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Part I

The Stationary Excess Operator



Renewal process

(i.i.d. interarrival times with distribution F)

Remaining lifetime Bt

Age At

X ∼ N(20,2), t = 1,2, . . . ,250



Stationary excess operator

Suppose thatE[X ] <∞, then

P(At ≤ x) → 1

E[X ]

∫ x

0

(
1−F(u)

)
du ← P(Bt ≤ x)

Define an Operator

S F(x) = 1

E[X ]

∫ x

0

(
1−F(u)

)
du

and its higher powers (providedE[X n] <∞)

S nF(x) =S S · · ·S︸ ︷︷ ︸
n×

F(x).

Interesting:

Closed form for S nF(x)

Moments, Laplace transform

Convergence as n →∞
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Properties of the stationary excess operator

Let S nX be a random variable with distribution S nF .

Closed form:

S nF(x) = 1−
∫ ∞

0 (1−F(u+x))un−1 du∫ ∞
0 (1−F(u))un−1 du

.

Moments:

E

[(
S nX

)k
]
= k!n!E[X n+k]

(k+n)!E[X n]
.

Laplace transform:

(−s)n

n!
E[X n] ·E[

e−sS nX ]=ϕ(s)−
n−1∑
k=0

(−s)k

k!
E[X k].
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Convergence as n →∞

(%(F) = inf{x : F(x) = 1} <∞) Then

n ·S nX ⇒ Z1
1/%(F),

where Z1
1/%(F) is an exponential random variable with mean %(F).



Convergence as n →∞

(%(F) =∞) If c = limsupn→∞
cn

cn−1
<∞ and

S nX/cn ⇒ X∗,

then F∗ is continuous, concave and differentiable,

F∗(x) = 1

E[X∗]

∫ cx

0
(1−F∗(u)) du,

and c = limn→∞ cn
cn−1

≥ 1 (if c = 1 then F is exponential).



Convergence as n →∞

(%(F) =∞) If c = limsupn→∞
cn

cn−1
<∞ and

S nX/cn ⇒ X∗,

then F∗ is continuous, concave and differentiable,

F∗(x) = 1

E[X∗]

∫ cx

0
(1−F∗(u)) du,

and c = limn→∞ cn
cn−1

≥ 1 (if c = 1 then F is exponential).
In fact

1−F∗(x) =
∫ ∞
−∞ e−x/cu−1/2

c−u2/2 dν(u)∫ ∞
−∞ c−u2/2 dν(u)

,

where ν(A+1) = ν(A) and ν[0,1) = 1.



Part II

An insurance risk problem



Insurance problem

Risk model with Poisson arrival times, claim size distribution F .

Reinsurance contract: First claim is ignored - surplus level r is
memorized.

Whenever the surplus down-crosses r, the next claim is again
ignored and the current level r is memorized.



Insurance problem

Risk model with Poisson arrival times, claim size distribution F .

For the Standard model: The conditional distribution of the deficit
at ruin, given that ruin happens in finite time, is given by S F .



Insurance problem

Risk model with Poisson arrival times, claim size distribution F .

Remove the summits and glue the remaining parts together.



Insurance problem

Risk model with Poisson arrival times, claim size distribution F .

Standard model with claim size distribution S F ,
⇒ The deficit at ruin (conditioned to exist) has distribution S 2F .



Insurance problem

Can be generalized (reinsurance covers first n claims)

⇒ The deficit at ruin (conditioned to exist) has distribution S nF .

Net profit condition

E[S kF] < 1

λ
⇔ E[X k+1]

E[X k]
< k+1

λ
, ∀k = 0,1, . . . ,n
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Part III

The Overshoot Operator



New idea: nth overshoot operator

Zn
λ

= Erlang-n variable with mean n/λ and let

S n
λF(x) =P(X > Zn

λ +x|Zn
λ > X)

S n
λ

is the nth power of S 1
λ

, i.e. S m
λ

S n
λ
=S n+m

λ

Explicit formula:

S n
λF(x) = 1−

∫ ∞
0 (1−F(u+x))un−1e−λu du∫ ∞

0 (1−F(u))un−1e−λu du
= Mλ,n(x)

Mλ,n

where Mλ,n(x) = ∫ ∞
0 (1−F(u+x))un−1e−λu du.

Approximation: S n
λ

F(x) →S nF(x) as λ→ 0.
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Properties of the nth overshoot operator

LST:

(λ− s)n

(n−1)!
Mλ,n ·E

[
e−sS n

λ
X ]=ϕ(s)−

n−1∑
k=0

(s−λ)k

k!
Dkϕ(λ)

if λ 6= s and

ϕλ,n(λ) = (−1)n

Mλ,nn
Dnϕ(λ).

Moments:

E

[
(S n

λX)m
]

= m!

Mλ,n

∞∑
k=0

(−λ)k

k!

(n+k−1)!

(m+n+k−1)!
Mn+k+m
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Convergence as λ→ 0

Suppose thatE[X n+m] <∞. Then

S n
λF(x) =S nF(x)−

m∑
k=1

ak(−λ)k +o(λm),

as λ→ 0, where the coefficients ak can be evaluated via the
recursive formula

m!

Mn+m

m∑
i=0

Mn+m−i

(m− i)!
ak = 1−S n+mF(x).



Convergence as n →∞

(%(F) <∞) Then

nS n
λX

m⇒ Z1
1/%(F).



Convergence as n →∞

(%(F) =∞) Suppose c = limsupn→∞ cn/cn−1 <∞ and

S n
λ

X

cn
→ X∗

λ . (1)

Then c = limn→∞ cn/cn−1 ≥ 1.

1. If cn → 0 then

F∗
λ (x) = 1

E[X∗
λ

]

∫ cx

0
(1−F∗

λ (u)) du. (2)

andE[X∗
λ

] = limn→∞
nMλ,n+1

cnMλ,n
.

2. If cn → q for some q ∈ (0,∞) then S n
λ

X/cn → Z1
β(λ) where Z1

β(λ)
has exponential distribution with rate

β(λ) = q×
(

lim
n→∞n

Mλ,n

Mλ,n+1
−λ

)
.



A useful observation

Define the operator

TλF(x) =P(
X ∧Z1

λ ≤ x
)= 1−e−λx(1−F(x)).

Then

TλS n
λ =S nTλ

(Formally S n
λ =T−λS nTλ)



Thank you!


