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Call Centers with Overflow – 2 Examples
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Basic Model

A(t) - number of arrivals to pool I by time t:

A(t) is a Poisson process with rate λ.

AO(t) - number of overflowed calls by time t.

AI(t) = A(t)− AO(t) - arrivals entering pool I by t.

XI(t),XO(t) - total number in respective system at t.

K - threshold in pool I (K ≥ 0).

The two pools are dependent !
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A Motivating Example

CI
s(NI) and CO

s (NO) are capacity cost functions for pools I and O, respectively.

wk = waiting time of the kth arriving customer by time T .

A Centralized Optimization Problem:

min(NI ,NO,K) CI
s(NI) + CO

s (NO)

s.t. E
[

1
A(T)

∑A(T)
k=1 1 {wk > τ}

]
≤ α,

NI,NO,K ∈ Z+,

Alternatively: constraints on the virtual (actual) waiting time W(t).

The centralized problem considers all customers, overflowed or not.

However, the two pools are operated by two distinct controllers!
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Main Results

1 The two systems are asymptotically independent.

2 Simplify the complicated overflow process by a FCLT.

Implications of (1):

both systems can optimize hierarchically (not jointly) to find optimal NI ,

K and NO.

Implications of (2):

outsourcer can determine its staffing and routing, so that guaranteed QoS

are met.
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Asymptotic (Heavy Traffic) Analysis

We consider a sequence indexed by arrival rate λ, with λ→∞.

Assumption (Resource Pooling)

Non-negligible overflow: ν := lim
λ→∞

µINλ
I + θKλ

λ
< 1

X̂λI (t) :=
XλI (t)− Nλ

I − Kλ

√
λ

, ÂλO(t) :=
AλO(t)− (λ− µINλ

I − θKλ)t√
λ

.

Theorem

If (X̂λ(0), ÂλO(0))⇒ (0, 0), then (X̂λ, ÂλO)⇒ (0, σB), u.o.c., where B is a

standard Brownian motion and σ2 = 1 + ν.
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Outline of the Proof

Proof for X̂λI :

Dλ(t) := Nλ
I + K − XλI (t) is “close” to a M/M/1 with arrival rate

µINλ
I + θKλ and service rate λ.

Let Qb(t) be M/M/1 with arrival rate ν and service rate 1. Then,

{Dλ(t) : t ∈ [0,T) ≈ {Qb(t) : t ∈ [0, λT)}.

apply established extreme-value theory for M/M/1.

Proof for ÂλO:

FCLT for the cumulative processes
∫ t

0 1{D
λ(s) = 0}ds.

Dλ completes O(λ) cycles over [0, t), for all t > 0.
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Implications

Approximating (complicated) overflow process with a simple process:

AλO(t) ≈ (λ− µINλ
I − θKλ)t +

√
λσB(t),

with the approximation being asymptotically exact.

Note that for each λ,

lim
t→∞

AλO(t)
t

= λP{XλI (∞) = Nλ
I + Kλ}.

We get the following local steady-state result:

AλO(t)
t

= λP{XλI (∞) = Nλ
I + Kλ}+ O(

√
λ) for each t > 0.



Implications

Approximating (complicated) overflow process with a simple process:

AλO(t) ≈ (λ− µINλ
I − θKλ)t +

√
λσB(t),

with the approximation being asymptotically exact.

Note that for each λ,

lim
t→∞

AλO(t)
t

= λP{XλI (∞) = Nλ
I + Kλ}.

We get the following local steady-state result:

AλO(t)
t

= λP{XλI (∞) = Nλ
I + Kλ}+ O(

√
λ) for each t > 0.



Implications

Approximating (complicated) overflow process with a simple process:

AλO(t) ≈ (λ− µINλ
I − θKλ)t +

√
λσB(t),

with the approximation being asymptotically exact.

Note that for each λ,

lim
t→∞

AλO(t)
t

= λP{XλI (∞) = Nλ
I + Kλ}.

We get the following local steady-state result:

AλO(t)
t

= λP{XλI (∞) = Nλ
I + Kλ}+ O(

√
λ) for each t > 0.



Implications Cont’ – Simple Independence Result

Corollary (Independence in the Limit) (trivial!)

The limits X̂I and ÂO are independent.

What does this independence mean for the pre-limits? ... not much...

P{Wλ(t) > τ} = P{Wλ(t) > τ,XλI (t) < Nλ
I + Kλ}

+ P{Wλ(t) > τ,XλI (t) = Nλ
I + Kλ}.

Need to consider Nλ
I + Kλ − XλI (t) in its natural scale (order O(1)).
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Independence of the Limits

Independence of limits does not “carry over” to the pre-limits.

Example:

Yλ :=

 1/
√
λ, w.p. 1/2

0, w.p. 1/2
Xλ :=

 1, if Yλ > 0

0, otherwise

(Yλ,Xλ)⇒ (0,X), where X =

 1 w.p. 1/2

0 w.p. 1/2

Trivially, the limits 0 and X are independent. However,

1/2 = P{Xλ > 0,Yλ > 0} 6= P{Xλ > 0}P{Yλ > 0} = 1/4,

for all λ, no matter how large.
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Asymptotic Independence

We want the dependency to “fade away” as λ grows.

Definition

{Xλ : λ ≥ 1} and {Yλ : λ ≥ 1} are asymptotically independent if

P{Xλ > x,Yλ > y} = P{Xλ > x}P{Yλ > y}+ o(1).

We can generalize the easy corollary (independence of the limits):

Theorem (asymptotic independence) (not trivial)

XλI (t) is asymptotically independent of ÂλO(t).

Note that ÂO is scaled, but XλI is not (requires refined analysis).

Main difficulty: establishing HT limits when XλI unscaled.
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Note that ÂO is scaled, but XλI is not (requires refined analysis).

Main difficulty: establishing HT limits when XλI unscaled.



Asymptotic Independence

We want the dependency to “fade away” as λ grows.

Definition

{Xλ : λ ≥ 1} and {Yλ : λ ≥ 1} are asymptotically independent if

P{Xλ > x,Yλ > y} = P{Xλ > x}P{Yλ > y}+ o(1).

We can generalize the easy corollary (independence of the limits):

Theorem (asymptotic independence) (not trivial)

XλI (t) is asymptotically independent of ÂλO(t).
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Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic

independence of a process.

The relevant state of XλI (t) with respect to AλO(t) is the availability process

Dλ(t) := Nλ
I + Kλ − XλI (t). (O(1) process!)

(*) Recall that {Dλ(s) : t ≤ s ≤ t + ε} ≈ {Qb(s) : t ≤ s ≤ t + λε} for λ

large, with Qb denoting a M/M/1.

(**) Qb(t + λε)⇒ Qb(∞) as λ→∞ for all ε > 0.

Proof follows since the steady state Qb(∞) is independent of Qb(t).



Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic

independence of a process.

The relevant state of XλI (t) with respect to AλO(t) is the availability process

Dλ(t) := Nλ
I + Kλ − XλI (t). (O(1) process!)

(*) Recall that {Dλ(s) : t ≤ s ≤ t + ε} ≈ {Qb(s) : t ≤ s ≤ t + λε} for λ

large, with Qb denoting a M/M/1.

(**) Qb(t + λε)⇒ Qb(∞) as λ→∞ for all ε > 0.

Proof follows since the steady state Qb(∞) is independent of Qb(t).



Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic

independence of a process.

The relevant state of XλI (t) with respect to AλO(t) is the availability process

Dλ(t) := Nλ
I + Kλ − XλI (t). (O(1) process!)

(*) Recall that {Dλ(s) : t ≤ s ≤ t + ε} ≈ {Qb(s) : t ≤ s ≤ t + λε} for λ

large, with Qb denoting a M/M/1.

(**) Qb(t + λε)⇒ Qb(∞) as λ→∞ for all ε > 0.

Proof follows since the steady state Qb(∞) is independent of Qb(t).



Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic

independence of a process.

The relevant state of XλI (t) with respect to AλO(t) is the availability process

Dλ(t) := Nλ
I + Kλ − XλI (t). (O(1) process!)

(*) Recall that {Dλ(s) : t ≤ s ≤ t + ε} ≈ {Qb(s) : t ≤ s ≤ t + λε} for λ

large, with Qb denoting a M/M/1.

(**) Qb(t + λε)⇒ Qb(∞) as λ→∞ for all ε > 0.

Proof follows since the steady state Qb(∞) is independent of Qb(t).



Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic

independence of a process.

The relevant state of XλI (t) with respect to AλO(t) is the availability process

Dλ(t) := Nλ
I + Kλ − XλI (t). (O(1) process!)

(*) Recall that {Dλ(s) : t ≤ s ≤ t + ε} ≈ {Qb(s) : t ≤ s ≤ t + λε} for λ

large, with Qb denoting a M/M/1.

(**) Qb(t + λε)⇒ Qb(∞) as λ→∞ for all ε > 0.

Proof follows since the steady state Qb(∞) is independent of Qb(t).



A Pointwise Averaging Principle (AP)

The following pointwise AP “follows” from (*) and (**):

Theorem (pointwise AP)

Dλ(t)⇒ Qb(∞) in R as λ→∞.

Implications of Asymptotic Independence and AP to waiting times

Let Wλ
I and Wλ

O be virtual waiting times in respective pool.

Let pλb := P{XλI (t) = Nλ
I + Kλ} ≈ P{Qb(∞) = 0} = 1− ν.

P{Wλ(t) > τ} = P{Wλ
I (t) > τ | Xλ

I (t) < Nλ
I + Kλ}P{Xλ

I (t) < Nλ
I + Kλ}

+ P{Wλ
O(t) > τ | Xλ

I (t) = Nλ
I + Kλ}P{Xλ

I (t) = Nλ
I + Kλ}

= P{Wλ
I (t) > τ}(1− pλb ) + P{Wλ

O(t) > τ}pλb + o(1)
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Waiting Times and Asymptotic ASTA

wλk , wλI,k, wλO,k - waiting time of kth arrival to respective pool.

f is a continuous and bounded function or, e.g., f (x) := 1{x > τ}.

E

 1
Aλ(t)

Aλ(t)∑
k=1

f (wλk )

 = (1− pλb )E

 1
AλI (t)

Aλ
I (t)∑
k=1

f (wλI,k)

+ pλb E

 1
AλO(t)

Aλ
O (t)∑
k=1

f (wλO,k)

+ o(1).

Theorem (asymptotic finite-horizon ASTA)

For all t > 0,

lim
λ→∞

E

 1
Aλ(t)

Aλ(t)∑
k=1

f (wλ
k )

 = ν
1
t

∫ t

0
E
[
f (ŴI(s))

]
ds+(1−ν)

1
t

∫ t

0
E
[
f (ŴO(s))ds

]
.

where ŴO(t) is the diffusion limit of the virtual waiting-time process in the

GI/M/N + M queue and ŴI(t) = K̄.
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f (ŴI(s))

]
ds+(1−ν)

1
t

∫ t

0
E
[
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Generalizing to SBR

Several overflow processes.

Possibly several generalist pools.

If asymptotic independence holds, then we can treat outsourcer as

independent system with renewal arrivals.

Technical assumption for HT limits: all queues are C-tight.

In particular, if continuous limits exist, e.g., QIR controls in Gurvich and

Whitt (07).
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Summary

Motivated by an outsourcing problem, we considered an overflow

system: from M/M/NI/K + M to G/M/NO + M.

Under a resource pooling condition our heavy traffic analysis:

provides simple approximations for the overflow renewal process, which

are asymptotically correct.

proves that M/M/NI/K + M is asymptotically independent of

G/M/NO + M.

Proofs build on a separation of time scales and a resulting pointwise AP.

Results are applied to waiting times and virtual waiting times.

Generalized to more complicated systems (if queues are C-tight).
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