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Vn = (Vn−1 + Yn)Xn

and thus

Vn = V0

n∏
j=1

Xj +

n∑
i=1

Yi

n∏
j=i

Xj .

Level right before the nth collapse:

Un = Vn−1 + Yn = Xn−1Un−1 + Yn

Recall

W (t) = VN(t) + IN(t)+1(t− TN(t))
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Theorem 1 Assume that {(Xn, Yn)| n ≥ 1} is
a stationary sequence with EY1 <∞, that

∞∏
i=1

Xi = 0 , a.s. (1)

and that its two sided extension {(Xn, Yn)| n ∈
Z} satisfies

lim sup
n→∞

( −1∏
i=−n

Xi

)1/n

≤ ρ < 1 , a.s. (2)

Then {Vn| n ≥ 0} has a stationary version
{V ∗n | n ≥ 1} with P [V ∗n < ∞] = 1 and Vn −
V ∗n → 0 a.s. for any initial V0.
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Theorem 2 Assume that {(Tn, Kn)| n ≥ 1} is
an ergodic event stationary marked point pro-
cess with marks

Kn = (Xn, {In(t)| t ≥ 0})

as well as Eτ1 < ∞, EX1 < 1 and EY1 =
EI1(τ1) < ∞. Then {W (t)| t ≥ 0} has a sta-
tionary version and for every function f which
is bounded and Lipschitz continuous on [0,∞),
we have that
1

t

∫ t

0

f (W (s))ds→ 1

Eτ1
E

∫ τ1

0

f (V ∗0 +I1(s))ds

(3)
a.s. as t → ∞. Consequently, W (t) converges
in distribution to the stationary marginal for
any initial W (0).

4



1

t

∫ t

0

e−αW (s)ds → Ee−αW
∗(0)

= E

(
e−αV

∗
0

1

Eτ1

∫ τ1

0

e−αI1(s)ds

)
Corollary 1 If in addition to the conditions of
Theorem 2, {(τn, kn)| n ≥ 1} is i.i.d., then

W ∼ V + Ie (4)

where V and Ie are ind., W ∼ W ∗(0), V ∼ V ∗0
and Ie is a r.v. having the dist.

P [Ie ∈ A] =
1

Eτ1
E

∫ τ1

0

1A(I1(s))ds . (5)

Moreover, if τ1 and {I1(t)| t ≥ 0} are ind., then
Ie ∼ I1(τe), where

τe ∼ Fe(�) =

∫ �

0

P [τ1 > s]

Eτ1
ds .
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Corollary 2 If in addition to Corollary 1 we
assume that X1, {I1(t)| t ≥ 0} and τ1 are in-
dependent, then denoting Z̃(α) = Ee−αZ and
FZ(x) = P [Z ≤ x] for some nonnegative ran-
dom variable Z we have that

Ṽ (α) =

∫
[0,1]

Ṽ (αx)Ỹ (αx)FX(dx) . (6)

In particular, if P [X = q] = 1 for some
0 < q < 1 then

Ṽ (α) = Ṽ (qα)Ỹ (qα) =

∞∏
i=1

Ỹ (qiα) . (7)
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Explicit computation of the stationary dis-
tribution of V :

Vervaat - 1979 (AAP 11, 750-783).

The following seems to be new:
Xn ∼ Beta(α1, α2), Yn ∼ Gamma(α2, β).
If Vn−1 ∼ Gamma(α1, β) then

(Vn−1 + Yn, Xn) ∼
(
Vn−1 + Yn,

Vn−1

Vn−1 + Yn

)
and thus

Vn = (Vn−1 + Yn)Xn

∼ (Vn−1 + Yn)
Vn−1

Vn−1 + Yn
= Vn−1

so in this case Gamma(α1, β) is the unique
stationary distribution.
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Moments for the i.i.d. case:

Since W ∼ V + Ie,

EW n =

n∑
k=0

(
n

k

)
EV kEIn−ke

Also

EV n = EXn
n∑
k=0

(
n

k

)
EV kEY n−k

and thus

EV n =
EXn

1− EXn

n−1∑
k=0

(
n

k

)
EV kEY n−k

in particular

EV =
EX

1− EX
EY

and

EV 2 =
EX2

1− EX2

(
EY 2 + 2

EX

1− EX
(EY )2 .

)
For the case of a subordinatorEY = η′(0)Eτ1

and
EY 2 = −η′′(0)Eτ1 + (η′(0))2Eτ 2

1 .
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Relation with shot noise processes:

Kaspi, K and Perry. - 1997
(QUESTA 24, 37-57).

cfgc(x)ET1 = rxfsn(x)ES1 .

Therefore, if for i = gc, sn and α ≥ 0,

ψi(α) =

∫ ∞
0

e−αxfi(x)dx ,

then

cψgc(α)ET1 = −rψ′sn(α)ES1

therefore,

cµgc(n)ET1 = rµsn(n + 1)ES1 .

in particular

µsn =
cET1

rES1
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For càdlàg Z = {Zt| t ≥ 0}:
• Zt− = lim

s↑t
Zs

• ∆Zt = Zt − Zt−
• ∆Z0 = Z0

• Zc
t = Zt −

∑
0≤s≤t ∆Zs when Z is BV

• [Z,Z]t-quadratic variation
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Theorem 3 Y , Z càdlàg, adapted, Y is BV, Z
is a semimartingale. The unique càdlàg adapted
solution to

Xt = Yt +

∫
(0,t]

Xs−dZs

is
Xt =

∫
[0,t]

Uu,tdYu

where Ut,t = 1 and for u < t, Uu,t =

eZt−Zu−
1
2([Z,Z]ct−[Z,Z]cu) ·

∏
u<s≤t

(1 + ∆Zs)e
−∆Zs

When Z is BV then for u < t, Uu,t =

eZ
c
t−Zcu

∏
u<s≤t

(1 + ∆Zu)
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Assume:

• Y , Z nondecreasing

• Y0 = Z0 = 0

• ∆Zt ≤ 1

• Law of (Ys+· − Ys, Zs+· − Zs) is indepen-
dent of s (stationary increments)

• Xt = X0 + Yt −
∫

(0,t]Xs−dZs

• Nt =
∑

0<s≤t 1{∆Zs=1}

• Tn = inf{t| Nt = n}
• Jt = Zc

t −
∑

0<s≤t log(1−∆(Zs −Ns))

• Extend (Y, Z) to be a two sided process
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Theorem 4 If
∫

(−∞,0] e
JsdYs < ∞ a.s. and ei-

ther T1 < ∞ a.s. or Jt → ∞ a.s. as t → ∞,
then X has the unique stationary version

X∗t =

∫
(−∞,t]

e−(Jt−Js)1{Nt−Ns=0}dYs (8)

and for every initial a.s. finite X0,

Xt
d−→ X∗0 ,

When X0 = 0 a.s. then Xt is stochastically
increasing in t ≥ 0.
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States: 1, . . . , K.

Condition 1 ∃i, j such that qij > 0 and
P [Xij = 1] < 1.

Theorem 1 Under Condition 1 the process
(Wt, Jt) has a well defined time stationary dis-
tribution which is also the limiting distribu-
tion, independent of initial conditions.

(W∗, J∗) has the joint stationary distribution
of {(Wt, Jt| t ≥ 0}.
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Extended generator:

Af (x, i) = rif
′(x, i)

+

K∑
j=1
j 6=i

qij(Ef (xXij, j)− f (x, i))

= rif
′(x, i) +

K∑
j=1

qijEf (xXij, j).
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Theorem 2 ∀a ≥ 0, f (x, i) = cix
α is in the

domain of A and thus, with aij(α) = EXα
ij,

Af (x, i) = αricix
α−1 + xα

K∑
j=1

qijaij(α)cj

or

Af (x) = αxα−1Drc + xαQ ◦ A(α)c,

where

A(α) = (aij(α))

A ◦B = (aijbij)

Dr = diag(r1, . . . , rK)

c = (ci)

f (x) = (f (x, i))

and A acts componentwise.
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ξni = E[W n
∗ 1{J∗=i}]

ξn = (ξni )

Lemma 1 Let Dq = diag(q1, . . . , qK). Under
Condition 1, the matrix Q ◦A(α) is nonsingu-
lar for every positive α and

(−Q ◦ A(α))−1 ≥ D−1
q .

Theorem 3 Under Condition 1,

(ξn)T = n!πT
n∏
k=1

Dr(−Q ◦ A(k))−1

for n ≥ 1.
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Dynkin’s martingale:

f (Wt, Jt)− f (W0, J0)−
∫ t

0

Af (Xs, Js)ds

Valid for f (x, i) = cix
n.

Set
ξni (t) = E

[
W n

t 1{Jt=i}
]

ξn(t) = (ξni (t))
c ∈ RK

then

ξn(t)Tc = ξn(0)Tc

+

∫ t

0

(
n(ξn−1(s))TDrc

+(ξn(s))TQ ◦ A(n)c
)
ds.

Thus
d
dt
ξn(t) = nDrξ

n−1(t) + (Q ◦ A(n))Tξn(t)

6





Phase type inter-collapse times

States: 0, 1, . . . , K.

Q =

(
−1 βT

−R1 R

)
P [intercollapse time > t] = βTeRt1

By regenerative theory,

F (t) =

∑K
i=1 P [W∗ ≤ t, J∗ = i]

1− π0

µn =

∫
[0,t]

tndF (t) =

∑K
i=1 ξ

n
i

1− π0
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ai0(α) = a(α) = EXα for i = 1, . . . , K and
aij(α) = 1 for all other pairs.

Q ◦ A(α) =

(
−1 βT

−a(α)R1 R

)
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Theorem 4 For a growth collapse model with
linear increase with rate r > 0, remaining pro-
portion after a jump with distribution not con-
centrated at one, with nth moment a(n) and
with i.i.d. inter-collapse times having the phase
type distribution F (t) = 1 − βTeRt1, a sta-
tionary distribution exists and has the follow-
ing nth moment:

µn = n!rn
βT (−R−1)

βT (−R−1)1

·
n∏
k=1

[(
I +

a(k)

1− a(k)
1βT

)
(−R−1)

]
1 .
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Corollary 1 If in Theorem 4, in addition the
remaining proportion after a jump is zero, then
the growth collapse model becomes a clearing
process and the corresponding moments are:

µn = n!rn
βT (−R−1)n+11

βT (−R−1)1
. (1)
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