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The two pools are dependent !
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A Motivating Example

CI(N;) and C9(Ny) are capacity cost functions for pools 7 and O, respectively.

Wy = waiting time of the k" arriving customer by time 7.

A Centralized Optimization Problem:

mingy, n,.x)  Ci(Nr) + C2(No)

s.t. E [ﬁ A(T L{wg > 71}| < a,

Ni,No,K € Z+,

e Alternatively: constraints on the virtual (actual) waiting time W(z).
@ The centralized problem considers all customers, overflowed or not.

@ However, the two pools are operated by two distinct controllers!
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© Simplify the complicated overflow process by a FCLT.

Implications of (1):

both systems can optimize hierarchically (not jointly) to find optimal Ny,

K and No.

Implications of (2):

outsourcer can determine its staffing and routing, so that guaranteed QoS

are met.
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Asymptotic (Heavy Traffic) Analysis

We consider a sequence indexed by arrival rate A, with A — oo.

Assumption (Resource Pooling)

Np + 0K
Non-negligible overflow: v := lim Pl +OR7 <
A—00 A

If (X*(0),A3(0)) = (0,0), then (X*,A}) = (0,0B), w.o.c., where Bis a

standard Brownian motion and % = 1 + v.
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Proof for X, ;\:
DA(t) := N} + K — X;\(t) is “close” to a M /M /1 with arrival rate
,LL[NI)‘ + 6K* and service rate \.
o Let Qp(t) be M/M/1 with arrival rate v and service rate 1. Then,
{DM1) 1t €[0,T) ~ {Qp(t) : t €[0,\T)}.
@ apply established extreme-value theory for M /M /1.
Proof for Ag:
FCLT for the cumulative processes f(; 1{D*(s) = 0}ds.

D* completes O(\) cycles over [0, £), for all £ > 0.
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@ Approximating (complicated) overflow process with a simple process:
AN(t) = (X — N} — 0Kt + VAo B(1),
with the approximation being asymptotically exact.

@ Note that for each )\,

AR A SN A
lim = A\P{X}(0c0) = N;' + K"}.
t—00 t

We get the following local steady-state result:

A
Ap(1) — )\IP’{X,)‘(OO) — NI)‘ + K"} + 0(\5\) for each ¢ > 0.
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Implications Cont” — Simple Independence Result

Corollary (Independence in the Limit) (trivial!)

The limits X; and Ao are independent.

What does this independence mean for the pre-limits? ... not much...

P{W*(t) > 7} = P{W(r) > 7, X}\(t) < N} + K*}

+ P{WA(t) > 7, X;(1) = N} + K*}.

Need to consider N} + K* — X\ (¢) in its natural scale (order O(1)).
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Independence of the Limits

Independence of limits does not “carry over” to the pre-limits.

Example:
o 1/vVA, wp.1/2 o 1, ifY*>0
0, w.p. 1/2 0, otherwise
1 wp.1/2
(YA, X*) = (0,X), where X = p-1/
0 wp.1/2

Trivially, the limits 0 and X are independent. However,
1/2 =P{x* > 0,Y* > 0} # P{X* > 0}P{Y* > 0} = 1/4,

for all A\, no matter how large.
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Asymptotic Independence

We want the dependency to “fade away” as A grows.

{X*: X > 1} and {Y* : X\ > 1} are asymptotically independent if

P{X* > x, Y > y} = P{X* > x}P{Y* > y} + o(1).

We can generalize the easy corollary (independence of the limits):

Theorem (asymptotic independence) (not trivial)

X\t) is asymptotically independent of Af‘)(t)

Note that AO is scaled, but X I)‘ is not (requires refined analysis).

Main difficulty: establishing HT limits when X;' unscaled.
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Main Idea of the Proof

Showing asymptotic independence of the sequence via asymptotic

independence of a process.
The relevant state of X;(¢) with respect to A (#) is the availability process
DMN1t) == N} + KM = XM1).  (O(1) process!)
(*) Recall that {D*(s) 1t < s <t+ e}~ {Qp(s) : t <5 <1+ A} for A
large, with Q) denoting a M /M /1.
(**) Op(t+ Xe) = Qp(c0) as A — oo forall € > 0.

Proof follows since the steady state Q(00) is independent of Qy(t).
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The following pointwise AP “follows” from (*) and (¥*):

Theorem (pointwise AP)

DX(t) = Qp(o0) inR as A — oc.

Implications of Asymptotic Independence and AP to waiting times

o Let WI)‘ and Wg be virtual waiting times in respective pool.
o Letp) :=P{X}\(t) = N} + K*} ~ P{Q)(c0) =0} =1 —v.
P{W(t) > 7} = P{W}t) > 7 | X}(t) < N}* + K*}P{X}\ (1) < N} + K}
+P{W)(t) > 7| X} (t) = N + K*P{X}\(t) = N} + K}

=P{W1) > T}(1 = py) + P{W5(r) > T}pp + o(1)
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Waiting Times and Asymptotic ASTA

w,/c\, wi: o Wé,k - waiting time of k" arrival to respective pool.

f is a continuous and bounded function or, e.g., f(x) := 1{x > 7}.

0 1 AN A5
[ Zf(w ] - pp) B2 2 wa,k +PE | vam) +o(1).

Theorem (asymptotic finite-horizon ASTA)

Forallt > 0,
(1) t t
Jim E AQ(I)AZﬂw,?) =vg [ Elrme)]ast-0] [ E o]

where Wo(t) is the diffusion limit of the virtual waiting-time process in the

GI/M /N + M queue and W, () = K.
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Generalizing to SBR

Several overflow processes.

Possibly several generalist pools.

If asymptotic independence holds, then we can treat outsourcer as

independent system with renewal arrivals.

@ Technical assumption for HT limits: all queues are C-tight.

In particular, if continuous limits exist, e.g., QIR controls in Gurvich and

Whitt (07).
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Summary

Motivated by an outsourcing problem, we considered an overflow

system: from M /M /N;/K + M to G/M/No + M.

Under a resource pooling condition our heavy traffic analysis:
e provides simple approximations for the overflow renewal process, which
are asymptotically correct.
o proves that M /M /N;/K + M is asymptotically independent of
G/M/No + M.

Proofs build on a separation of time scales and a resulting pointwise AP.

Results are applied to waiting times and virtual waiting times.

Generalized to more complicated systems (if queues are C-tight).
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