Analysis of resource pooling games via a new extension of the Erlang loss function

Frank Karsten, Marco Slikker and Geert-Jan van Houtum

School of Industrial Engineering Eindhoven University of Technology

Second Israeli-Dutch Workshop on Queueing Theory, 30-09-2010

Analysis of resource pooling games via a new extension of the Erlang loss function

Introduction Model Game and allocation Proof approach Erlang loss extensions Main theorem Summ Motivation: resource pooling (example)

Medical departments in a hospital that require a clinical ward

Analysis of resource pooling games via a new extension of the Erlang loss function

Motivation: resource pooling (example)

Introduction

Model

Call centers pooling their telephone operators

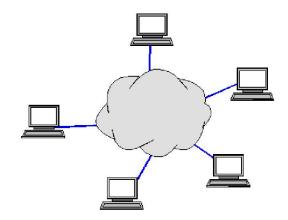
Analysis of resource pooling games via a new extension of the Erlang loss function

Motivation: resource pooling (example)

Airline companies pooling their inventories of spare engines

Analysis of resource pooling games via a new extension of the Erlang loss function

Introduction Model Game and allocation Proof approach Erlang loss extensions Main theorem Summary
Motivation: resource pooling (example)



University departments sharing computing facilities

Motivation: resource pooling (example)

Introduction

Model

Several cities operating a joint fire department

Research question

- Several independent decision makers that may collaborate by pooling resources.
- How should they fairly distribute the joint costs of the pooled system amongst each other?
 ⇒ Cooperative game theory

Introduction Model Game and allocation Proof approach Erlang loss extensions Main theorem Summary

Related literature

Cooperative games in single-server queueing systems

- García-Sanz et al. (2008)
- Yu, Benjaafar & Gerchak (2009)
- Anily & Haviv (2009)

- Proof approach
- 5 Erlang loss extensions

6 Main theorem

• There is a group of independent decision makers, the players.

- There is a group of independent decision makers, the players.
- Customers for each player arrive according to a Poisson process.

- There is a group of independent decision makers, the players.
- Customers for each player arrive according to a Poisson process.
- Arriving customers that find all servers occupied are lost.

- There is a group of independent decision makers, the players.
- Customers for each player arrive according to a Poisson process.
- Arriving customers that find all servers occupied are lost.
- Players can collaborate by fully pooling their servers and arrival streams.
 - Customers can be freely transferred between servers

- There is a group of independent decision makers, the players.
- Customers for each player arrive according to a Poisson process.
- Arriving customers that find all servers occupied are lost.
- Players can collaborate by fully pooling their servers and arrival streams.
 - Customers can be freely transferred between servers
- There is an infinite time horizon.

- There is a group of independent decision makers, the players.
- Customers for each player arrive according to a Poisson process.
- Arriving customers that find all servers occupied are lost.
- Players can collaborate by fully pooling their servers and arrival streams.
 - Customers can be freely transferred between servers
- There is an infinite time horizon.
- A cooperating group of players picks the cost-minimizing number of servers.

Resource pooling situations

A resource pooling situation is a tuple $(N, (\lambda_i)_{i \in N}, \mu, h, p)$, where

- N is the finite set of players
- λ_i is the arrival rate of customers of player $i \in N$
- $1/\mu$ is the expected service time
- *h* is the costs to hold one server per unit time
- p is the penalty costs incurred for a lost customer

Cooperative games

Cooperative cost game: (N, c)

- Player set N
 - A subset $M \subseteq N$ is called a coalition
 - M = N refers to the grand coalition
- Characteristic cost function $c: 2^N \to \mathbb{R}$
 - Assigns to every coalition *M* its cost *c*(*M*)

•
$$c(\emptyset) = 0$$

Costs for a group of players

Erlang's loss function

The function $\pi_0 : \mathbb{N}_0 \times (0, \infty) \rightarrow [0, 1]$ with

$$\pi_0(s,a) = rac{a^s/s!}{\sum_{y=0}^s a^y/y!}$$

gives the blocking probability in an M/G/s/s queue with load a.

Costs for a group of players

Erlang's loss function

The function $\pi_0 : \mathbb{N}_0 \times (0, \infty) \rightarrow [0, 1]$ with

$$\pi_0(s,a) = rac{a^s/s!}{\sum_{y=0}^s a^y/y!}$$

gives the blocking probability in an M/G/s/s queue with load a.

Costs for a coalition

- Coalition $M \subseteq N$ with $\lambda_M = \sum_{i \in M} \lambda_i$
- Suppose they jointly use S servers
- Expected costs per unit time in steady state:

$$h \cdot S + \pi_0(S, \lambda_M/\mu) \cdot \lambda_M \cdot p$$

Definition (Resource pooling games)

Let $(N, (\lambda_i)_{i \in N}, \mu, h, p)$ be a resource pooling situation. The game (N, c) with

$$c(M) = \min_{S \in \mathbb{N}_0} \left\{ h \cdot S + \pi_0(S, \lambda_M/\mu) \cdot \lambda_M \cdot p \right\}$$

for all $M \subseteq N$ is called the associated resource pooling game. An optimal number of servers for coalition M is denoted as S_M^* .

Example resource pooling game

Example						
Situation:	Associated resource pooling game and optimal number of servers:					
• $N = \{1, 2, 3\}$	Coalition M	S_M^*	<i>c</i> (<i>M</i>)]		
• $\lambda_1 = 1$	{1}	0	3			
	{2}	1	6			
 λ₂ = 2 	{3}	1	8 <u>3</u>			
• $\lambda_3 = 3$	{1,2}	1	8 <u>3</u>			
● <i>µ</i> = 1	{1,3}	2	$11\frac{5}{13}$			
• <i>h</i> = 2	{2,3}	3	13 ²²³ 236			
• <i>p</i> = 3	{1,2,3}	4	$16\frac{52}{155}$			

Cost allocations

Definition (Core)

The core is the set of all allocations $(x_i)_{i \in N} \in \mathbb{R}^N$ that are Efficient: $\sum_{i \in N} x_i = c(N)$ Stable: $\sum_{i \in M} x_i \leq c(M)$ for all $M \subseteq N$

Cost allocations

Definition (Core)

The core is the set of all allocations $(x_i)_{i \in N} \in \mathbb{R}^N$ that are

Efficient: $\sum_{i \in N} x_i = c(N)$ Stable: $\sum_{i \in M} x_i \le c(M)$ for all $M \subseteq N$

Definition (Allocation proportional to arrival rates)

For a resource pooling situation $(N, (\lambda_i)_{i \in N}, \mu, h, p)$ we allocate

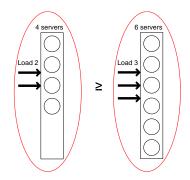
$$\mathcal{A}_i = \boldsymbol{c}(\boldsymbol{N}) \cdot rac{\lambda_i}{\lambda_{\boldsymbol{N}}}.$$

to each player $i \in N$.

Example resource pooling game

Example							
Situation:	ation: In this example, $\mathcal{A} = (2\frac{112}{155}, 5\frac{69}{155}, 8\frac{26}{155}).$ Is it stable (in the core)?						
• $N = \{1, 2, 3\}$	Coalition M	S_M^*	<i>c</i> (<i>M</i>)	$\sum_{i\in M} \mathcal{A}_i$			
	{1}	0	3	$2\frac{112}{155}$			
• $\lambda_1 = 1$	{2}	1	6	$5\frac{69}{155}$			
 λ₂ = 2 	{3}	1	8 <u>3</u>	$8\frac{26}{155}$			
• $\lambda_3 = 3$	{1,2}	1	$8\frac{3}{4}$	$8\frac{26}{155}$			
 μ = 1 	{1,3}	2	$11\frac{5}{13}$	$10\frac{138}{155}$			
• <i>h</i> = 2	{2,3}	3	$13\frac{223}{236}$	13 ⁹⁵ / ₁₅₅			
• <i>p</i> = 3	{1,2,3}	4	$16\frac{52}{155}$	$16\frac{52}{155}$			

Scaling property of of the Erlang loss function



Theorem (Smith and Whitt, 1981)

 $\pi_0(s_1, a) \ge \pi_0(s_2, a \cdot s_2/s_1) \ \forall \ a > 0 \ and \ s_1, s_2 \in \mathbb{N}_0 \ with \ s_1 \le s_2.$

We have to show stability for each coalition $M \subseteq N$:

Proof approach

 $\frac{\lambda_N}{\lambda_M} \cdot c(M)$

Model

$$\geq$$

c(N)

Model

We have to show stability for each coalition $M \subseteq N$:

$$rac{\lambda_N}{\lambda_M} \cdot \boldsymbol{c}(\boldsymbol{M}) = \boldsymbol{h} \cdot rac{\lambda_N}{\lambda_M} \cdot \boldsymbol{S}^*_{\boldsymbol{M}} + \pi_0 \quad \left(\boldsymbol{S}^*_{\boldsymbol{M}}, rac{\lambda_M}{\mu}\right) \qquad \cdot \lambda_N \cdot \boldsymbol{p}$$

$$\geq$$

Proof approach

c(N)

Model

We have to show stability for each coalition $M \subseteq N$:

$$\begin{aligned} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \pi_{0} \quad \left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \pi_{0} \quad \left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \quad \boldsymbol{c}(\boldsymbol{N}) \end{aligned}$$

Model

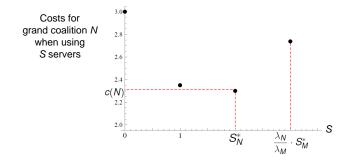
We have to show stability for each coalition $M \subseteq N$:

$$\begin{split} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \pi_{0} \quad \left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \pi_{0} \quad \left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \geq \boldsymbol{c}(\boldsymbol{N}) \end{split}$$

Model

We have to show stability for each coalition $M \subseteq N$:

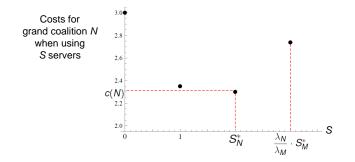
$$\begin{split} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \pi_{0} \quad \left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \pi_{0} \quad \left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \geq \boldsymbol{c}(\boldsymbol{N}) \end{split}$$



Model

We have to show stability for each coalition $M \subseteq N$:

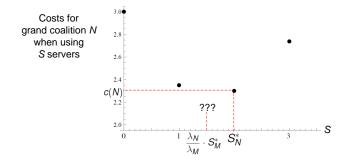
$$egin{aligned} & & \lambda_{N} \cdot m{c}(m{M}) = m{h} \cdot rac{\lambda_{N}}{\lambda_{M}} \cdot m{S}_{M}^{*} + \pi_{0} & \left(m{S}_{M}^{*}, rac{\lambda_{M}}{\mu}
ight) & \cdot \lambda_{N} \cdot m{p} \ & & \geq m{h} \cdot rac{\lambda_{N}}{\lambda_{M}} \cdot m{S}_{M}^{*} + \pi_{0} & \left(rac{\lambda_{N}}{\lambda_{M}} \cdot m{S}_{M}^{*}, rac{\lambda_{N}}{\mu}
ight) & \cdot \lambda_{N} \cdot m{p} \geq m{c}(m{N}) \end{aligned}$$



Model

We have to show stability for each coalition $M \subseteq N$:

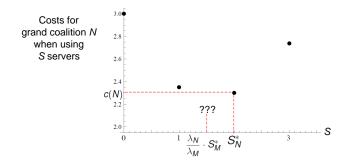
$$egin{aligned} &rac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{c}(m{M}) &=m{h}\cdotrac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{S}^*_{m{M}}+\pi_0 & \left(m{S}^*_{m{M}},rac{\lambda_{m{M}}}{\mu}
ight) &\cdot\lambda_{m{N}}\cdotm{p} \ &\geqm{h}\cdotrac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{S}^*_{m{M}}+\pi_0 & \left(rac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{S}^*_{m{M}},rac{\lambda_{m{N}}}{\mu}
ight) &\cdot\lambda_{m{N}}\cdotm{p} \geqm{c}(m{N}) \end{aligned}$$



Model

We have to show stability for each coalition $M \subseteq N$:

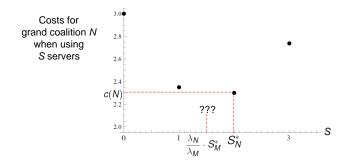
$$egin{aligned} &rac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{c}(m{M}) &= h\cdotrac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{S}^*_{m{M}}+ &m{X}\left(m{S}^*_{m{M}},rac{\lambda_{m{M}}}{\mu}
ight) &\cdot\lambda_{m{N}}\cdotm{p} \ &\geq h\cdotrac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{S}^*_{m{M}}+ &m{X}\left(rac{\lambda_{m{N}}}{\lambda_{m{M}}}\cdotm{S}^*_{m{M}},rac{\lambda_{m{N}}}{\mu}
ight) &\cdot\lambda_{m{N}}\cdotm{p} \geq m{c}(m{N}) \end{aligned}$$



Model

We have to show stability for each coalition $M \subseteq N$:

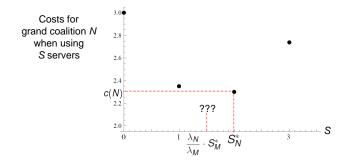
$$\begin{split} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \boldsymbol{X} \left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu} \right) & \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \boldsymbol{X} \left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu} \right) & \cdot \lambda_{N} \cdot \boldsymbol{p} \geq \boldsymbol{c}(\boldsymbol{N}) \end{split}$$



Model

We have to show stability for each coalition $M \subseteq N$:

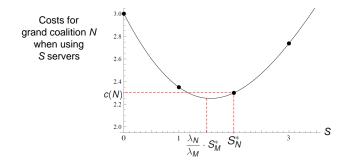
$$\begin{split} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \quad \boldsymbol{X}\left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \quad \boldsymbol{X}\left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \geq \boldsymbol{c}(\boldsymbol{N}) \end{split}$$



Model

We have to show stability for each coalition $M \subseteq N$:

$$\begin{split} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \quad \boldsymbol{X}\left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \quad \boldsymbol{X}\left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu}\right) \quad \cdot \lambda_{N} \cdot \boldsymbol{p} \geq \boldsymbol{c}(\boldsymbol{N}) \end{split}$$



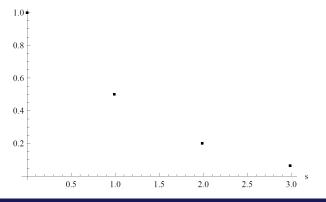
Proof approach

Erlang loss extensions

Main theorem Sun

Known extensions of the Erlang loss function

•
$$\pi_0(s,a) = (a^s/s!)/(\sum_{y=0}^s a^y/y!), s \in \mathbb{N}_0$$



Analysis of resource pooling games via a new extension of the Erlang loss function

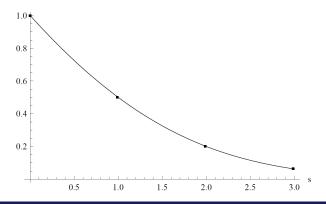
Known extensions of the Erlang loss function

Erlang loss extensions

•
$$\pi_0(s, a) = (a^s/s!)/(\sum_{y=0}^s a^y/y!), s \in \mathbb{N}_0$$

• $B(s, a) = (a \int_0^\infty e^{-ax} (1+x)^s dx)^{-1}$

Model



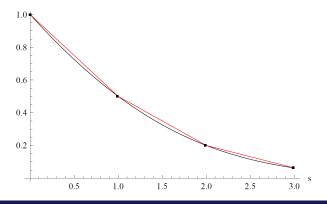
Analysis of resource pooling games via a new extension of the Erlang loss function

Introduction Model Game and allocation Proof approach Erlang loss extensions Main theorem Sur

Known extensions of the Erlang loss function

•
$$\pi_0(s, a) = (a^s/s!)/(\sum_{y=0}^s a^y/y!), s \in \mathbb{N}_0$$

• $B(s, a) = (a \int_0^\infty e^{-ax} (1+x)^s dx)^{-1}$
• $L(s, a) = (1 - (s - \lfloor s \rfloor)) \cdot \pi_0(\lfloor s \rfloor, a) + (s - \lfloor s \rfloor) \cdot \pi_0(\lceil s \rceil, a)$



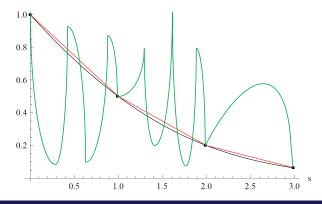
Analysis of resource pooling games via a new extension of the Erlang loss function

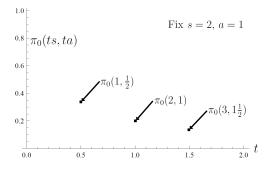
Introduction Model Game and allocation Proof approach Erlang loss extensions Main theorem

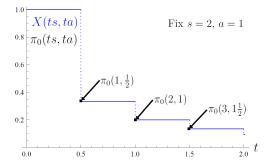
Known extensions of the Erlang loss function

•
$$\pi_0(s, a) = (a^s/s!)/(\sum_{y=0}^s a^y/y!), s \in \mathbb{N}_0$$

- $B(s,a) = (a \int_0^\infty e^{-ax} (1+x)^s dx)^{-1}$
- $L(s, a) = (1 (s \lfloor s \rfloor)) \cdot \pi_0(\lfloor s \rfloor, a) + (s \lfloor s \rfloor) \cdot \pi_0(\lceil s \rceil, a)$
- Nonsense(*s*, *a*) = . . .

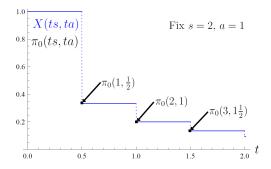






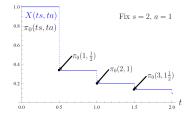
Define the function $X : [0,\infty) imes (0,\infty) o [0,1]$ with

$$X(s,a) = \left\{ egin{array}{ll} \pi_0(\lfloor s
floor, a \cdot \lfloor s
floor/s) & ext{if } s \geq 1; \ 1 & ext{if } s \in [0,1). \end{array}
ight.$$



Define the function $X : [0, \infty) \times (0, \infty) \rightarrow [0, 1]$ with

$$X(s,a) = \left\{ egin{array}{ll} \pi_0(\lfloor s
floor, a \cdot \lfloor s
floor/s) & ext{if } s \geq 1; \ 1 & ext{if } s \in [0,1). \end{array}
ight.$$



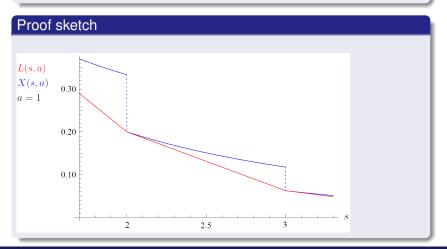
Obvious properties of this function

Extension: $X(s, a) = \pi_0(s, a) \ \forall \ s \in \mathbb{N}_0, \ a > 0$ Scaling: X(ts, ta) is non-increasing in $t \ \forall \ s \in [0, \infty), \ a > 0$

Analysis of resource pooling games via a new extension of the Erlang loss function

Theorem

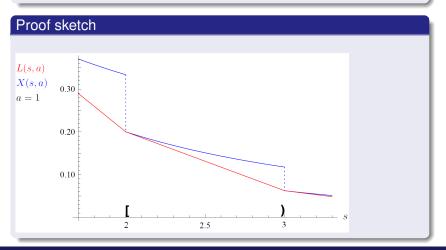
$$X(s, a) \ge L(s, a)$$
 for all $s \in [0, \infty)$ and $a > 0$.



Analysis of resource pooling games via a new extension of the Erlang loss function

Theorem

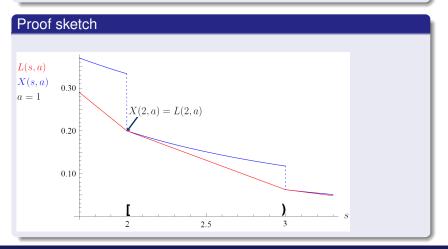
$$X(s, a) \ge L(s, a)$$
 for all $s \in [0, \infty)$ and $a > 0$.



Analysis of resource pooling games via a new extension of the Erlang loss function

Theorem

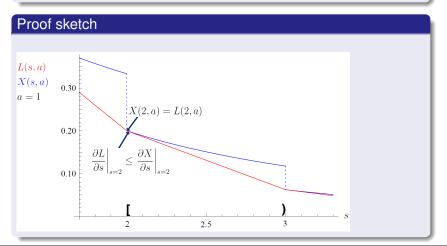
$$X(s, a) \ge L(s, a)$$
 for all $s \in [0, \infty)$ and $a > 0$.



Analysis of resource pooling games via a new extension of the Erlang loss function

Theorem

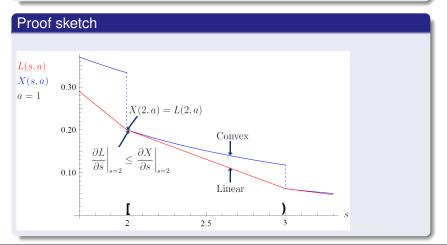
$$X(s, a) \ge L(s, a)$$
 for all $s \in [0, \infty)$ and $a > 0$.



Analysis of resource pooling games via a new extension of the Erlang loss function

Theorem

$$X(s, a) \ge L(s, a)$$
 for all $s \in [0, \infty)$ and $a > 0$.



Analysis of resource pooling games via a new extension of the Erlang loss function

The main theorem

Theorem

Let $(N, (\lambda_i)_{i \in N}, \mu, h, p)$ be a resource pooling situation. Then A is in the core of the associated resource pooling game.

Proof.

As before,

$$\begin{aligned} \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{c}(\boldsymbol{M}) &= \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \boldsymbol{X} \left(\boldsymbol{S}_{M}^{*}, \frac{\lambda_{M}}{\mu} \right) & \cdot \lambda_{N} \cdot \boldsymbol{p} \\ &\geq \boldsymbol{h} \cdot \frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*} + \boldsymbol{X} \left(\frac{\lambda_{N}}{\lambda_{M}} \cdot \boldsymbol{S}_{M}^{*}, \frac{\lambda_{N}}{\mu} \right) & \cdot \lambda_{N} \cdot \boldsymbol{p} \geq \boldsymbol{c}(\boldsymbol{N}) \end{aligned}$$

using the new extension X.

Setting - several independent decision makers that

- face costs for servers and lost customers
- collaborate by optimizing and pooling their joint servers

Main results:

- A new extension of the Erlang loss function
- A cost allocation is in the core of a resource pooling game

Future research:

- Costly customer transfers or servers with limited skills
- Asymmetric penalty costs or service times
- Waiting or overflow rather than balking

Thank you for your attention

Analysis of resource pooling games via a new extension of the Erlang loss function

Frank Karsten, Marco Slikker and Geert-Jan van Houtum

School of Industrial Engineering Eindhoven University of Technology

Second Israeli-Dutch Workshop on Queueing Theory, 30-09-2010