Analysis of Call Overflow:

Many-Server Approximations and Implications to Call-Center Outsourcing

Itai Gurvich and Ohad Perry

September, 2010

Related Literature

Blocking and overflow:

- Exact characterization: Van Doorn ('83);
- Approximations: Whitt ('83), Koole et. al ('00,'05);
- Heavy Traffic: Hunt and Kurtz ('94), Koçaga and Ward ('10), Pang et. al ('07), Whitt ('04);

Technical:

- Whitt ('91), Bassamboo et. al ('05), P' and Whitt ('10a);
- Glynn and Whitt ('93), P' and Whitt (' 10 b);

Call Centers with Overflow - 2 Examples

Basic Model

- $A(t)$ - number of arrivals to pool I by time t :
$A(t)$ is a Poisson process with rate λ.
- $A_{O}(t)$ - number of overflowed calls by time t.
- $A_{I}(t)=A(t)-A_{O}(t)$ - arrivals entering pool I by t.
- $X_{I}(t), X_{O}(t)$ - total number in respective system at t.
- K - threshold in pool $I(K \geq 0)$.

Basic Model

- $A(t)$ - number of arrivals to pool I by time t :
$A(t)$ is a Poisson process with rate λ.
- $A_{O}(t)$ - number of overflowed calls by time t.
- $A_{I}(t)=A(t)-A_{O}(t)$ - arrivals entering pool I by t.
- $X_{I}(t), X_{O}(t)$ - total number in respective system at t.
- K - threshold in pool $I(K \geq 0)$.

The two pools are dependent!

A Motivating Example

$C_{s}^{I}\left(N_{I}\right)$ and $C_{s}^{O}\left(N_{O}\right)$ are capacity cost functions for pools I and O, respectively. $w_{k}=$ waiting time of the $k^{t h}$ arriving customer by time T.

A Motivating Example

$C_{s}^{I}\left(N_{I}\right)$ and $C_{s}^{O}\left(N_{O}\right)$ are capacity cost functions for pools I and O, respectively. $w_{k}=$ waiting time of the $k^{\text {th }}$ arriving customer by time T.

A Centralized Optimization Problem:

$$
\begin{array}{ll}
\min _{\left(N_{I}, N_{O}, K\right)} & C_{s}^{I}\left(N_{I}\right)+C_{s}^{O}\left(N_{O}\right) \\
\text { s.t. } & \mathbb{E}\left[\frac{1}{A(T)} \sum_{k=1}^{A(T)} \mathbb{1}\left\{w_{k}>\tau\right\}\right] \leq \alpha, \\
& N_{I}, N_{O}, K \in \mathbb{Z}_{+},
\end{array}
$$

A Motivating Example

$C_{s}^{I}\left(N_{I}\right)$ and $C_{s}^{O}\left(N_{O}\right)$ are capacity cost functions for pools I and O, respectively. $w_{k}=$ waiting time of the $k^{\text {th }}$ arriving customer by time T.

A Centralized Optimization Problem:

$$
\begin{array}{ll}
\min _{\left(N_{I}, N_{O}, K\right)} & C_{s}^{I}\left(N_{I}\right)+C_{s}^{O}\left(N_{O}\right) \\
\text { s.t. } & \mathbb{E}\left[\frac{1}{A(T)} \sum_{k=1}^{A(T)} \mathbb{1}\left\{w_{k}>\tau\right\}\right] \leq \alpha, \\
& N_{I}, N_{O}, K \in \mathbb{Z}_{+},
\end{array}
$$

- Alternatively: constraints on the virtual (actual) waiting time $W(t)$.

A Motivating Example

$C_{s}^{I}\left(N_{I}\right)$ and $C_{s}^{O}\left(N_{O}\right)$ are capacity cost functions for pools I and O, respectively. $w_{k}=$ waiting time of the $k^{\text {th }}$ arriving customer by time T.

A Centralized Optimization Problem:

$$
\begin{array}{ll}
\min _{\left(N_{I}, N_{O}, K\right)} & C_{s}^{I}\left(N_{I}\right)+C_{s}^{O}\left(N_{O}\right) \\
\text { s.t. } & \mathbb{E}\left[\frac{1}{A(T)} \sum_{k=1}^{A(T)} \mathbb{1}\left\{w_{k}>\tau\right\}\right] \leq \alpha, \\
& N_{I}, N_{O}, K \in \mathbb{Z}_{+},
\end{array}
$$

- Alternatively: constraints on the virtual (actual) waiting time $W(t)$.
- The centralized problem considers all customers, overflowed or not.

A Motivating Example

$C_{s}^{I}\left(N_{I}\right)$ and $C_{s}^{O}\left(N_{O}\right)$ are capacity cost functions for pools I and O, respectively. $w_{k}=$ waiting time of the $k^{\text {th }}$ arriving customer by time T.

A Centralized Optimization Problem:

$$
\begin{array}{ll}
\min _{\left(N_{I}, N_{O}, K\right)} & C_{s}^{I}\left(N_{I}\right)+C_{s}^{O}\left(N_{O}\right) \\
\text { s.t. } & \mathbb{E}\left[\frac{1}{A(T)} \sum_{k=1}^{A(T)} \mathbb{1}\left\{w_{k}>\tau\right\}\right] \leq \alpha, \\
& N_{I}, N_{O}, K \in \mathbb{Z}_{+},
\end{array}
$$

- Alternatively: constraints on the virtual (actual) waiting time $W(t)$.
- The centralized problem considers all customers, overflowed or not.
- However, the two pools are operated by two distinct controllers!

Main Results

(1) The two systems are asymptotically independent.
(2) Simplify the complicated overflow process by a FCLTT.

Main Results

(1) The two systems are asymptotically independent.
(2) Simplify the complicated overflow process by a FCLTT.
Implications of (1):
both systems can optimize hierarchically (not jointly) to find optimal N_{I}, K and N_{O}.

Main Results

(1) The two systems are asymptotically independent.
(2) Simplify the complicated overflow process by a FCLTT.
Implications of (1):
both systems can optimize hierarchically (not jointly) to find optimal N_{I}, K and N_{O}.

Implications of (2):
outsourcer can determine its staffing and routing, so that guaranteed QoS
are met.

Asymptotic (Heavy Traffic) Analysis

We consider a sequence indexed by arrival rate λ, with $\lambda \rightarrow \infty$.

Assumption (Resource Pooling)

Non-negligible overflow: $\quad \nu:=\lim _{\lambda \rightarrow \infty} \frac{\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}}{\lambda}<1$

Asymptotic (Heavy Traffic) Analysis

We consider a sequence indexed by arrival rate λ, with $\lambda \rightarrow \infty$.

Assumption (Resource Pooling)

Non-negligible overflow: $\quad \nu:=\lim _{\lambda \rightarrow \infty} \frac{\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}}{\lambda}<1$

$$
\hat{X}_{I}^{\lambda}(t):=\frac{X_{I}^{\lambda}(t)-N_{I}^{\lambda}-K^{\lambda}}{\sqrt{\lambda}}, \quad \hat{A}_{O}^{\lambda}(t):=\frac{A_{O}^{\lambda}(t)-\left(\lambda-\mu_{I} N_{I}^{\lambda}-\theta K^{\lambda}\right) t}{\sqrt{\lambda}}
$$

Asymptotic (Heavy Traffic) Analysis

We consider a sequence indexed by arrival rate λ, with $\lambda \rightarrow \infty$.

Assumption (Resource Pooling)

Non-negligible overflow: $\quad \nu:=\lim _{\lambda \rightarrow \infty} \frac{\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}}{\lambda}<1$

$$
\hat{X}_{I}^{\lambda}(t):=\frac{X_{I}^{\lambda}(t)-N_{I}^{\lambda}-K^{\lambda}}{\sqrt{\lambda}}, \quad \hat{A}_{O}^{\lambda}(t):=\frac{A_{O}^{\lambda}(t)-\left(\lambda-\mu_{I} N_{I}^{\lambda}-\theta K^{\lambda}\right) t}{\sqrt{\lambda}} .
$$

Theorem

If $\left(\hat{X}^{\lambda}(0), \hat{A}_{O}^{\lambda}(0)\right) \Rightarrow(0,0)$, then $\left(\hat{X}^{\lambda}, \hat{A}_{O}^{\lambda}\right) \Rightarrow(0, \sigma B)$, u.o.c., where B is a standard Brownian motion and $\sigma^{2}=1+\nu$.

Outline of the Proof

Proof for \hat{X}_{I}^{λ} :
$D^{\lambda}(t):=N_{I}^{\lambda}+K-X_{I}^{\lambda}(t)$ is "close" to a $M / M / 1$ with arrival rate $\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}$ and service rate λ.

Outline of the Proof

$\underline{\text { Proof for } \hat{X}_{I}^{\lambda}}$:
$D^{\lambda}(t):=N_{I}^{\lambda}+K-X_{I}^{\lambda}(t)$ is "close" to a $M / M / 1$ with arrival rate $\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}$ and service rate λ.

- Let $Q_{b}(t)$ be $M / M / 1$ with arrival rate ν and service rate 1 . Then,

$$
\left\{D^{\lambda}(t): t \in[0, T) \approx\left\{Q_{b}(t): t \in[0, \lambda T)\right\}\right.
$$

Outline of the Proof

Proof for \hat{X}_{I}^{λ} :
$D^{\lambda}(t):=N_{I}^{\lambda}+K-X_{I}^{\lambda}(t)$ is "close" to a $M / M / 1$ with arrival rate $\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}$ and service rate λ.

- Let $Q_{b}(t)$ be $M / M / 1$ with arrival rate ν and service rate 1 . Then,

$$
\left\{D^{\lambda}(t): t \in[0, T) \approx\left\{Q_{b}(t): t \in[0, \lambda T)\right\}\right.
$$

- apply established extreme-value theory for $M / M / 1$.

Outline of the Proof

Proof for \hat{X}_{I}^{λ} :
$D^{\lambda}(t):=N_{I}^{\lambda}+K-X_{I}^{\lambda}(t)$ is "close" to a $M / M / 1$ with arrival rate $\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}$ and service rate λ.

- Let $Q_{b}(t)$ be $M / M / 1$ with arrival rate ν and service rate 1 . Then,

$$
\left\{D^{\lambda}(t): t \in[0, T) \approx\left\{Q_{b}(t): t \in[0, \lambda T)\right\}\right.
$$

- apply established extreme-value theory for $M / M / 1$.

Proof for \hat{A}_{O}^{λ} :
FCLT for the cumulative processes $\int_{0}^{t} \mathbb{1}\left\{D^{\lambda}(s)=0\right\} d s$.

Outline of the Proof

Proof for \hat{X}_{I}^{λ} :
$D^{\lambda}(t):=N_{I}^{\lambda}+K-X_{I}^{\lambda}(t)$ is "close" to a $M / M / 1$ with arrival rate $\mu_{I} N_{I}^{\lambda}+\theta K^{\lambda}$ and service rate λ.

- Let $Q_{b}(t)$ be $M / M / 1$ with arrival rate ν and service rate 1 . Then,

$$
\left\{D^{\lambda}(t): t \in[0, T) \approx\left\{Q_{b}(t): t \in[0, \lambda T)\right\}\right.
$$

- apply established extreme-value theory for $M / M / 1$.

Proof for \hat{A}_{O}^{λ} :
FCLT for the cumulative processes $\int_{0}^{t} \mathbb{1}\left\{D^{\lambda}(s)=0\right\} d s$.
D^{λ} completes $O(\lambda)$ cycles over $[0, t)$, for all $t>0$.

Implications

- Approximating (complicated) overflow process with a simple process:

$$
A_{O}^{\lambda}(t) \approx\left(\lambda-\mu_{I} N_{I}^{\lambda}-\theta K^{\lambda}\right) t+\sqrt{\lambda} \sigma B(t)
$$

with the approximation being asymptotically exact.

Implications

- Approximating (complicated) overflow process with a simple process:

$$
A_{O}^{\lambda}(t) \approx\left(\lambda-\mu_{I} N_{I}^{\lambda}-\theta K^{\lambda}\right) t+\sqrt{\lambda} \sigma B(t)
$$

with the approximation being asymptotically exact.

- Note that for each λ,

$$
\lim _{t \rightarrow \infty} \frac{A_{O}^{\lambda}(t)}{t}=\lambda \mathbb{P}\left\{X_{I}^{\lambda}(\infty)=N_{I}^{\lambda}+K^{\lambda}\right\}
$$

Implications

- Approximating (complicated) overflow process with a simple process:

$$
A_{O}^{\lambda}(t) \approx\left(\lambda-\mu_{I} N_{I}^{\lambda}-\theta K^{\lambda}\right) t+\sqrt{\lambda} \sigma B(t)
$$

with the approximation being asymptotically exact.

- Note that for each λ,

$$
\lim _{t \rightarrow \infty} \frac{A_{O}^{\lambda}(t)}{t}=\lambda \mathbb{P}\left\{X_{I}^{\lambda}(\infty)=N_{I}^{\lambda}+K^{\lambda}\right\}
$$

We get the following local steady-state result:

$$
\frac{A_{O}^{\lambda}(t)}{t}=\lambda \mathbb{P}\left\{X_{I}^{\lambda}(\infty)=N_{I}^{\lambda}+K^{\lambda}\right\}+O(\sqrt{\lambda}) \text { for each } t>0
$$

Implications Cont' - Simple Independence Result

Corollary (Independence in the Limit) (trivial!)
The limits \hat{X}_{I} and \hat{A}_{O} are independent.

Implications Cont' - Simple Independence Result

Corollary (Independence in the Limit) (trivial!)

The limits \hat{X}_{I} and \hat{A}_{O} are independent.

What does this independence mean for the pre-limits?

Implications Cont' - Simple Independence Result

Corollary (Independence in the Limit) (trivial!)

The limits \hat{X}_{I} and \hat{A}_{O} are independent.

What does this independence mean for the pre-limits? ... not much...

Implications Cont' - Simple Independence Result

Corollary (Independence in the Limit) (trivial!)

The limits \hat{X}_{I} and \hat{A}_{O} are independent.

What does this independence mean for the pre-limits? ... not much...

$$
\begin{aligned}
\mathbb{P}\left\{W^{\lambda}(t)>\tau\right\}= & \mathbb{P}\left\{W^{\lambda}(t)>\tau, X_{I}^{\lambda}(t)<N_{I}^{\lambda}+K^{\lambda}\right\} \\
& +\mathbb{P}\left\{W^{\lambda}(t)>\tau, X_{I}^{\lambda}(t)=N_{I}^{\lambda}+K^{\lambda}\right\} .
\end{aligned}
$$

Implications Cont' - Simple Independence Result

Corollary (Independence in the Limit) (trivial!)

The limits \hat{X}_{I} and \hat{A}_{O} are independent.

What does this independence mean for the pre-limits? ... not much...

$$
\begin{aligned}
\mathbb{P}\left\{W^{\lambda}(t)>\tau\right\}= & \mathbb{P}\left\{W^{\lambda}(t)>\tau, X_{I}^{\lambda}(t)<N_{I}^{\lambda}+K^{\lambda}\right\} \\
& +\mathbb{P}\left\{W^{\lambda}(t)>\tau, X_{I}^{\lambda}(t)=N_{I}^{\lambda}+K^{\lambda}\right\} .
\end{aligned}
$$

Need to consider $N_{I}^{\lambda}+K^{\lambda}-X_{I}^{\lambda}(t)$ in its natural scale (order $O(1)$).

Independence of the Limits

Independence of limits does not "carry over" to the pre-limits.

Independence of the Limits

Independence of limits does not "carry over" to the pre-limits.
Example:

$$
Y^{\lambda}:=\left\{\begin{array}{ll}
1 / \sqrt{\lambda}, & \text { w.p. } 1 / 2 \\
0, & \text { w.p. } 1 / 2
\end{array} \quad X^{\lambda}:= \begin{cases}1, & \text { if } Y^{\lambda}>0 \\
0, & \text { otherwise }\end{cases}\right.
$$

Independence of the Limits

Independence of limits does not "carry over" to the pre-limits.
Example:

$$
\begin{gathered}
Y^{\lambda}:=\left\{\begin{array}{ll}
1 / \sqrt{\lambda}, & \text { w.p. } 1 / 2 \\
0, & \text { w.p. } 1 / 2
\end{array} \quad X^{\lambda}:= \begin{cases}1, & \text { if } Y^{\lambda}>0 \\
0, & \text { otherwise }\end{cases} \right. \\
\left(Y^{\lambda}, X^{\lambda}\right) \Rightarrow(0, X), \quad \text { where } X= \begin{cases}1 & \text { w.p. } 1 / 2 \\
0 & \text { w.p. } 1 / 2\end{cases}
\end{gathered}
$$

Independence of the Limits

Independence of limits does not "carry over" to the pre-limits.
Example:

$$
\begin{gathered}
Y^{\lambda}:=\left\{\begin{array}{ll}
1 / \sqrt{\lambda}, & \text { w.p. } 1 / 2 \\
0, & \text { w.p. } 1 / 2
\end{array} \quad X^{\lambda}:= \begin{cases}1, & \text { if } Y^{\lambda}>0 \\
0, & \text { otherwise }\end{cases} \right. \\
\left(Y^{\lambda}, X^{\lambda}\right) \Rightarrow(0, X), \quad \text { where } X= \begin{cases}1 & \text { w.p. } 1 / 2 \\
0 & \text { w.p. } 1 / 2\end{cases}
\end{gathered}
$$

Trivially, the limits 0 and X are independent.

Independence of the Limits

Independence of limits does not "carry over" to the pre-limits.
Example:

$$
Y^{\lambda}:=\left\{\begin{array}{ll}
1 / \sqrt{\lambda}, & \text { w.p. } 1 / 2 \\
0, & \text { w.p. } 1 / 2
\end{array} \quad X^{\lambda}:= \begin{cases}1, & \text { if } Y^{\lambda}>0 \\
0, & \text { otherwise }\end{cases}\right.
$$

$\left(Y^{\lambda}, X^{\lambda}\right) \Rightarrow(0, X), \quad$ where $X= \begin{cases}1 & \text { w.p. } 1 / 2 \\ 0 & \text { w.p. } 1 / 2\end{cases}$
Trivially, the limits 0 and X are independent. However,

$$
1 / 2=\mathbb{P}\left\{X^{\lambda}>0, Y^{\lambda}>0\right\} \neq \mathbb{P}\left\{X^{\lambda}>0\right\} \mathbb{P}\left\{Y^{\lambda}>0\right\}=1 / 4
$$

for all λ, no matter how large.

Asymptotic Independence

We want the dependency to "fade away" as λ grows.

Definition

$\left\{X^{\lambda}: \lambda \geq 1\right\}$ and $\left\{Y^{\lambda}: \lambda \geq 1\right\}$ are asymptotically independent if

$$
\mathbb{P}\left\{X^{\lambda}>x, Y^{\lambda}>y\right\}=\mathbb{P}\left\{X^{\lambda}>x\right\} \mathbb{P}\left\{Y^{\lambda}>y\right\}+o(1)
$$

Asymptotic Independence

We want the dependency to "fade away" as λ grows.

Definition

$\left\{X^{\lambda}: \lambda \geq 1\right\}$ and $\left\{Y^{\lambda}: \lambda \geq 1\right\}$ are asymptotically independent if

$$
\mathbb{P}\left\{X^{\lambda}>x, Y^{\lambda}>y\right\}=\mathbb{P}\left\{X^{\lambda}>x\right\} \mathbb{P}\left\{Y^{\lambda}>y\right\}+o(1)
$$

We can generalize the easy corollary (independence of the limits):

Asymptotic Independence

We want the dependency to "fade away" as λ grows.

Definition

$\left\{X^{\lambda}: \lambda \geq 1\right\}$ and $\left\{Y^{\lambda}: \lambda \geq 1\right\}$ are asymptotically independent if

$$
\mathbb{P}\left\{X^{\lambda}>x, Y^{\lambda}>y\right\}=\mathbb{P}\left\{X^{\lambda}>x\right\} \mathbb{P}\left\{Y^{\lambda}>y\right\}+o(1)
$$

We can generalize the easy corollary (independence of the limits):
Theorem (asymptotic independence) (not trivial)
$X_{I}^{\lambda}(t)$ is asymptotically independent of $\hat{A}_{O}^{\lambda}(t)$.

Asymptotic Independence

We want the dependency to "fade away" as λ grows.

Definition

$\left\{X^{\lambda}: \lambda \geq 1\right\}$ and $\left\{Y^{\lambda}: \lambda \geq 1\right\}$ are asymptotically independent if

$$
\mathbb{P}\left\{X^{\lambda}>x, Y^{\lambda}>y\right\}=\mathbb{P}\left\{X^{\lambda}>x\right\} \mathbb{P}\left\{Y^{\lambda}>y\right\}+o(1)
$$

We can generalize the easy corollary (independence of the limits):

Theorem (asymptotic independence) (not trivial)

$X_{I}^{\lambda}(t)$ is asymptotically independent of $\hat{A}_{O}^{\lambda}(t)$.

Note that \hat{A}_{O} is scaled, but X_{I}^{λ} is not (requires refined analysis).

Asymptotic Independence

We want the dependency to "fade away" as λ grows.

Definition

$\left\{X^{\lambda}: \lambda \geq 1\right\}$ and $\left\{Y^{\lambda}: \lambda \geq 1\right\}$ are asymptotically independent if

$$
\mathbb{P}\left\{X^{\lambda}>x, Y^{\lambda}>y\right\}=\mathbb{P}\left\{X^{\lambda}>x\right\} \mathbb{P}\left\{Y^{\lambda}>y\right\}+o(1)
$$

We can generalize the easy corollary (independence of the limits):
Theorem (asymptotic independence) (not trivial)
$X_{I}^{\lambda}(t)$ is asymptotically independent of $\hat{A}_{O}^{\lambda}(t)$.

Note that \hat{A}_{O} is scaled, but X_{I}^{λ} is not (requires refined analysis).
Main difficulty: establishing HT limits when X_{I}^{λ} unscaled.

Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic independence of a process.

Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic independence of a process.

The relevant state of $X_{I}^{\lambda}(t)$ with respect to $A_{O}^{\lambda}(t)$ is the availability process

$$
D^{\lambda}(t):=N_{I}^{\lambda}+K^{\lambda}-X_{I}^{\lambda}(t) . \quad(O(1) \text { process }!)
$$

Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic independence of a process.

The relevant state of $X_{I}^{\lambda}(t)$ with respect to $A_{O}^{\lambda}(t)$ is the availability process

$$
D^{\lambda}(t):=N_{I}^{\lambda}+K^{\lambda}-X_{I}^{\lambda}(t) . \quad(O(1) \text { process }!)
$$

(*) Recall that $\left\{D^{\lambda}(s): t \leq s \leq t+\epsilon\right\} \approx\left\{Q_{b}(s): t \leq s \leq t+\lambda \epsilon\right\}$ for λ large, with Q_{b} denoting a $M / M / 1$.

Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic independence of a process.

The relevant state of $X_{I}^{\lambda}(t)$ with respect to $A_{O}^{\lambda}(t)$ is the availability process

$$
D^{\lambda}(t):=N_{I}^{\lambda}+K^{\lambda}-X_{I}^{\lambda}(t) . \quad(O(1) \text { process }!)
$$

(*) Recall that $\left\{D^{\lambda}(s): t \leq s \leq t+\epsilon\right\} \approx\left\{Q_{b}(s): t \leq s \leq t+\lambda \epsilon\right\}$ for λ large, with Q_{b} denoting a $M / M / 1$.
(**) $Q_{b}(t+\lambda \epsilon) \Rightarrow Q_{b}(\infty)$ as $\lambda \rightarrow \infty$ for all $\epsilon>0$.

Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic independence of a process.

The relevant state of $X_{I}^{\lambda}(t)$ with respect to $A_{O}^{\lambda}(t)$ is the availability process

$$
D^{\lambda}(t):=N_{I}^{\lambda}+K^{\lambda}-X_{I}^{\lambda}(t) . \quad(O(1) \text { process }!)
$$

(*) Recall that $\left\{D^{\lambda}(s): t \leq s \leq t+\epsilon\right\} \approx\left\{Q_{b}(s): t \leq s \leq t+\lambda \epsilon\right\}$ for λ large, with Q_{b} denoting a $M / M / 1$.
(**) $Q_{b}(t+\lambda \epsilon) \Rightarrow Q_{b}(\infty)$ as $\lambda \rightarrow \infty$ for all $\epsilon>0$.
Proof follows since the steady state $Q_{b}(\infty)$ is independent of $Q_{b}(t)$.

A Pointwise Averaging Principle (AP)

The following pointwise AP "follows" from (*) and (**):
Theorem (pointwise AP)
$D^{\lambda}(t) \Rightarrow Q_{b}(\infty)$ in \mathbb{R} as $\lambda \rightarrow \infty$.

A Pointwise Averaging Principle (AP)

The following pointwise AP "follows" from (*) and (**):

Theorem (pointwise AP)

$D^{\lambda}(t) \Rightarrow Q_{b}(\infty)$ in \mathbb{R} as $\lambda \rightarrow \infty$.

Implications of Asymptotic Independence and AP to waiting times

A Pointwise Averaging Principle (AP)

The following pointwise AP "follows" from (*) and (**):

Theorem (pointwise AP)

$D^{\lambda}(t) \Rightarrow Q_{b}(\infty)$ in \mathbb{R} as $\lambda \rightarrow \infty$.

Implications of Asymptotic Independence and AP to waiting times

- Let W_{I}^{λ} and W_{O}^{λ} be virtual waiting times in respective pool.

A Pointwise Averaging Principle (AP)

The following pointwise AP "follows" from (*) and (**):

Theorem (pointwise AP)

$D^{\lambda}(t) \Rightarrow Q_{b}(\infty)$ in \mathbb{R} as $\lambda \rightarrow \infty$.

Implications of Asymptotic Independence and AP to waiting times

- Let W_{I}^{λ} and W_{O}^{λ} be virtual waiting times in respective pool.
- Let $p_{b}^{\lambda}:=\mathbb{P}\left\{X_{I}^{\lambda}(t)=N_{I}^{\lambda}+K^{\lambda}\right\} \approx \mathbb{P}\left\{Q_{b}(\infty)=0\right\}=1-\nu$.

A Pointwise Averaging Principle (AP)

The following pointwise AP "follows" from (*) and (**):

Theorem (pointwise AP)

$D^{\lambda}(t) \Rightarrow Q_{b}(\infty)$ in \mathbb{R} as $\lambda \rightarrow \infty$.

Implications of Asymptotic Independence and AP to waiting times

- Let W_{I}^{λ} and W_{O}^{λ} be virtual waiting times in respective pool.
- Let $p_{b}^{\lambda}:=\mathbb{P}\left\{X_{I}^{\lambda}(t)=N_{I}^{\lambda}+K^{\lambda}\right\} \approx \mathbb{P}\left\{Q_{b}(\infty)=0\right\}=1-\nu$.

$$
\begin{aligned}
\mathbb{P}\left\{W^{\lambda}(t)>\tau\right\}= & \mathbb{P}\left\{W_{I}^{\lambda}(t)>\tau \mid X_{I}^{\lambda}(t)<N_{I}^{\lambda}+K^{\lambda}\right\} \mathbb{P}\left\{X_{I}^{\lambda}(t)<N_{I}^{\lambda}+K^{\lambda}\right\} \\
& +\mathbb{P}\left\{W_{O}^{\lambda}(t)>\tau \mid X_{I}^{\lambda}(t)=N_{I}^{\lambda}+K^{\lambda}\right\} \mathbb{P}\left\{X_{I}^{\lambda}(t)=N_{I}^{\lambda}+K^{\lambda}\right\} \\
= & \mathbb{P}\left\{W_{I}^{\lambda}(t)>\tau\right\}\left(1-p_{b}^{\lambda}\right)+\mathbb{P}\left\{W_{O}^{\lambda}(t)>\tau\right\} p_{b}^{\lambda}+o(1)
\end{aligned}
$$

Waiting Times and Asymptotic ASTA

$w_{k}^{\lambda}, w_{I, k}^{\lambda}, w_{O, k}^{\lambda}$ - waiting time of $k^{t h}$ arrival to respective pool.
f is a continuous and bounded function or, e.g., $f(x):=\mathbb{1}\{x>\tau\}$.

$$
\mathbb{E}\left[\frac{1}{A^{\lambda}(t)} \sum_{k=1}^{A^{\lambda}(t)} f\left(w_{k}^{\lambda}\right)\right]=\left(1-p_{b}^{\lambda}\right) \mathbb{E}\left[\frac{1}{A_{I}^{\lambda}(t)} \sum_{k=1}^{A_{I}^{\lambda}(t)} f\left(w_{I, k}^{\lambda}\right)\right]+p_{b}^{\lambda} \mathbb{E}\left[\frac{1}{A_{O}^{\lambda}(t)} \sum_{k=1}^{A_{O}^{\lambda}(t)} f\left(w_{O, k}^{\lambda}\right)\right]+o(1)
$$

Waiting Times and Asymptotic ASTA

$w_{k}^{\lambda}, w_{I, k}^{\lambda}, w_{O, k}^{\lambda}$ - waiting time of $k^{t h}$ arrival to respective pool.
f is a continuous and bounded function or, e.g., $f(x):=\mathbb{1}\{x>\tau\}$.
$\mathbb{E}\left[\frac{1}{A^{\lambda}(t)} \sum_{k=1}^{A^{\lambda}(t)} f\left(w_{k}^{\lambda}\right)\right]=\left(1-p_{b}^{\lambda}\right) \mathbb{E}\left[\frac{1}{A_{I}^{\lambda}(t)} \sum_{k=1}^{A_{I}^{\lambda}(t)} f\left(w_{I, k}^{\lambda}\right)\right]+p_{b}^{\lambda} \mathbb{E}\left[\frac{1}{A_{O}^{\lambda}(t)} \sum_{k=1}^{A_{O}^{\lambda}(t)} f\left(w_{O, k}^{\lambda}\right)\right]+o(1)$.

Theorem (asymptotic finite-horizon ASTA)

For all $t>0$,
$\lim _{\lambda \rightarrow \infty} \mathbb{E}\left[\frac{1}{A^{\lambda}(t)} \sum_{k=1}^{A^{\lambda}(t)} f\left(w_{k}^{\lambda}\right)\right]=\nu \frac{1}{t} \int_{0}^{t} \mathbb{E}\left[f\left(\widehat{W}_{I}(s)\right)\right] d s+(1-\nu) \frac{1}{t} \int_{0}^{t} \mathbb{E}\left[f\left(\widehat{W}_{O}(s)\right) d s\right]$. where $\widehat{W}_{O}(t)$ is the diffusion limit of the virtual waiting-time process in the $G I / M / N+M$ queue and $\widehat{W}_{I}(t)=\bar{K}$.

Generalizing to SBR

- Several overflow processes.
- Possibly several generalist pools.

Generalizing to SBR

- Several overflow processes.
- Possibly several generalist pools.
- If asymptotic independence holds, then we can treat outsourcer as independent system with renewal arrivals.

Generalizing to SBR

- Several overflow processes.
- Possibly several generalist pools.
- If asymptotic independence holds, then we can treat outsourcer as independent system with renewal arrivals.
- Technical assumption for HT limits: all queues are C-tight.

Generalizing to SBR

- Several overflow processes.
- Possibly several generalist pools.
- If asymptotic independence holds, then we can treat outsourcer as independent system with renewal arrivals.
- Technical assumption for HT limits: all queues are C-tight.
- In particular, if continuous limits exist, e.g., QIR controls in Gurvich and Whitt (07).

Summary

- Motivated by an outsourcing problem, we considered an overflow system: from $M / M / N_{I} / K+M$ to $G / M / N_{O}+M$.

Summary

- Motivated by an outsourcing problem, we considered an overflow system: from $M / M / N_{I} / K+M$ to $G / M / N_{O}+M$.
- Under a resource pooling condition our heavy traffic analysis:

Summary

- Motivated by an outsourcing problem, we considered an overflow system: from $M / M / N_{I} / K+M$ to $G / M / N_{O}+M$.
- Under a resource pooling condition our heavy traffic analysis:
- provides simple approximations for the overflow renewal process, which are asymptotically correct.
- proves that $M / M / N_{I} / K+M$ is asymptotically independent of

$$
G / M / N_{O}+M .
$$

Summary

- Motivated by an outsourcing problem, we considered an overflow system: from $M / M / N_{I} / K+M$ to $G / M / N_{O}+M$.
- Under a resource pooling condition our heavy traffic analysis:
- provides simple approximations for the overflow renewal process, which are asymptotically correct.
- proves that $M / M / N_{I} / K+M$ is asymptotically independent of

$$
G / M / N_{O}+M .
$$

- Proofs build on a separation of time scales and a resulting pointwise AP.

Summary

- Motivated by an outsourcing problem, we considered an overflow system: from $M / M / N_{I} / K+M$ to $G / M / N_{O}+M$.
- Under a resource pooling condition our heavy traffic analysis:
- provides simple approximations for the overflow renewal process, which are asymptotically correct.
- proves that $M / M / N_{I} / K+M$ is asymptotically independent of $G / M / N_{O}+M$.
- Proofs build on a separation of time scales and a resulting pointwise AP.
- Results are applied to waiting times and virtual waiting times.

Summary

- Motivated by an outsourcing problem, we considered an overflow system: from $M / M / N_{I} / K+M$ to $G / M / N_{O}+M$.
- Under a resource pooling condition our heavy traffic analysis:
- provides simple approximations for the overflow renewal process, which are asymptotically correct.
- proves that $M / M / N_{I} / K+M$ is asymptotically independent of $G / M / N_{O}+M$.
- Proofs build on a separation of time scales and a resulting pointwise AP.
- Results are applied to waiting times and virtual waiting times.
- Generalized to more complicated systems (if queues are C-tight).

Thank You

