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OUTLINE

• Power laws in complex networks

• Model for power law distribution of PageRank 

importance scores

• Dependence between power law graph parameters, 

angular measure

• Analytical derivations for the angular measure

• Experiments
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COMPLEX NETWORKS

• Examples: Internet, WWW, social networks, food webs

• Typical features: high variability (power laws), 

clustering, small-world phenomenon, self-similarity
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POWER LAW GRAPHS

Web graphs [http://www.aharef.info]

CNN Yahoo!
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POWER LAW GRAPHS-2

internet graphs [http://www.opte.org]
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POWER LAW GRAPHS-3

Social networks

Collaboration network: node=authors, edge=co-authors of a paper

source: http://www.jacobsschool.ucsd.edu/
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POWER LAW FORMALIZATION

• Regular variation

X is regularly varying random variable with index α

if  P(X>x) ~ L(x)x-α as x → ∞  (here a~b if a/b →1)

L(x) is slowly varying if for every t>0: 

L(tx)/L(x) → 1 as x → ∞

• log-log plot: straight line 

log [P(X>x)] = - α log(x)+log(c)
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GRAPH’S PARAMETERS

• In-degree  (number of incoming links)

• Out-degree  (number of outgoing links)

• PageRank  (importance scores)

dj is number of outgoing links of page j

c is damping factor (c=0.85)

n is the number of pages in the graph

D is the set of dangling nodes (outdegree zero)

T(i) probability to jump on page i 

(classical example T(i)=1/n)

• Broder et al. (2000) In-degree  obeys power laws with α ≈ 1.1. Out-degree follows power law 

with exponent α ≈1.6

• Panduragan et al. [2002] and other authors: PageRank scaled as R(i)=nPR(i) obey power 

laws with α ≈ 1.1
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MOTIVATION-1
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Pandurangan et al.[2002]: In-degree and PageRank have a similar 
asymptotic behavior
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STOCHASTIC EQUATION FOR PAGERANK

• PageRank definition 

• Consider the PageRank R of randomly chosen page

PageRank R is a solution of stochastic equation

N is the in-degree of the randomly chosen page

D is the out-degree of page that links to the randomly chosen page 

(have no restrictions on the out-degree distribution)

p0 is the fraction of PageRank mass concentrated in the dangling nodes

Rj is distributed as R; N, D, and Rj are independent ;  N and T can be dependent
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TAIL BEHAVIOR OF R

• If P(nT > x) = o(P(N > x)), then  P(R > x)~CNP(N > x) as x→∞,

where

• If P(N > x) = o(P(nT > x)),  hen P(R > x)~CTP(nT > x) as x→∞, 

where

• If P(nT > x) ~ CBN (1-c)ɑNP(N > x) for some constant CBN, 

then P(R > x)~CP(N > x) as x→∞, 

where 
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DEPENDENCE IN COMPLEX NETWORKS

• How the graph parameters depend on each other?

no agreement on the dependence between in-degree and 

PageRank in the Web

• The correlation coefficient  

where E(X) and E(Y) are expected values, 

σ(X) and σ(Y) are standard deviations of X and Y
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DEPENDENCE IN COMPLEX NETWORKS (CONTINUED)

We want to measure a dependence between two heavy-

tailed parameters X and Y

We are mainly interested in the dependence between 

extremely large values of X and Y 

• extremal dependence is a well-developed notion of 

dependence that is designed for power law tails 

S.I. Resnick “Heavy-tail phenomena: probabilistic and statistical 

modelling”, Springer, 2007

[telecommunications and mathematical finance] 
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DATA SETS

Eu-2005 contains 862.664 nodes and 19.235.140 links

Wikipedia contains 4.881.983 nodes and 42.062.836 links

Growing Network contains 10.000 nodes and 79.992 links
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x-axes: values of parameter; y-axes: proportion of pages for which 
this parameter is greater than  x



MATHEMATICAL FRAMEWORK

• X,Y are r.v’s; FX,FY are distribution functions

• 1-FX(X) = fraction of occurrences of the value >X (rank)

• P(1-FX(X) ≤ 1/t)=1/t, and if t is large then X is large

• Define

where  

• Then 

• S(A) is the angular measure

• Independence: R is large if X or Y is large

Dependence: X and Y can be large together
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INTERPRETATION OF THE ANGULAR MEASURE
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• Define

• Angular measure S(A):

Dependence                                   Independence

(measure is concentrated around π/4)                    (measure is concentrated around 0 and π/2)
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STATISTICAL DEPENDENCIES

• graph’s parameters:  

X= (X1,…, Xn) and Y= (Y1,…, Yn) 

node j → (Xj ,Yj)

• rank transform

{(Xj ,Yj), 1≤ j ≤ n}─► {(rj
x , rj

y ), 1≤ j ≤ n}, 

rj
x is the descending rank of Xj in (X1,…, Xn)

rj
y is the descending rank of Yj in (Y1,…, Yn)
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POLAR COORDINATE TRANSFORM

Polar coordinate transform

k=1,…n  is the number of upper statistics

where 

• empirical distribution of Θ for k largest values of R

• cumulative distribution function {Θj,k : Rj,k > 1}

September 29, 2010
Israeli-Dutch Workshop on Queueing 

Theory

 
kj,kj,y

j

x

j

Θ,R
r

k
,

r

k
POLAR 















 )arctan(y/x ,xy)POLAR(x, 22 y



DEPENDENCIES

in-degree and PageRank (c=0.85)                                       in-degree and PageRank (c=0.5)

in-degree and out-degree (c=0.85) out-degree and PageRank (c=0.85)
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ANGULAR MEASURE: ANALYTICAL DERIVATION
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• Our stochastic model

• N is regularly varying, P(N>x) ~ L(x)x-α

• Can we analytically determine the angular measure between N 
and R?

• It turns out that this can be done with the results from the 
extreme value theory:

Beirlant, Goegebeur, Segers, Teugels (2004): Statistics of
Extremes: Theory and Applications
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INSIGHT THROUGH THE LAW OF LARGE NUMBERS

where P(N>x) ~ L(x)x-α

Lemma. As u→∞, for any constant K>0,

`Proof‘: By the SLLN we have R~ E(A)N when N is large. 

• when E(A) > K, the event {R>Ku} is `implied' by {N>u};

• when E(A) < K, then N needs to be larger than Ku/E(A) for {R>Ku}

to hold.

BRAR j

N

1j

j

d  


u)}P(N[E(A)/K]min{1,~Ku)Ru,P(N α 



TAIL DEPENDENCE FUNCTION

• Remember that the angular measure is defined as  

where

• Using  that P(R>u)~CP(N>u) for large u, we can compute the tail

dependence function (which is closely related to a copula):

• There is a one-to-one correspondence between S(A) and r(x,y)
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DERIVATION OF THE DEPENDENCE FUNCTION
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Theorem. Dependence function between N and R is:

Proof. By rewriting r(x,y) in the form as in the Lemma and then using the 
Lemma. 
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BACKGROUND FROM THE EXTREME VALUE THEORY
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THE ANGULAR MEASURE IN L1

• Denote by H(.) the angular measure in L1 –norm

• From the extreme value theory we have:

with normalization 

• It is easy to check that the following two-point measure satisfies the

conditions above and corresponds to the obtained r(x,y):
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INTERPRETATION OF THE ANGULAR MEASURE

• The model:

• H is the dependence measure between in-degree N and PageRank R

• The total weight of H(.) is 2 

• H is concentrated in two points: 0 and a

• Interpretation: 

- fraction H(a)/2 of pages has large PR due to large in-degree

- fraction H(0)/2 of pages has a high PR due to important links
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EXPERIMENTS: WEB

• EU-2005 data set due to the Laboratory for Web Algorithmics (LAW) of the 
Universit`a degli studi di Milano,  Boldi and Vigna (2004)

• Total of 862,664 nodes and 19,235,140 links

• Fitting gives α =1.1, both for In-degree and PageRanks, see log-log plots 
(with c=0.85 and c=0.5):
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EXPERIMENTAL RESULTS: WEB

• Theoretical result for a two-point measure:

• Experimental comparison…
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EXPERIMENTS: GROWING NETWORKS

• Network of 10.000 nodes with constant out-degree d = 8

• With prob. 0.1, new node links to random page, with 0.9, new node 
follows preferential attachment 

• Fitting gives α=1.1, both for In-degree and PageRank
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EXPERIMENTAL RESULTS: GROWING NETWORKS

• Assuming P(Ri > u) = o(P(N >u)) we find that H(.) is a one-point 
measure:

• a = 1/2,  H(a) = 2
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SUMMARY

• We propose a new approach to modeling and analysing 
the relations between various parameters of complex 
networks

• Extremal dependencies reveal that Web, Wikipedia and 
preferential attachment graphs have a totally different 
dependence structure between different graph 
parameters

• Our stochastic model is too rough to capture the 
dependencies in the Web
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THANK YOU!
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