
 
Nahum Shimkin 

Department of Electrical Engineering, Technion 
 

 

Joint work with  

Ishai Menache (MIT & Microsoft Research), Asu Ozduglar (MIT) 
 

 
2nd Israeli-Dutch Workshop on Queueing Theory 

EURANDOM, September 2010 

Maximizing Social Welfare  

in Cloud Computing 



  2 

 

 

Cloud Computing Background 
 

 

 Cloud computing has been gaining prominence recently, with the 
advent of major systems from Amazon, IBM, Google, Microsoft, 
and many others.  

 The cloud computing paradigm allows on-demand network 
access to shared pools of computing resources: virtual servers, 
applications and software. 

 Benefits for users include:  

 economy of scale, efficient use of resources  

 central & transparent management  

 “utility computing”: resources on demand, pay per use  

 no  infrastructure investment 
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Major Modalities of Cloud Computing 
 

 

 Infrastructure as a Service (IaaS):  
Offers access to virtual servers and storage on-demand 

 Software as a Service (SaaS): 
Offers specific applications and development tools that run on 
the cloud. 



  4 

 

IaaS Example: Amazon EC2 (Elastic Compute Cloud)  
 

Purchasing options: 

 On-demand Instances (pay per use) 

 Reserved Instanced (yearly subscription + low usage cost) 

 Spot Instances (bid for unused capacity)  
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System Management Goals 
  

 

 Possible objectives for system management: 

1. Revenue maximization       (profit-centric) 

2. Optimizing performance metrics    (system-centric) 

3. Maximizing social welfare      (user-centric) 

 Our focus here will be on social welfare maximization. 

  Social optimality is especially relevant for: 

   Cloud computing offered as a public service 

   In-house clouds computing (private clouds) 



  6 

 

Market-based Resource Management 
  

 
 A variety of economic models and market-based resource 

management schemes have been devised over the years, both 
in the context of performance and QoS optimization, as well as 

in the context of social welfare maximization. 
 

 Early work, related to parallel and distributed systems, 
includes: 

- Ferguson, Yemini & Nikolau '88: auction-based load 

balancing 

- Kurose & Simha, '89: bid-based resource allocation. 
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Market-based Resource Management (2) 
  

 
A sample of more recent work in the context of grid and cluster 

management systems, includes the following economic 
mechanisms: 

 Commodity markets (fixed or variant prices) 
  [MOSIX, '00; G-Commerce, '01; Nimrod/G, '02; Libra, '04] 

 Bargaining  
  [CATNET '03; Ocean '03] 

 Auctions  
  [WALRAS, '93; Gridmarket, '03; Bellagio, '04; Tycoon '04]  

 Bid-based proportional resource sharing  
  [D'Agents, '98; REXEC, '00; Chun & Kuller, '00] 
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Bid-based Mechanisms  
 

 

 Bid based mechanisms have attracted much attention in the context of 
rate control in communication networks, following the influential work of 
Kelly and co-workers ['97,„98].  

 Here, an entire resource (bandwidth) is divided among the users, in 
proportion to their bids. This leads to optimization of a social cost 
function. This mechanism can also be views as adaptive, congestion 
dependent pricing. 

 Yolken & Bambos ('09) consider a bid-bases capacity allocation 
mechanism, in a utility computing context. In their formulation users 
submit stationary streams of jobs, and are allocated capacity 
proportional to their bids with no resource sharing. 

 In the present work we focus on fixed pricing schemes, closer to the 
classical economic theory of competitive equilibrium. Further, we 
identify each user with a single job (or application), and emphasize 
aspects of resource-dependent computation times,  
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Outline 
 
 

 System & user model 

 The user-optimization problem 

 Optimal social welfare 

 Socially optimal pricing 

 Economic context 

 On-line price adjustment 

 Finite resources 

 Some relations to profit  maximization 
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1. The Basic Model 
 

 

 

 We consider a large computing facility 
that offers computing resources to 
incoming users, each with his own job. 

 Existing jobs are executed concurrently. 

 Resources allocated to each job are 
determined based on some known  
mechanism. 

 The service (execution) time of each job 
generally depends on the resources 
allocated to it. 
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Arrivals 
 

 

 Potential users (and their jobs) arrive as a Poisson process with 
rate .  

 Users may differ in their types, which define their service 
requirements and personal preferences.  

 Let i I denote the type parameter. The set of types is allowed to 
be continuous. 

 The type of each arriving user is drawn randomly according to a 

probability distribution on I  with density ( )If i . Thus, potential 

arrivals of different types are independent Poisson Processes 

with rates distributed according to ( ) ( )Ii f i   . 

 As users may balk upon arrivals, the actual arrival rates will be 
smaller. The respective rate distribution is denoted ( )i . 
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Resources and Service Durations 
 

 

 Arriving users of type i  are allocated a certain amount of 

resources, represented by a real number 0iz  . 

 The job execution time may depend iz . Let ( )iT z  denote the 

mean execution time for type i  jobs, given resources z . 
 
 

Note:  
 The dependence of the service duration on the applied resources 

should be especially significant for batch-type jobs, such as 
scientific computing and business analytics, that can be 
effectively parallelized.  

 Our model is especially geared towards such applications, 
However, it also supports fixed-durations applications, such as 
customer service over the cloud. 



  13 

 

Service Duration Model 
 

 

 
 A reasonable model for service time scaling is given by:  

( ) ( 0, 0)i
i i i i

D
T z a a D

z
     

 This coincides with Amdhal’s law, often used in the parallel 
processing literature. 

 More generally, we impose the following: 

Assumption 1: Each ( )iT z  is a (weakly) convex decreasing 

function of z , with ( ) 0.iT       
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Pricing 
 

 

 We consider here simple per-unit pricing: 

Charge = P z ,      where   = actually service time 

 

  Therefore, for a type-i  user that employs z  resources, 

Expected charge  = ( )iP zT z  
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Individual Utilities  
 

 

 The utility of a balking user is set to 0 by default. 

 The utility function of a served user takes the form 

( ) ( ) ( )i i iU z V z PzT z   

where ( )iV z  is the user‟s value of service with resources z . 

 

 Example: For delay-sensitive applications, 

( ) ( ( ))i i i iV z V c T z   

 

 Assumption 2:  ( )iV z  is strictly concave increasing. 
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An Additional Assumption 
 

 

 Assumption 3: For each i , 

( ) '

( ( )) '

i

i

V z

zT z
, is strictly decreasing in z . 

 

This property can be seen to hold in the following cases: 

 ( )izT z  is a convex function of z . 

E.g., for ( ) /iT z a D z   (Lindhal‟s law), is linear. 

 Delay-dependent value::  ( ) ( ( ))i i i iV z V c T z  , with ic  a convex 

function. 
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Steady-State System Load 
 

 

 Consider the system in steady state, with given effective arrivals 

rates ( )i di  and resource allocations ( )iz . 

 We suppose here that there are sufficient resources to 
accommodate all arrivals. Hence, each job type ieffectively 
forms an independent M/G/∞ queue. 

 With arrival rate ( )i  and mean service time ( )i iT z , the expected 

number of type-i  jobs in the system at steady-state is obtained 
by Little‟s law: 

( ) ( ) ( )i iN i i T z  

 Therefore, the expected resource occupancy is given by: 

( ) )( () i i i iii
Y iN i z d T z z di i    

We refer to Y  as the system load. 
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Operating Costs 
 

 

 

 The system operating costs increase with the load on the 
system. We suppose the operating costs can be represented (at 
least approximately) as a function of the average load: 

oper 0 ( )C C Y  

  

 Assumption 4: 0C  is a strictly convex increasing function of Y  (at 

least beyond some value of the load Y ). 

 

 Remark: Depending on the problem and time scale considered, 

0C  can also embody the amortized investment in infrastructure 

required to support the load Y  (possible under some QoS 
requirements). 
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2. Individual Optimality 
 

 

 Given the price P, the utility maximization problem faced by an 
arriving user of type i  is 

0
max{0, max ( )}i

z
U z


 

    where 

( ) ( ) ( )i i iU z V z PzT z   

 

 Proposition 1:  

The optimization problem 
0

max ( )i
z

U z


 has a unique solution *
iz . 
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Individual Optimality (cont’d) 
 

 

 Proof (essence): The first-order condition for an internal solution 

is ( )iU z , or equivalently 
( ) '

( ( )) '

i

i

V z
P

zT z
 . But, by assumption, the 

LHS is continuous (existence) and strictly decreasing 
(uniqueness). ■ 

 

 The decision procedure for this user is then clear: 

Solve for *
iz , and compute *( )i iU z . 

If *( ) 0i iU z  , balk. Else, if *( ) 0i iU z  , enter service with 

resources *
iz . 

For concreteness, in the neutral case *( ) 0i iU z   we choose 

to enter. 
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3. Social Welfare 
 

 

 The social welfare (or social utility) function is given by: 

                      0( ) ( ) ( )i ii
W V z i di C Y   

where ( ) ( )i i ii
Y i T z z di  . The decision variables are the 

effective arrival rate ( ) [0, ( )]i i   and resource allocations 

0iz  . 

 To determine the best possible social welfare, we consider an 
omniscient central controller, who knows the user characteristics 
and preferences, and can set their choices accordingly.  
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Optimal Social Welfare 
 

 

 Under some additional regularity conditions on the type 
distribution, we obtain the following result. 

 Theorem 2: There exists an optimal solution * *{ ( ), ( )}i z i  to the 

social welfare maximization problem. A particular solution is 
uniquely defined by the following set of first-order conditions: 

*
0

*
0

* * *

( ) arg max ( , ),

'( , ) ( ) ( ), ( )

( ) ( )  if  ( ( ), ) 0,   else ( ) 0

z i

i i i

i

z i U z

U z V z zT z C Y

i i U z i i



  

   



 

  

 

 

 Remark: The above-mentioned regulaity conditions are meant 

to ensure that *( ( ), ) 0iU z i    cannot hold simultnesouly for a 

set of types of positive measure. 
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 Proof idea: The stated conditions are essentially the KKT 
conditions for the optimization problem, which are necessary 
conditions for optimality here (note that the problem is not convex  
jointly convex in { ( ), ( )}i z i , nor is it convex in { ( )}z i  alone 

unless ( )izT z  is convex). We next show that the load *Y  is 

monotone decreasing in  , hence *
0
' ( )C Y   has a single 

solution. This implies that there exists (essentially) a single 
stationary point, which must therefore be a global extremum (a 
maximum in this case). 

 



  24 

 

4. Socially Optimal Pricing 
 

 

 Consider now the system under individually-optimal decisions of 
the users, with a fixed per-unit price P. The following is our 
central result. 

 

 Theorem 3: There exists a unique price 0P  for which the 

individually optimal solution maximizes the social welfare. 0P  is 

the unique solution to the equation 0
' ( ( ))P C Y P . 

 

 Proof idea: Using *
0
' ( )P C Y  from Proposition 2, it is easily seen 

the optimality conditions of that Proposition and the equations of 
individual optimality coincide. By uniqueness, the two solutions 
coincide. 
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5. Economic Context 
 

 

 The observation that pricing induces social welfare maximization 
is a classical one in the economic literature. 

 The classical formulation of the problem assumes a finite set of 
buyers, {1, , }n  is a static setting, where each chooses the 

amount ix  of goods to buy so as to maximize the personal utility 

( )i i iV x Px . The social welfare is ( ) ( )i i ii i
V x C x  . 

 The model proposed here examines more closely the effects of 
user dynamics, and in particular the effect of resource-dependent 
service times. 
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Economic Context (2) 
 

 

 Comparing the forms of this mathematical program to ours, it 

may be seen that i iz T  plays an analogous role to ix . This points 

to the fact that the actual good being sold here is resource-hours. 

However, iT  itself does have an important independent role in the 

dynamic context. 

 Another important observation is the independent role of balking 
(or effective arrival rate) in our model. The classical model 

assumes by default that (0) 0iV   (with iV  continuous), so that a 

decision of not participating is implies by the choice of 0ix  ). 

The situation is different in our case, as the choice of 

participating with 0iz   would lead to infinite computation time. 

Therefore, an independent set of decision variables must be 
considered to allow for non=participation, or balking. 
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6. Price Adjustment 
 

 

 The  implementation of the fixed pricing scheme does not require 
any private information on specific users. However, computation 
of the optimal price does require a detailed model of the user 
population.  

 On-line price adjustment mechanisms may then be used to 
advantage. Such mechanisms have been well studied in the 
economic literature, and are often referred to as tatonnement 
processes. We briefly mention here a few variations. 

 The basic goal is to iteratively approach the solution of the 

equation 0
' ( ( ))P C Y P  that defines the socially-optimal price.  
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Price Adjustment (2) 
 

 

 Continuous-time tatonnement gives in this case: 

 0
'( ) ( ( ( )) ( )d

dt
P t C Y P t P t   

 The load Y  is assumed to reach the steady state conditions 
(corresponding to ( )P t  at every time instant. 

 Convergence follows trivially from monotonicity, as the price is 
scalar here. 

 A discrete-time version of this adjustment process reads 

 1 0
' ( ( )k k k kP P C Y P P     

This again converges provided that the gain is small enough. 
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Price Adjustment (3) 
 

 

 Stochastic-approximation type process can be devised to take 
account of the noise in the measurement of  Y  due to stochastic 
and transient effects. For example, consider 

 1 0
ˆ' ( )k k k k kP P C Y P     

where   
1

1

1ˆ ( )
k

k k k

t

k t t t
Y Z t dt






   

 Under appropriate conditions this can be shown to follow the 
ODE described before, thereby both establishing convergence 
and formalizing the relevance of the continuous time process. 
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7. Finite Resources 
 

 

 Actual systems are of course limited in their resources. This can lead to 
blocking, service denial and customer loss if the system is operated 
without sufficient margin. So far, this effect was not part of our model. 

 A detailed incorporation of blocking and loss effects in the utility 
functions of our economic model appears hard for several reasons. 

 User behavior modeling: Blocked users have several options, including 
going elsewhere, waiting online, or coming back later. An exact model and 
its analysis appear complicated. 

 The economic effects of blocking and service denial are not only the direct 
ones, but also indirect such as loss of reputation. It is hard to quantify these 
in the utility equation. 

 System capacity is often planned with a view to congestion period, rather 
than to the normal (long-term average) operating conditions, on which our 
model is focused. 
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Finite Resources: Average Load Constraints 
 

 

 We therefore propose the following modification to our model. 

 Start by deriving an upper bound maxY  on the allowed average load on 

the system. This can be derived, for example, to satisfy upper bounds 
on allowed blocking, using multiclass Erlang loss models. 

  Add the constraint maxY Y  to the mathematical program that defines 

the goal social utility maximization. 

 Using the same analysis as before, it may be seen that: 

 A fixed per-unit pricing induces the (modified, resource constrained) 
optimal social welfare. 

 The optimal price will be the larger of the following two: the previously-

computed price, namely the unconstrained solution of 0
' ( ( ))P C Y P ; 

and the solution of the constraint equation max( )Y P Y  
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8. Profit Maximization 
 

 

 Profit maximization is a major goal of commercial firms, and 
deserves a separate treatment. 

 Here we point out a few known observations on the relation 
between profit maximization and social welfare optimization, that 
have been recovered in the context of our model: 

 The maximal social welfare is an upper bound on the possible profit 
(using any economic mechanism). 

 The maximal profit is not attained by by fixed per-unit pricing (except for 
the very special case of a single user type). 

 With fixed per-unit pricing, the profit-maximizing price the is higher than 
the socially optimal one. 

 Both objective functions are strictly increasing in P, up to the socially 

optimal price *P  

 For *P P , the profit may not be n-unimodal in P. 
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Concluding Remarks 
   

 

 The model proposed here incorporated some aspects of 
dynamics and timing that are prevalent in on-line operations, 
within the classical economic theory of social welfare 
maximization using fixed per-unit pricing.  

  The basic model developed here may provide a basis for 
additional work on economic aspects of cloud computing, 
considering in more detail aspects of profit and revenue, multiple 
resources and resource bundles, non-stationary demand, 
competition among firms, and effects of resource limitations, 
among other issues. 
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