September 30, 2010 Second Israeli-Dutch Workshop on Queueing Theory EURANDOM

Some recent observations regarding growthcollapse processes and their generalizations

Offer Kella

The Hebrew University of Jerusalem

- **K** 2009 *J. Appl. Probab.*, **46**, 363-371.
- K and Löpker 2010 *Prob. Eng. Inf. Sci.*, **24**, 99-107.
- **K** and Yor 2010 *Ann. Appl. Prob.*, **20**, 367-381.
- Boxma, **K** and Perry 2010 Submitted.

$$\overline{U}_{n} = \overline{T}_{n} - \overline{T}_{n-1}$$

$$Y_{n} = \overline{I}_{n} (\overline{U}_{n})$$

$$V_{n} = \left(V_{n-1} + Y_{n}\right) X_{n}$$

$$N(t) = \operatorname{Rup} \left\{n \mid \overline{T}_{n} \leq t\right\}$$

$$W(t) = V_{N(t)} + \overline{I}_{N(t)+1} (t - \overline{T}_{N(t)})$$

$$V_n = (V_{n-1} + Y_n)X_n$$

and thus

$$V_n = V_0 \prod_{j=1}^n X_j + \sum_{i=1}^n Y_i \prod_{j=i}^n X_j.$$

Level right before the nth collapse:

 $U_n = V_{n-1} + Y_n = X_{n-1}U_{n-1} + Y_n$

Recall

$$W(t) = V_{N(t)} + I_{N(t)+1}(t - T_{N(t)})$$

Theorem 1 Assume that $\{(X_n, Y_n) | n \ge 1\}$ is a stationary sequence with $EY_1 < \infty$, that

$$\prod_{i=1}^{\infty} X_i = 0 , \text{a.s.}$$
 (1)

and that its two sided extension $\{(X_n, Y_n) | n \in \mathbb{Z}\}$ satisfies

$$\limsup_{n \to \infty} \left(\prod_{i=-n}^{-1} X_i \right)^{1/n} \le \rho < 1 \text{ , a.s.}$$
 (2)

Then $\{V_n | n \ge 0\}$ has a stationary version $\{V_n^* | n \ge 1\}$ with $P[V_n^* < \infty] = 1$ and $V_n - V_n^* \rightarrow 0$ a.s. for any initial V_0 .

Theorem 2 Assume that $\{(T_n, K_n) | n \ge 1\}$ is an ergodic event stationary marked point process with marks

$$K_n = (X_n, \{I_n(t) | t \ge 0\})$$

as well as $E\tau_1 < \infty$, $EX_1 < 1$ and $EY_1 = EI_1(\tau_1) < \infty$. Then $\{W(t) | t \ge 0\}$ has a stationary version and for every function f which is bounded and Lipschitz continuous on $[0, \infty)$, we have that

$$\frac{1}{t} \int_0^t f(W(s)) ds \to \frac{1}{E\tau_1} E \int_0^{\tau_1} f(V_0^* + I_1(s)) ds$$
(3)

a.s. as $t \to \infty$. Consequently, W(t) converges in distribution to the stationary marginal for any initial W(0).

$$\frac{1}{t} \int_0^t e^{-\alpha W(s)} ds \rightarrow E e^{-\alpha W^*(0)}$$
$$= E \left(e^{-\alpha V_0^*} \frac{1}{E\tau_1} \int_0^{\tau_1} e^{-\alpha I_1(s)} ds \right)$$

Corollary 1 If in addition to the conditions of Theorem 2, $\{(\tau_n, k_n) | n \ge 1\}$ is i.i.d., then

$$W \sim V + I_e \tag{4}$$

where V and I_e are ind., $W \sim W^*(0)$, $V \sim V_0^*$ and I_e is a r.v. having the dist.

$$\longrightarrow P[I_e \in A] = \frac{1}{E\tau_1} E \int_0^{\tau_1} 1_A(I_1(s)) ds .$$
 (5)

Moreover, if τ_1 *and* $\{I_1(t) | t \ge 0\}$ *are ind., then* $I_e \sim I_1(\tau_e)$ *, where*

$$au_e \sim F_e(\Box) = \int_0^{\Box} \frac{P[\tau_1 > s]}{E\tau_1} ds \; .$$

clearing process

Corollary 2 If in addition to Corollary 1 we assume that X_1 , $\{I_1(t) | t \ge 0\}$ and τ_1 are independent, then denoting $\tilde{Z}(\alpha) = Ee^{-\alpha Z}$ and $F_Z(x) = P[Z \le x]$ for some nonnegative random variable Z we have that

$$\tilde{V}(\alpha) = \int_{[0,1]} \tilde{V}(\alpha x) \tilde{Y}(\alpha x) F_X(dx) .$$
 (6)

In particular, if P[X = q] = 1 for some 0 < q < 1 then

$$\tilde{V}(\alpha) = \tilde{V}(q\alpha)\tilde{Y}(q\alpha) = \prod_{i=1}^{\infty}\tilde{Y}(q^{i}\alpha).$$
 (7)

Explicit computation of the stationary distribution of *V*:

Vervaat - 1979 (AAP 11, 750-783).

The following seems to be new: $X_n \sim \text{Beta}(\alpha_1, \alpha_2), Y_n \sim \text{Gamma}(\alpha_2, \beta).$ If $V_{n-1} \sim \text{Gamma}(\alpha_1, \beta)$ then

$$(V_{n-1} + Y_n, X_n) \sim \left(V_{n-1} + Y_n, \frac{V_{n-1}}{V_{n-1} + Y_n}\right)$$

and thus

$$V_n = (V_{n-1} + Y_n)X_n$$

~ $(V_{n-1} + Y_n)\frac{V_{n-1}}{V_{n-1} + Y_n} = V_{n-1}$

so in this case $Gamma(\alpha_1, \beta)$ is the unique stationary distribution.

Moments for the i.i.d. case:

Since $W \sim V + I_e$,

$$EW^{n} = \sum_{k=0}^{n} \binom{n}{k} EV^{k} EI_{e}^{n-k}$$

Also

$$EV^{n} = EX^{n} \sum_{k=0}^{n} \binom{n}{k} EV^{k} EY^{n-k}$$

and thus

$$EV^{n} = \frac{EX^{n}}{1 - EX^{n}} \sum_{k=0}^{n-1} \binom{n}{k} EV^{k} EY^{n-k}$$

in particular

$$EV = \frac{EX}{1 - EX}EY$$

and

$$EV^{2} = \frac{EX^{2}}{1 - EX^{2}} \left(EY^{2} + 2\frac{EX}{1 - EX} (EY)^{2} . \right)$$

For the case of a subordinator $EY = \eta'(0)E\tau_1$ and

$$EY^2 = -\eta''(0)E\tau_1 + (\eta'(0))^2 E\tau_1^2.$$

Relation with shot noise processes:

Kaspi, **K** and Perry. - 1997 (QUESTA **24**, 37-57).

$$cf_{\rm gc}(x)ET_1 = rxf_{\rm sn}(x)ES_1$$
.

Therefore, if for i = gc, sn and $\alpha \ge 0$,

$$\psi_i(\alpha) = \int_0^\infty e^{-\alpha x} f_i(x) dx ,$$

then

$$c\psi_{\rm gc}(\alpha)ET_1 = -r\psi'_{\rm sn}(\alpha)ES_1$$

therefore, and

$$c\mu_{\rm gc}(n)ET_1 = r\mu_{\rm sn}(n+1)ES_1 \; .$$

in particular

$$\mu_{\rm sn} = \frac{cET_1}{rES_1}$$

For càdlàg $Z = \{Z_t | t \ge 0\}$:

- $Z_{t-} = \lim_{s \uparrow t} Z_s$
- $\Delta Z_t = Z_t Z_{t-}$
- $\Delta Z_0 = Z_0$
- $Z_t^c = Z_t \sum_{0 \le s \le t} \Delta Z_s$ when Z is BV
- $[Z, Z]_t$ -quadratic variation

$$X_{t} = X_{T_{n_{t}}} \cdot U_{n_{t}} + \Gamma(t - T_{n_{t}})$$

$$X_{T_{n}} = X_{T_{n-1}} \cdot U_{n-1} + \Gamma(T_{n} - T_{n-1})$$
autoregressive (K. 2009)
$$X_{t} = X_{0} + \Gamma t - \sum_{i \neq j} X_{T_{i}} (1 - U_{i})$$

$$= X_{0} + \Gamma t - \int_{(0, t]} X_{S-} d \sum_{i=j}^{N_{s}} (1 - U_{i})$$

Common structure: Stoch. linear eq.

$$X_{t} = Y_{t} + \int_{(0,t]} X_{s-} dZ_{s}$$

$$\frac{Shot noise:}{Y_{t} = X_{s} + \sum_{i=1}^{N_{t}} j_{i}}, Z_{t} = -rt$$
Growth collapse:

$$Y_{t} = X_{s} + rt, Z_{t} = -\sum_{i=1}^{N_{t}} (1-U_{i})$$

$$\frac{Clearing:}{Y_{t} = nondecreasing}, Z_{t} = -N_{t}$$

$$\{Y_{T_{t}}, Y_{t-1}, t \ge 0\} \sim Y$$

$$t = rich + f_{i}$$

+ risk + tinance

Theorem 3 *Y*, *Z* càdlàg, adapted, *Y* is BV, *Z* is a semimartingale. The unique càdlàg adapted solution to

$$X_t = Y_t + \int_{(0,t]} X_{s-} \mathrm{d}Z_s$$

is

$$X_t = \int_{[0,t]} U_{u,t} \mathrm{d}Y_u$$

where $U_{t,t} = 1$ and for u < t, $U_{u,t} =$

$$e^{Z_t - Z_u - \frac{1}{2}([Z,Z]_t^c - [Z,Z]_u^c)} \cdot \prod_{u < s \le t} (1 + \Delta Z_s) e^{-\Delta Z_s}$$

When Z is BV then for u < t, $U_{u,t} = e^{Z_t^c - Z_u^c} \prod_{u < s \le t} (1 + \Delta Z_u)$

Assume:

- *Y*, *Z* nondecreasing
- $Y_0 = Z_0 = 0$
- $\Delta Z_t \leq 1$
- Law of (Y_{s+}. − Y_s, Z_{s+}. − Z_s) is independent of s (stationary increments)
- $X_t = X_0 + Y_t \int_{(0,t]} X_{s-} dZ_s$

•
$$N_t = \sum_{0 < s \le t} \mathbb{1}_{\{\Delta Z_s = 1\}}$$

•
$$T_n = \inf\{t \mid N_t = n\}$$

•
$$J_t = Z_t^c - \sum_{0 < s \le t} \log(1 - \Delta(Z_s - N_s))$$

• Extend (Y, Z) to be a two sided process

Theorem 4 If $\int_{(-\infty,0]} e^{J_s} dY_s < \infty$ a.s. and either $T_1 < \infty$ a.s. or $J_t \to \infty$ a.s. as $t \to \infty$, then X has the unique stationary version

$$X_t^* = \int_{(-\infty,t]} e^{-(J_t - J_s)} \mathbf{1}_{\{N_t - N_s = 0\}} \mathrm{d}Y_s \qquad (8)$$

and for every initial a.s. finite X_0 ,

$$X_t \xrightarrow{\mathrm{d}} X_0^*$$
,

When $X_0 = 0$ a.s. then X_t is stochastically increasing in $t \ge 0$.

{J, |t≥o} CTMC, irred. Rate trans. matrix Q = (7; j) Stat. dist. $\pi = (\pi_i)$ $dW_{t} = \bigvee_{\overline{J_{t}}} dt - W_{t} \cdot \left(I - X_{\overline{J_{t}}}^{N_{t}} \overline{J_{t}}\right) dN_{t}$ $N_t = \sup \{n \mid T_n \leq t\}$ Tn - nth state change epoch X_{ij}^{n} - ind. $X_{ij}^{n} \sim X_{ij} \in [0,1]$

States: 1, ..., K.

Condition 1 $\exists i, j \text{ such that } q_{ij} > 0 \text{ and } P[X_{ij} = 1] < 1.$

Theorem 1 Under Condition 1 the process (W_t, J_t) has a well defined time stationary distribution which is also the limiting distribution, independent of initial conditions.

 (W_*, J_*) has the joint stationary distribution of $\{(W_t, J_t | t \ge 0\}$.

Extended generator:

$$\begin{aligned} \mathcal{A}f(x,i) &= r_i f'(x,i) \\ &+ \sum_{\substack{j=1 \\ j \neq i}}^{K} q_{ij} (Ef(xX_{ij},j) - f(x,i)) \\ &= r_i f'(x,i) + \sum_{j=1}^{K} q_{ij} Ef(xX_{ij},j). \end{aligned}$$

Theorem 2 $\forall a \geq 0$, $f(x,i) = c_i x^{\alpha}$ is in the domain of \mathcal{A} and thus, with $a_{ij}(\alpha) = E X_{ij}^{\alpha}$,

$$\mathcal{A}f(x,i) = \alpha r_i c_i x^{\alpha-1} + x^{\alpha} \sum_{j=1}^{K} q_{ij} a_{ij}(\alpha) c_j$$

0Y

$$\mathcal{A}f(x) = \alpha x^{\alpha - 1} D_r c + x^{\alpha} Q \circ A(\alpha) c,$$

where

$$A(\alpha) = (a_{ij}(\alpha))$$

$$A \circ B = (a_{ij}b_{ij})$$

$$D_r = diag(r_1, \dots, r_K)$$

$$c = (c_i)$$

$$f(x) = (f(x, i))$$

and *A* acts componentwise.

$$\xi_i^n = E[W_*^n 1_{\{J^*=i\}}]$$

$$\xi^n = (\xi_i^n)$$

Lemma 1 Let $D_q = diag(q_1, \ldots, q_K)$. Under Condition 1, the matrix $Q \circ A(\alpha)$ is nonsingular for every positive α and

$$(-Q \circ A(\alpha))^{-1} \ge D_q^{-1} .$$

Theorem 3 Under Condition 1,

$$(\xi^n)^T = n! \pi^T \prod_{k=1}^n D_r (-Q \circ A(k))^{-1}$$

for $n \geq 1$.

Dynkin's martingale:

$$f(W_t, J_t) - f(W_0, J_0) - \int_0^t \mathcal{A}f(X_s, J_s) ds$$

Valid for $f(x, i) = c_i x^n$. Set $\xi_i^n(t) = E\left[W_t^n \mathbb{1}_{\{J_t=i\}}\right]$ $\xi^n(t) = (\xi_i^n(t))$ $c \in \mathbb{R}^K$

then

$$\xi^{n}(t)^{T}c = \xi^{n}(0)^{T}c + \int_{0}^{t} (n(\xi^{n-1}(s))^{T}D_{r}c + (\xi^{n}(s))^{T}Q \circ A(n)c) ds.$$

Thus

$$\frac{\mathrm{d}}{\mathrm{d}t}\xi^n(t) = nD_r\xi^{n-1}(t) + (Q \circ A(n))^T\xi^n(t)$$

Phase type inter-collapse times

States: 0, 1, ..., K.

$$Q = \begin{pmatrix} -1 & \beta^T \\ -R\mathbf{1} & R \end{pmatrix}$$

P [intercollapse time > t] = $\beta^T e^{Rt} \mathbf{1}$ By regenerative theory,

$$F(t) = \frac{\sum_{i=1}^{K} P[W_* \le t, J_* = i]}{1 - \pi_0}$$
$$\mu^n = \int_{[0,t]} t^n dF(t) = \frac{\sum_{i=1}^{K} \xi_i^n}{1 - \pi_0}$$

 $a_{i0}(\alpha) = a(\alpha) = EX^{\alpha}$ for i = 1, ..., K and $a_{ij}(\alpha) = 1$ for all other pairs.

$$Q \circ A(\alpha) = \begin{pmatrix} -1 & \beta^T \\ -a(\alpha)R\mathbf{1} & R \end{pmatrix}$$

Theorem 4 For a growth collapse model with linear increase with rate r > 0, remaining proportion after a jump with distribution not concentrated at one, with nth moment a(n) and with i.i.d. inter-collapse times having the phase type distribution $F(t) = 1 - \beta^T e^{Rt} \mathbf{1}$, a stationary distribution exists and has the following nth moment:

$$\mu^{n} = n! r^{n} \frac{\beta^{T}(-R^{-1})}{\beta^{T}(-R^{-1})\mathbf{1}} \\ \cdot \prod_{k=1}^{n} \left[\left(I + \frac{a(k)}{1 - a(k)} \mathbf{1}\beta^{T} \right) (-R^{-1}) \right] \mathbf{1} .$$

Corollary 1 If in Theorem 4, in addition the remaining proportion after a jump is zero, then the growth collapse model becomes a clearing process and the corresponding moments are:

$$\mu^{n} = n! r^{n} \frac{\beta^{T} (-R^{-1})^{n+1} \mathbf{1}}{\beta^{T} (-R^{-1}) \mathbf{1}} .$$
 (1)