September 30, 2010

Second Israeli-Dutch Workshop on Queueing Theory EURANDOM

Some recent observations regarding growthcollapse processes and their generalizations

Offer Kella

The Hebrew University of Jerusalem

- K - 2009
J. Appl. Probab., 46, 363-371.
- K and Löpker - 2010

Prob. Eng. Inf. Sci., 24, 99-107.

- K and Yor - 2010

Ann. Appl. Prob., 20, 367-381.

- Boxma, K and Perry - 2010 Submitted.

Simplest growth collapse process

Generalization

$$
\begin{aligned}
& \tau_{n}=T_{n}-T_{n-1} \\
& Y_{n}=I_{n}\left(\tau_{n}\right) \\
& V_{n}=\left(V_{n-1}+Y_{n}\right) X_{n} \\
& N(t)=\operatorname{aup}\left\{n \mid T_{n} \leq t\right\} \\
& W(t)=V_{N(t)}+I_{N(t)+1}\left(t-T_{N(t)}\right)
\end{aligned}
$$

$$
V_{n}=\left(V_{n-1}+Y_{n}\right) X_{n}
$$

and thus

$$
V_{n}=V_{0} \prod_{j=1}^{n} X_{j}+\sum_{i=1}^{n} Y_{i} \prod_{j=i}^{n} X_{j}
$$

Level right before the nth collapse:

$$
U_{n}=V_{n-1}+Y_{n}=X_{n-1} U_{n-1}+Y_{n}
$$

Recall

$$
W(t)=V_{N(t)}+I_{N(t)+1}\left(t-T_{N(t)}\right)
$$

Theorem 1 Assume that $\left\{\left(X_{n}, Y_{n}\right) \mid n \geq 1\right\}$ is a stationary sequence with $E Y_{1}<\infty$, that

$$
\begin{equation*}
\prod_{i=1}^{\infty} X_{i}=0 \text {, a.s. } \tag{1}
\end{equation*}
$$

and that its two sided extension $\left\{\left(X_{n}, Y_{n}\right) \mid n \in\right.$ $\mathbb{Z}\}$ satisfies

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\prod_{i=-n}^{-1} X_{i}\right)^{1 / n} \leq \rho<1, \text { a.s. } \tag{2}
\end{equation*}
$$

Then $\left\{V_{n} \mid n \geq 0\right\}$ has a stationary version $\left\{V_{n}^{*} \mid n \geq 1\right\}$ with $P\left[V_{n}^{*}<\infty\right]=1$ and $V_{n}-$ $V_{n}^{*} \rightarrow 0$ a.s. for any initial V_{0}.

Theorem 2 Assume that $\left\{\left(T_{n}, K_{n}\right) \mid n \geq 1\right\}$ is an ergodic event stationary marked point process with marks

$$
K_{n}=\left(X_{n},\left\{I_{n}(t) \mid t \geq 0\right\}\right)
$$

as well as $E \tau_{1}<\infty, E X_{1}<1$ and $E Y_{1}=$ $E I_{1}\left(\tau_{1}\right)<\infty$. Then $\{W(t) \mid t \geq 0\}$ has a stationary version and for every function f which is bounded and Lipschitz continuous on $[0, \infty)$, we have that

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} f(W(s)) d s \rightarrow \frac{1}{E \tau_{1}} E \int_{0}^{\tau_{1}} f\left(V_{0}^{*}+I_{1}(s)\right) d s \tag{3}
\end{equation*}
$$

a.s. as $t \rightarrow \infty$. Comententy, $W(t)$ converges in distribution to the stationary marginal for any initial $W(0)$.

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} e^{-\alpha W(s)} d s & \rightarrow E e^{-\alpha W^{*}(0)} \\
& =E\left(e^{-\alpha V_{0}^{*}} \frac{1}{E \tau_{1}} \int_{0}^{\tau_{1}} e^{-\alpha I_{1}(s)} d s\right)
\end{aligned}
$$

Corollary 1 If in addition to the conditions of Theorem 2, $\left\{\left(\tau_{n}, k_{n}\right) \mid n \geq 1\right\}$ is i.i.d., then

$$
\begin{equation*}
W \sim V+I_{e} \tag{4}
\end{equation*}
$$

where V and I_{e} are ind., $W \sim W^{*}(0), V \sim V_{0}^{*}$ and I_{e} is a r.v. having the dist.

$$
\begin{equation*}
P\left[I_{e} \in A\right]=\frac{1}{E \tau_{1}} E \int_{0}^{\tau_{1}} 1_{A}\left(I_{1}(s)\right) d s \tag{5}
\end{equation*}
$$

Moreover, if τ_{1} and $\left\{I_{1}(t) \mid t \geq 0\right\}$ are ind., then $I_{e} \sim I_{1}\left(\tau_{e}\right)$, where

$$
\tau_{e} \sim F_{e}(\square)=\int_{0}^{\square} \frac{P\left[\tau_{1}>s\right]}{E \tau_{1}} d s
$$

clearing process

Corollary 2 If in addition to Corollary 1 we assume that $X_{1},\left\{I_{1}(t) \mid t \geq 0\right\}$ and τ_{1} are independent, then denoting $\tilde{Z}(\alpha)=E e^{-\alpha Z}$ and $F_{Z}(x)=P[Z \leq x]$ for some nonnegative random variable Z we have that

$$
\begin{equation*}
\tilde{V}(\alpha)=\int_{[0,1]} \tilde{V}(\alpha x) \tilde{Y}(\alpha x) F_{X}(d x) . \tag{6}
\end{equation*}
$$

In particular, if $P[X=q]=1$ for some $0<q<1$ then

$$
\begin{equation*}
\tilde{V}(\alpha)=\tilde{V}(q \alpha) \tilde{Y}(q \alpha)=\prod_{i=1}^{\infty} \tilde{Y}\left(q^{i} \alpha\right) . \tag{7}
\end{equation*}
$$

Explicit computation of the stationary distribution of V :

Vervaat - 1979 (AAP 11, 750-783).

The following seems to be new: $X_{n} \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right), Y_{n} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)$.
If $V_{n-1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ then

$$
\left(V_{n-1}+Y_{n}, X_{n}\right) \sim\left(V_{n-1}+Y_{n}, \frac{V_{n-1}}{V_{n-1}+Y_{n}}\right)
$$

and thus

$$
\begin{aligned}
V_{n} & =\left(V_{n-1}+Y_{n}\right) X_{n} \\
& \sim\left(V_{n-1}+Y_{n}\right) \frac{V_{n-1}}{V_{n-1}+Y_{n}}=V_{n-1}
\end{aligned}
$$

so in this case $\operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ is the unique stationary distribution.

Moments for the i.i.d. case:

Since $W \sim V+I_{e}$,

$$
E W^{n}=\sum_{k=0}^{n}\binom{n}{k} E V^{k} E I_{e}^{n-k}
$$

Also

$$
E V^{n}=E X^{n} \sum_{k=0}^{n}\binom{n}{k} E V^{k} E Y^{n-k}
$$

and thus

$$
E V^{n}=\frac{E X^{n}}{1-E X^{n}} \sum_{k=0}^{n-1}\binom{n}{k} E V^{k} E Y^{n-k}
$$

in particular

$$
E V=\frac{E X}{1-E X} E Y
$$

and

$$
E V^{2}=\frac{E X^{2}}{1-E X^{2}}\left(E Y^{2}+2 \frac{E X}{1-E X}(E Y)^{2} .\right)
$$

For the case of a subordinator $E Y=\eta^{\prime}(0) E \tau_{1}$ and

$$
E Y^{2}=-\eta^{\prime \prime}(0) E \tau_{1}+\left(\eta^{\prime}(0)\right)^{2} E \tau_{1}^{2}
$$

Shot-noise, linear dam

$$
\begin{aligned}
& X_{t}=V_{0}+\sum_{i=1}^{N(t)} Y_{i}-r \int_{0}^{t} X_{s} d s \\
& N_{t}=\sup \left\{n \mid T_{n} \leqslant t\right\} \\
& X_{t}=V_{0} e^{-r t}+\sum_{i=1}^{N_{t}} Y_{i} e^{-r\left(t-T_{i}\right)}
\end{aligned}
$$

Relation with shot noise processes:
Kaspi, K and Perry. - 1997
(QUESTA 24, 37-57).

$$
c f_{\mathrm{gc}}(x) E T_{1}=r x f_{\mathrm{sn}}(x) E S_{1} .
$$

Therefore, if for $i=\mathrm{gc}, \mathrm{sn}$ and $\alpha \geq 0$,

$$
\psi_{i}(\alpha)=\int_{0}^{\infty} e^{-\alpha x} f_{i}(x) d x
$$

then

$$
c \psi_{\mathrm{gc}}(\alpha) E T_{1}=-r \psi_{\mathrm{sn}}^{\prime}(\alpha) E S_{1}
$$

thenefore, and

$$
c \mu_{\mathrm{gc}}(n) E T_{1}=r \mu_{\mathrm{sn}}(n+1) E S_{1} .
$$

in particular

$$
\mu_{\mathrm{sn}}=\frac{c E T_{1}}{r E S_{1}}
$$

For càdlàg $Z=\left\{Z_{t} \mid t \geq 0\right\}$:

- $Z_{t-}=\lim _{s \uparrow t} Z_{s}$
- $\Delta Z_{t}=Z_{t}-Z_{t-}$
- $\Delta Z_{0}=Z_{0}$
- $Z_{t}^{c}=Z_{t}-\sum_{0 \leq s \leq t} \Delta Z_{s}$ when Z is BV
- $[Z, Z]_{t}$-quadratic variation

Shot-noise, linear dam

$$
\begin{aligned}
& X_{t}=x_{0}+Y_{t}-r \int_{0}^{t} x_{s} d s \\
& y_{t}=\sum_{i=1}^{N_{t}} \xi_{i} \quad N_{t}=\sup \left\{n \mid T_{n} \leqslant t\right\} \\
& X_{t}=X_{0} e^{-r t}+\sum_{i=1}^{N_{t}} \xi_{i} e^{-r\left(t-T_{i}\right)}
\end{aligned}
$$

Growth-collapse

$$
\begin{aligned}
& X_{t}=X_{T_{N_{t}^{-}}} \cdot U_{N_{t}}+r\left(t-T_{N_{t}}\right) \\
& X_{T_{n^{-}}}=X_{T_{n-1}} \cdot U_{n-1}+r\left(T_{n}-T_{n-1}\right)
\end{aligned}
$$

autoregressive ($K .2009$)

$$
\begin{aligned}
x_{t} & =x_{0}+r t-\sum_{i=1}^{N_{t}} x_{T_{i}-}\left(1-U_{i}\right) \\
& =x_{0}+r t-\int_{(0, t]} x_{S-} d \sum_{i=1}^{N_{s}}\left(1-U_{i}\right)
\end{aligned}
$$

Clearing process

$$
\begin{aligned}
& x_{t}=y_{t}-Y_{T_{N_{t}}} \\
& x_{T_{n}-}=y_{T_{n}-}-y_{T_{n-1}} \\
& x_{t}=y_{t}-\sum_{i=1}^{N_{t}}(\underbrace{\left(y_{T_{n}}-y_{T_{n-1}}\right)}_{X_{T_{n}-}}=y_{t}-\int_{(0, t]} x_{s-} d N_{s}
\end{aligned}
$$

Common structure: Stoch. linear eq.

$$
X_{t}=y_{t}+\int_{(0, t]} X_{s-} d Z_{s}^{L}
$$

Shot noise:

$$
y_{t}=x_{0}+\sum_{i=1}^{N_{t}} \xi_{i}, \quad z_{t}=-r t
$$

Growth collapse:

$$
\frac{\text { Growth collapse: }}{y_{t}=x_{0}+r t,} \quad z_{t}=-\sum_{i=1}^{N_{t}}\left(1-U_{i}\right)
$$

Clearing:

$$
\begin{aligned}
& Y_{t}=\text { nondecreasing }, \quad Z_{t}=-N_{t} \\
& \left\{Y_{T_{n}+t}-Y_{T_{n}} \mid t \geqslant 0\right\} \sim y \\
& + \text { risk }+ \text { finance }
\end{aligned}
$$

Theorem $3 Y, Z$ càdlàg, adapted, Y is $B V, Z$ is a semimartingale. The unique càdlàg adapted solution to

$$
X_{t}=Y_{t}+\int_{(0, t]} X_{s-} \mathrm{d} Z_{s}
$$

is

$$
X_{t}=\int_{[0, t]} U_{u, t} \mathrm{~d} Y_{u}
$$

where $U_{t, t}=1$ and for $u<t, U_{u, t}=$

$$
e^{Z_{t}-Z_{u}-\frac{1}{2}\left([Z, Z]_{t}^{c}-[Z, Z]_{u}^{c}\right)} \cdot \prod_{u<s \leq t}\left(1+\Delta Z_{s}\right) e^{-\Delta Z_{s}}
$$

When Z is $B V$ then for $u<t, U_{u, t}=$

$$
e^{Z_{t}^{c}-Z_{u}^{c}} \prod_{u<s \leq t}\left(1+\Delta Z_{u}\right)
$$

Assume:

- Y, Z nondecreasing
- $Y_{0}=Z_{0}=0$
- $\Delta Z_{t} \leq 1$
- Law of $\left(Y_{s+.}-Y_{s}, Z_{s+.}-Z_{s}\right)$ is independent of s (stationary increments)
- $X_{t}=X_{0}+Y_{t}-\int_{(0, t]} X_{s-} \mathrm{d} Z_{s}$
- $N_{t}=\sum_{0<s \leq t} 1_{\left\{\Delta Z_{s}=1\right\}}$
- $T_{n}=\inf \left\{t \mid N_{t}=n\right\}$
- $J_{t}=Z_{t}^{c}-\sum_{0<s \leq t} \log \left(1-\Delta\left(Z_{s}-N_{s}\right)\right)$
- Extend (Y, Z) to be a two sided process

Theorem 4 If $\int_{(-\infty, 0]} e^{J_{s}} \mathrm{~d} Y_{s}<\infty$ a.s. and either $T_{1}<\infty$ a.s. or $J_{t} \rightarrow \infty$ a.s. as $t \rightarrow \infty$, then X has the unique stationary version

$$
\begin{equation*}
X_{t}^{*}=\int_{(-\infty, t]} e^{-\left(J_{t}-J_{s}\right)} 1_{\left\{N_{t}-N_{s}=0\right\}} \mathrm{d} Y_{s} \tag{8}
\end{equation*}
$$

and for every initial a.s. finite X_{0},

$$
X_{t} \xrightarrow{\mathrm{~d}} X_{0}^{*}
$$

When $X_{0}=0$ a.s. then X_{t} is stochastically increasing in $t \geq 0$.

$\left\{J_{t} \mid t \geqslant 0\right\} \quad$ CTMC, irred.
Rate trans matrix $Q=\left(q_{i j}\right)$
Stat. dist. $\pi=\left(\pi_{i}\right)$

$$
\begin{aligned}
& d W_{t}=r_{J_{t}} d t-W_{t-} \cdot\left(1-x_{J_{t-}}^{N_{t}}\right) d N_{t} \\
& N_{t}=\sup \left\{n \mid T_{n} \leq t\right\}
\end{aligned}
$$

T_{n} - ${ }^{\text {th }}$ state change epoch

$$
X_{i j}^{n}-i n d . \quad X_{i j}^{n} \sim X_{i j} \in[0,1]
$$

States: $1, \ldots, K$.
Condition $1 \exists i, j$ such that $q_{i j}>0$ and $P\left[X_{i j}=1\right]<1$.
Theorem 1 Under Condition 1 the process (W_{t}, J_{t}) has a well defined time stationary distribution which is also the limiting distribution, independent of initial conditions.
(W_{*}, J_{*}) has the joint stationary distribution of $\left\{\left(W_{t}, J_{t} \mid t \geq 0\right\}\right.$.

Extended generator:

$$
\begin{aligned}
\mathcal{A} f(x, i)= & r_{i} f^{\prime}(x, i) \\
& +\sum_{\substack{j=1 \\
j \neq i}}^{K} q_{i j}\left(E f\left(x X_{i j}, j\right)-f(x, i)\right) \\
= & r_{i} f^{\prime}(x, i)+\sum_{j=1}^{K} q_{i j} E f\left(x X_{i j}, j\right) .
\end{aligned}
$$

Theorem $2 \forall a \geq 0, f(x, i)=c_{i} x^{\alpha}$ is in the domain of \mathcal{A} and thus, with $a_{i j}(\alpha)=E X_{i j}^{\alpha}$,

$$
\mathcal{A} f(x, i)=\alpha r_{i} c_{i} x^{\alpha-1}+x^{\alpha} \sum_{j=1}^{K} q_{i j} a_{i j}(\alpha) c_{j}
$$

or

$$
\mathcal{A} f(x)=\alpha x^{\alpha-1} D_{r} c+x^{\alpha} Q \circ A(\alpha) c,
$$

where

$$
\begin{aligned}
A(\alpha) & =\left(a_{i j}(\alpha)\right) \\
A \circ B & =\left(a_{i j} b_{i j}\right) \\
D_{r} & =\operatorname{diag}\left(r_{1}, \ldots, r_{K}\right) \\
c & =\left(c_{i}\right) \\
f(x) & =(f(x, i))
\end{aligned}
$$

and \mathcal{A} acts componentwise.
$\xi_{i}^{n}=E\left[W_{*}^{n} 1_{\left\{J^{*}=i\right\}}\right]$
$\xi^{n}=\left(\xi_{i}^{n}\right)$
Lemma 1 Let $D_{q}=\operatorname{diag}\left(q_{1}, \ldots, q_{K}\right)$. Under Condition 1, the matrix $Q \circ A(\alpha)$ is nonsingular for every positive α and

$$
(-Q \circ A(\alpha))^{-1} \geq D_{q}^{-1} .
$$

Theorem 3 Under Condition 1,

$$
\left(\xi^{n}\right)^{T}=n!\pi^{T} \prod_{k=1}^{n} D_{r}(-Q \circ A(k))^{-1}
$$

for $n \geq 1$.

Dynkin's martingale:

$$
f\left(W_{t}, J_{t}\right)-f\left(W_{0}, J_{0}\right)-\int_{0}^{t} \mathcal{A} f\left(X_{s}, J_{s}\right) d s
$$

Valid for $f(x, i)=c_{i} x^{n}$.
Set
$\xi_{i}^{n}(t)=E\left[W_{t}^{n} 1_{\left\{J_{t}=i\right\}}\right]$
$\xi^{n}(t)=\left(\xi_{i}^{n}(t)\right)$
$c \in \mathbb{R}^{K}$
then

$$
\begin{aligned}
\xi^{n}(t)^{T} c= & \xi^{n}(0)^{T} c \\
& +\int_{0}^{t}\left(n\left(\xi^{n-1}(s)\right)^{T} D_{r} c\right. \\
& \left.\quad+\left(\xi^{n}(s)\right)^{T} Q \circ A(n) c\right) d s .
\end{aligned}
$$

Thus

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \xi^{n}(t)=n D_{r} \xi^{n-1}(t)+(Q \circ A(n))^{T} \xi^{n}(t)
$$

Phase type inter-collapse times

States: $0,1, \ldots, K$.

$$
Q=\left(\begin{array}{cc}
-1 & \beta^{T} \\
-R \mathbf{1} & R
\end{array}\right)
$$

$P[$ intercollapse time $>t]=\beta^{T} e^{R t} 1$
By regenerative theory,

$$
\begin{aligned}
F(t) & =\frac{\sum_{i=1}^{K} P\left[W_{*} \leq t, J_{*}=i\right]}{1-\pi_{0}} \\
\mu^{n} & =\int_{[0, t]} t^{n} d F(t)=\frac{\sum_{i=1}^{K} \xi_{i}^{n}}{1-\pi_{0}}
\end{aligned}
$$

$a_{i 0}(\alpha)=a(\alpha)=E X^{\alpha}$ for $i=1, \ldots, K$ and $a_{i j}(\alpha)=1$ for all other pairs.

$$
Q \circ A(\alpha)=\left(\begin{array}{cc}
-1 & \beta^{T} \\
-a(\alpha) R \mathbf{1} & R
\end{array}\right)
$$

Theorem 4 For a growth collapse model with linear increase with rate $r>0$, remaining proportion after a jump with distribution not concentrated at one, with nth moment $a(n)$ and with i.i.d. inter-collapse times having the phase type distribution $F(t)=1-\beta^{T} e^{R t} \mathbf{1}$, a stationary distribution exists and has the following nth moment:

$$
\begin{aligned}
\mu^{n}= & n!r^{n} \frac{\beta^{T}\left(-R^{-1}\right)}{\beta^{T}\left(-R^{-1}\right) \mathbf{1}} \\
& \cdot \prod_{k=1}^{n}\left[\left(I+\frac{a(k)}{1-a(k)} \mathbf{1} \beta^{T}\right)\left(-R^{-1}\right)\right] \mathbf{1} .
\end{aligned}
$$

Corollary 1 If in Theorem 4, in addition the remaining proportion after a jump is zero, then the growth collapse model becomes a clearing process and the corresponding moments are:

$$
\begin{equation*}
\mu^{n}=n!r^{n} \frac{\beta^{T}\left(-R^{-1}\right)^{n+1} \mathbf{1}}{\beta^{T}\left(-R^{-1}\right) \mathbf{1}} . \tag{1}
\end{equation*}
$$

