive

With early birds, fluid, $T \geq \Lambda / \mu$

Jain, Juneja and Shimkin, 2010

Equilibrium:

- uniform arrival along $[-\Lambda \beta /(\mu \alpha), \Lambda / \mu]$, rate $\mu \frac{\alpha}{\alpha+\beta}$
- social cost $=\Lambda^{2} \beta / \mu($ no $\alpha)$

Social optimization:

- uniform arrival along $[0, \Lambda / \mu]$, rate μ
- social cost $\Lambda^{2} \beta / 2 \mu$ (no waiting)

PoA=2, constantly

With early birds, fluid, $T<\Lambda / \mu$

Equilibrium:

- Shift all to the left, make T the upper end of the arrival interval
- Social cost: $\Lambda(\Lambda(\alpha+\beta)-\alpha \mu T) / \mu$

Social optimization:

- Arrive with rate μ along $[0, T]$. The rest at T.

Without early birds, fluid

Social optimization: As with early birds

Equilibrium:

- If $\beta>\alpha$,
- pure strategy: arrive at 0
- social cost: $\Lambda^{2}(\alpha+\beta) / 2 \mu$ (an improvement)
- $\operatorname{PoA}=(\alpha+\beta) / \beta$
- If $\beta \leq \alpha$,
- an atom of $2 \beta /(\alpha+\beta)$ at zero
- a gap along $(0, \Lambda \beta /(\alpha \mu))$ (length as early birds horizon)
- constant rate of $\mu \alpha /(\alpha+\beta)$ along $[\Lambda \beta /(\alpha \mu), \Lambda / \mu]$
- social cost $\Lambda^{2} \beta / \mu$ (as with early birds)
- $\mathrm{Po} A=2$

Why Poisson?

- huge potential arrivals n
- each comes with a tiny probability p
- number of arrivals is Poisson with mean $n p$

An external inspector believes that the number of arrivals is Poisson

Each arrival believe the same (and same parameter) regarding the number of other arrivals

Common prior

Suppose

$$
p_{k}=\frac{(k+1) q_{k+1}}{m}, \quad k \geq 0 .
$$

$q_{k} \geq 0, k \geq 0, \Sigma_{k=0}^{\infty} q_{k}=1, m=\sum_{k=0}^{\infty} k q_{k}$
The p_{k} 's are the (common) posterior of the (common) prior q_{k} 's

Common prior

Up to the choice of q_{0}, any nonnegative distribution is a posterior of a unique prior

Families closed under posterior operation:

- Poisson $(\lambda) \Rightarrow$ Poisson (λ). Unique!
- $\operatorname{Binomial}(n, p) \Rightarrow \operatorname{Binomial}(n-1, p)$
- Negative binomial $(n, p) \Rightarrow$ Negative binomial $(n+1, p)$

Thank You

