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SCHEDULING

When setting up an appointment schedule, it’s all about balance between interests of service provider

and customers:

? if the system is frequently idle, then it is not functioning in a cost-effective manner,

? whereas if it is virtually always busy, the customers waiting time may become substantial.



SCHEDULING

When setting up an appointment schedule, it’s all about balance between interests of service provider

and customers:

? if the system is frequently idle, then it is not functioning in a cost-effective manner,

? whereas if it is virtually always busy, the customers’ waiting time may become substantial.

⇒ goal is to come up with a schedule, that is a sequence of arrival epochs.

Second question: order of the customers.
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? First, näıve, idea: arrival times equal sum of expected service times of previous customers.

This system roughly behaves as a critically loaded queue ⇒ waiting times explode.

Good for service provider, bad for customers.

? Therefore: look for schemes that better align utilities of service provider and customers.

With Ii idle time before i-th customer, and Wi the waiting time of i-th customer, set up sched-

ule that sequentially minimizes utility functions Eg(Ii) + Eh(Wi), for all customers i and given

functions h(·) and g(·).

? Ordering of the customers.

For instance: in case of exponentially distributed service times, customers should be ordered such

that their means (and hence also variances) increase.



SETUP

? First, näıve, idea: arrival times equal sum of expected service times of previous customers.

This system roughly behaves as a critically loaded queue ⇒ waiting times explode.

Good for service provider, bad for customers.

? Therefore: look for schemes that better align utilities of service provider and customers.

With Ii idle time before i-th customer, and Wi the waiting time of i-th customer, set up sched-

ule that sequentially minimizes utility functions Eg(Ii) + Eh(Wi), for all customers i and given

functions h(·) and g(·).

? Ordering of the customers.

For instance: in case of exponentially distributed service times, customers should be ordered such

that their means (and hence also variances) increase.

? Examples: specific h(·) and g(·).



NÄIVE SCHEDULE

Consider sequence of jobs B1, . . . , Bn, each of random duration, assumed mutually independent. Let

job i be i-th job to be scheduled.

Define standard scheduling scheme S : arrival epoch of job i, say ti, equals sum of expected durations

of the previous jobs:

t1 := 0, and ti :=

i−1∑
j=1

EBj, i = 2, . . . , n.



NÄIVE SCHEDULE, ctd.

Advantage: simple!

Drawback: system essentially behaves as queue with load 1, leading to long waiting times.

Hence: for the service provider this scheme might be attractive, but for the customers it is not.



NÄIVE SCHEDULE, ctd.

Support for this claim:

Assume Bi are i.i.d. (as a random variable B) =⇒ S can be seen as a D/G/1 queue (starting empty)

with (deterministic) interarrival times equal to b := EB. Assume σ2 := VarB <∞.

Let Wn be waiting time of n-th customer.

Then, as n→∞,
EWn√
n
→ σ

√
2

π
.

(Remains true in the GI/G/1 setting, with σ2 := Var A + Var B, where A is distributed as an

interarrival time.)



NÄIVE SCHEDULE, ctd.

Main conclusion: mean waiting time under S grows substantially as number of customers increases.

Makespan is roughly nEB, which is the best possible value (in fact, it will approximately behave as

nEB + σ
√

2n/π), but the waiting times increase proportionally to
√
n.
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ADAPTED SCHEDULE, ctd.

Class of ‘adapted schemes’ S∆, for some ∆ ≥ 0:

t1 := 0, and ti := ∆ ·
i−1∑
j=1

EBj, i = 2, . . . , n.

Observe

? S1 = S , and hence all previous results relate to the case ∆ = 1.

? Makespan is reduced (compared to S ) when picking ∆ ∈ [0, 1);

in extreme case of ∆ = 0, all customers arrive at time 0, thus minimizing the expected makespan

(at the expense of the waiting time of the customers).

? Mean delays are reduced (relative to S ) when picking ∆ > 1 (at the expense of idle time of the

server);

corresponding D/G/1 queue is stable, i.e., it has a proper steady-state distribution.
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Drawback: scheme only depends on mean service times.

Depending on the shape of the service time distributions, the mean waiting time may wildly vary.

Put differently: for given ∆ performance of schedule critically depends on service time distribution.

Therefore: need for schedules that better balance interests of customers and provider.
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RISK FUNCTIONS

Key notion: ‘risk’, measures aggregate disutility of the server and client.

More specifically: risk associated with i-th arrival depends on the distribution of waiting time Wi of

the i-th client, and idle time Ii prior to the arrival of this i-th client.

Choose nondecreasing functions g(·) and h(·) with g(0) = h(0) = 0, and define risk at i-th arrival as

R
(g,h)
i (t1, . . . , ti) = Eg(Ii) + Eh(Wi).

g(·) and h(·) determine weight given to idle and waiting time respectively; risk depends on the schedule

up to the i-th appointment time.
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Ii and Wi cannot be both positive; natural to introduce loss function

`(x) = g(−x)1[x<0] + h(x)1[x>0], x ∈ R,

nonincreasing on (−∞, 0] and nondecreasing on [0,∞) with `(0) = 0.
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Risk function:

R
(g,h)
i (t1, . . . , ti) = Eg(Ii) + Eh(Wi).

Ii and Wi cannot be both positive; natural to introduce loss function

`(x) = g(−x)1[x<0] + h(x)1[x>0], x ∈ R,

nonincreasing on (−∞, 0] and nondecreasing on [0,∞) with `(0) = 0.

Hence

R
(g,h)
i (t1, . . . , ti) = Eg(Ii) + Eh(Wi) = E`(Wi − Ii),

and we define the risk at the i-th arrival with loss function `(·) as

R
(`)
i (t1, . . . , ti) = E`(Wi − Ii).



RISK FUNCTIONS, ctd.

Goal:

sequentially optimize appointment times,

i.e., optimize the choice of ti, given the appointment times 0 = t1, . . . , ti−1.



RISK FUNCTIONS, ctd.

Observe: both I1 and W1 vanish.

Due to Lindley recursion

Ii = max{ti − ti−1 −Wi−1 −Bi−1, 0}
and

Wi = max{Wi−1 +Bi−1 − ti + ti−1, 0}.

Hence

Wi − Ii = Wi−1 +Bi−1 − ti + ti−1.



RISK FUNCTIONS, ctd.

Let Si := Wi + Bi denote sojourn time of the i-th customer, with density fSi
(·) and distribution

function FSi
(·).

In addition, let xi−1 := ti − ti−1 be the time between the (i− 1)-st and i-th arrival.

Then we may write

Wi − Ii = Si−1 − xi−1

and

R
(`)
i (t1, . . . , ti−1, ti−1 + xi−1) = E`(Si−1 − xi−1).



RISK FUNCTIONS, ctd.

General condition for the sequential optimization of the risk at the i-th arrival.

Theorem. Let `(·) be a nonnegative convex function on R with `(0) = 0.

Then `(·) is a loss function, i.e., it is nonincreasing on (−∞, 0] and nondecreasing on [0,∞) with

`(0) = 0, and it is absolutely continuous with derivative `′(·).

Let S be a random variable with a density with respect to Lebesgue measure and let E`(S − x) and

E`′(S − x) be finite for all x ∈ R.

Then

inf
x∈R

E`(S − x)

is attained at x? if and only if

E`′(S − x?) = 0

holds.



RISK FUNCTIONS, ctd.

Proof Risk function R := Eg(I) + Eh(W ) can be evaluated as∫ ∞

0

g(s)fI(s)ds +

∫ ∞

0

h(s)fW (s)ds

for any client i; here fI(·) and fW (·) are the densities of I and W .

Recalling Si−1 = Wi−1 +Bi−1 and xi−1 = ti − ti−1, rewrite Ri as

Φ(xi−1) :=

∫ xi−1

0

g(xi−1 − s)fSi−1(s)ds +

∫ ∞

xi−1

h(s− xi−1)fSi−1(s)ds.

Limits of integration and integrands are functions of the interarrival time xi−1 — apply Leibniz’s rule:

Φ′(x) = g(0)fSi−1(x)− h(0)fSi−1(x) +

∫ x

0

g′(x− s)fSi−1(s)ds−
∫ ∞

x

h′(s− x)fSi−1(s)ds,

yields the stated. 2
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EXAMPLE: LINEAR

Consider linear risks:

R
(a)
i (t1, . . . , ti−1, ti−1 + x) := EIi + EWi

= E |Si−1 − x|.

According to our theorem this expression is minimized for any x > 0 satisfying∫ x

0

fSi−1(s)ds =

∫ ∞

x

fSi−1(s)ds.

This implies that x?i−1 should equal a median of Si−1: x
?
i−1 = F−1

Si−1
(1
2).

(Reminiscence with newsvendor problem)

Hence, optimal to choose ti (given t1 up to ti−1) according to the schedule T given by

ti := ti−1 + F−1
Si−1

(
1

2

)
.



EXAMPLE: LINEAR, ctd.

Similar loss functions can be treated in the same way.

Example: R
(m)
i (t1, . . . , ti) := E max{Ii,Wi}.

The identity

max{0, x− S} + max{0, S − x} = |S − x| = max{max{0, x− S},max{0, S − x}}

immediately implies that T also sequentially minimizes the risk R
(m)
i (t1, . . . , ti), for i = 1, . . . , n.



EXAMPLE: QUADRATIC

Now consider quadratic risks:

R
(q)
i (t1, . . . , ti) := EI2

i + EW 2
i , i = 2, . . . , n.

Define schedule V through

t1 := 0, and ti :=

i−1∑
j=1

ESj, i = 1, . . . , n.

We can verify that V is optimal by applying our theorem; we however add an alternative, insightful

approach.



EXAMPLE: QUADRATIC, ctd.

Observe that W1 = 0 and I1 = 0

Also,

I2
i +W 2

i = (ti − ti−1 −Wi−1 −Bi−1)
2 = (ti − ti−1 − Si−1)

2.

Now minimize, for given ti−1, risk of customer i:

min
ti
R

(q)
i (t1, . . . , ti) = min

ti
E(ti − ti−1 − Si−1)

2 = Var Si−1,

with ti − ti−1 = ESi−1.

The schedule V sequentially minimizes the risk R
(q)
i (t1, . . . , ti), for i = 1, . . . , n.
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Main contribution here:

consider n customers with independent service times B1, . . . , Bn, and let Bi be distributed as σiB1

for i = 1, . . . , n, assuming σ1 = 1 ≤ σ2 ≤ . . . ≤ σn.
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ORDERING

Main contribution here:

consider n customers with independent service times B1, . . . , Bn, and let Bi be distributed as σiB1

for i = 1, . . . , n, assuming σ1 = 1 ≤ σ2 ≤ . . . ≤ σn.

Define an ordering N(·) as a mapping that bijectively projects {1, . . . , n} onto {1, . . . , n}.

Then, in order to find the order that sequentially optimizes the risks, the mapping N(·) should be

such that the σi are nondecreasing, given that for any order the schedule is in accordance with our

theorem.



ORDERING, ctd.

Proof Write Wi − Ii = Wi−1 +Bi−1 − (ti − ti−1).

Applying our theorem: Ri = infxi−1 E`(Wi−1 +Bi−1 − xi−1).

For any optimal interarrival time, we study the risk function ψ(·) in terms of scale parameter σ of

service time distribution:

ψ(σ) = inf
x

E`(W + σB − x) = E`(W + σB − x?σ),

with B ≡ B1, and x?σ the optimizing x as a function of σ.

Notice that we have proved our claim if we can show that ψ(σ) increases in σ.



ORDERING, ctd.

First order condition states that

E
(
∂

∂x
`(W + σB − x)

)∣∣∣∣
x=x?

σ

= −E`′(W + σB − x?σ) = 0;

W and B are independent.



ORDERING, ctd.

First order condition states that

E
(
∂

∂x
`(W + σB − x)

)∣∣∣∣
x=x?

σ

= −E`′(W + σB − x?σ) = 0;

W and B are independent.

Lots of computations:

ψ′(σ) = E[`′(W + σB − x?σ)(B−
.
x
?
σ)]

= E[`′(W + σB − x?σ)B] = E[E[`′(W + σB − x?σ)B |W ]]

= E [E [{`′(W + σB − x?σ)− E`′(W + σB − x?σ) |W}B |W ]]

= E [E [`′(W + σB − x?σ)B − E[`′(W + σB − x?σ)|W ]B |W ]]

= E [Cov [`′(W + σB − x?σ), B |W ]] .

Since `(·) is strictly convex, `′(W + σB − x?σ) is increasing in B, and therefore

Cov(`′(w + σB − x?σ), B) > 0

for any w ≥ 0. 2



ADDITIONAL FEATURES

We can also deal with

? Additional urgent arrivals;

? No shows.



STEADY-STATE

Effect of scheduling policies T and V by considering the situation of i.i.d. jobs, and the number of

jobs n being large.

Goal: limiting interarrival time for both scheduling policies.

Assume the jobs are exponential with mean 1/µ, so that the queue under consideration is an D/M/1.

Let x be the interarrival time between two subsequent jobs.

Then distribution of the steady-state waiting time W is given through

P(W > y) = σxe
−µ(1−σx)y, y > 0,

where σ ≡ σx is the unique solution in (0, 1) of e−µ(1−σ)x = σ.



STEADY-STATE

First consider linear loss function and strategy T .

Then it turns out that

G(y) := P(W +B ≤ y) = 1− e−µ(1−σx)y, y > 0.

It follows directly that

G−1

(
1

2

)
=

log 2

µ(1− σx)
.

We find for the optimal interarrival time x?

σx? =
1

2
, and x? =

1

µ
· 2 log 2.



STEADY-STATE

Now focus on quadratic loss function and policy V . Then

EW + EB =
σx

µ(1− σx)
+

1

µ
=

1

µ(1− σx)
.

Straightforward calculations, with x? being the optimal interarrival time,

σx? =
1

e
, and x? =

1

µ
· e

e− 1
.



STEADY-STATE

Now focus on quadratic loss function and policy V . Then

EW + EB =
σx

µ(1− σx)
+

1

µ
=

1

µ(1− σx)
.

Straightforward calculations, with x? being the optimal interarrival time,

σx? =
1

e
, and x? =

1

µ
· e

e− 1
.

As e/(e − 1) ≈ 1.5820 and 2 log 2 ≈ 1.3863: under the quadratic loss function the scheduling is

somewhat more ‘defensive’ than under the linear loss function.



CONCLUDING REMARKS

? Method proposed balances the customers’ and the provider’s interests;

? Non-limiting regime (i.e., n not large) raises computational questions — but usually rapid conver-

gence to steady-state;

? Ordering problem solved if jobs are from same scale-family.


