Two Queues Driven by a Birth-Death Process and Coupled by Overflow, Jockeying, and Customers Acting as Servers

Peter Sendfeld and Wolfgang Stadje

Eurandom, September 2010

Two interacting queues, Q_1 and Q_2 , with the following special features:

(i) regulated overflow from the first to the second queue;

(ii) state-dependent arrival and service rates;

(iii) the customers in the first queue act as servers for the second one;

(iv) jockeyeing mechanism from the second queue to the first one.

- number of customers in Q₁: a birth and death chain with state space {0,..., N}
- birth rates $\lambda_{1,n} > 0$, $n \in \{0, \ldots, N-1\}$, death rates $\mu_{1,n} > 0$, $n \in \{1, \ldots, N\}$, and $\mu_{1,0} = 0$
- $\lambda_{1,N} > 0$ arrival rate if Q_1 is in state N.
- Q₂: infinite waiting room, service rate nμ₂ as long as n customers are present in Q₁
- If Q_1 is fully occupied, a new arrival of Q_1 moves to Q_2 with probability p and leaves with probability 1 p.

伺 ト イ ヨ ト イ ヨ ト

- Q₂ may have its own Poisson arrival stream, independent of Q₁, so that its arrival rate is λ₂ as long as Q₁ is not fully occupied and pλ_{1,N} + λ₂ if it is
- Limited jockeying: k customers (1 ≤ k ≤ N) of Q₂, provided k or more are present, are forced to move to Q₁ as soon as Q₁ empties.
- *Exhaustive jockeying*: as soon as Q_1 is not fully occupied, it is filled with customers from Q_2 until it reaches its capacity bound or Q_2 empties.

Generalization of Perel and Yechiali (2008): special case $\lambda_{1,n} = \lambda_1 > 0$, $\mu_{1,n+1} = \mu_1 > 0$ for n = 0, ..., N - 1, $\lambda_2 > 0$, p = 0 (no overflow), no jockeying.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Aim: to determine the distribution of the two-dimensional queue lengths process for the various models \longrightarrow irreducible Markov chain with state space

$$\{(n, m) \mid n = 0, \ldots, N, m \in \mathbb{Z}_+\}$$

(n, m) = numbers of customers present in Q_1 and Q_2 , resp. (L_1, L_2) = steady-state queue lengths of (Q_1, Q_2) The first queue is a one-dimensional birth and death chain with finite state space; thus the steady-state distribution of L_1 exists and is well-known:

$$\mathbb{P}(L_1 = n) = \frac{\prod_{i=0}^{n-1} \rho_i}{1 + \sum_{j=1}^{N} \prod_{i=0}^{j-1} \rho_i} \text{ and } \mathbb{E}L_1 = \frac{\sum_{n=1}^{N} n \prod_{i=0}^{n-1} \rho_i}{1 + \sum_{n=1}^{N} \prod_{i=0}^{n-1} \rho_i}, \quad (1)$$

where $\rho_n = \lambda_{1,n} / \mu_{1,n+1}$, n = 0, ..., N - 1.

With constant arrival and service rates $\lambda_{1,n} = \lambda_1$, $\mu_{1,n} = \mu_1$ we get the standard M/M/1/N - 1 queue: For $\lambda_1 \neq \mu_1$,

$$\mathbb{P}(L_1=n) = \frac{\left(\frac{\lambda_1}{\mu_1}\right)^n - \left(\frac{\lambda_1}{\mu_1}\right)^{n+1}}{1 - \left(\frac{\lambda_1}{\mu_1}\right)^{N+1}} \text{ and } \mathbb{E}L_1 = \frac{\lambda_1}{\mu_1 - \lambda_1} - \frac{(N+1)\lambda_1^{N+1}}{\mu_1^{N+1} - \lambda_1^{N+1}}$$

In the case $\lambda_1 = \mu_1$, we have $\mathbb{P}(L_1 = n) = 1/(N+1)$ and $\mathbb{E}L_1 = N/2$. For service rates $\mu_{1,n} = n\mu_1$ and constant arrival rate $\lambda_{1,n} = \lambda_1$ the first queue is a classical M/M/N/0 Erlang loss system.

伺い イラト イラト

$$p_{n,m} \equiv \mathbb{P}(L_1 = n, L_2 = m), \quad n = 0, \dots N \text{ and } m \in \mathbb{Z}_+$$

In the stable case:

 $(p_{n,m})_{0 \le n \le N, m \ge 0}$ is the unique nonnegative and normalized solution of the steady-state equations:

for n = 0, ..., N and $m \ge 0$ (where $\delta_{ij} = 1$ for i = j and 0 otherwise).

First conjecture: $p\lambda_{1,N} < \mu_2 \mathbb{E} L_1$. However, on second thought, probably:

$$p\lambda_{1,N}\mathbb{P}(L_1=N) < \mu_2\mathbb{E}L_1.$$
(3)

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}(L_1 = N)$ and $\mathbb{E}L_1$ as given above, or, equivalently,

$$p\lambda_{1,N}\prod_{n=0}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=0}^{n-1}\rho_i$$

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Proof. Theory of quasi birth and death processes, regarding Q_1 as the phase process and Q_2 as the level process..., Q_2 , Q_3 , Q_2 , Q_3 , Q_4 , Q_5 , Q_4 , Q_5 , Q_5 , Q_6 , Q_7 , Q_8 , $Q_$

Peter Sendfeld and Wolfgang Stadje

First conjecture: $p\lambda_{1,N} < \mu_2 \mathbb{E}L_1$. However, on second thought, probably:

$$p\lambda_{1,N}\mathbb{P}(L_1=N) < \mu_2\mathbb{E}L_1. \tag{3}$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}(L_1 = N)$ and $\mathbb{E}L_1$ as given above, or, equivalently,

$$p\lambda_{1,N}\prod_{n=0}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=0}^{n-1}\rho_i$$

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Proof. Theory of quasi birth and death processes, regarding Q_1 as the phase process and Q_2 as the level process..., A_{B} , $A_{$

Peter Sendfeld and Wolfgang Stadje

First conjecture: $p\lambda_{1,N} < \mu_2 \mathbb{E}L_1$. However, on second thought, probably:

$$p\lambda_{1,N}\mathbb{P}(L_1=N) < \mu_2\mathbb{E}L_1. \tag{3}$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}(L_1 = N)$ and $\mathbb{E}L_1$ as given above, or, equivalently,

$$p\lambda_{1,N}\prod_{n=0}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=0}^{n-1}\rho_i$$

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Proof. Theory of quasi birth and death processes, regarding Q_1 as the phase process and Q_2 as the level process..., Q_2 , Q_3 , Q_2 , Q_3 , Q_4 , Q_2 , Q_3 , Q_4 , Q_4 , Q_4 , Q_5 , Q_4 , Q_5 , Q_4 , Q_5 , Q_5 , Q_6 , Q_6 , Q_7 , Q_8 , $Q_$

Peter Sendfeld and Wolfgang Stadje

First conjecture: $p\lambda_{1,N} < \mu_2 \mathbb{E}L_1$. However, on second thought, probably:

$$p\lambda_{1,N}\mathbb{P}(L_1=N) < \mu_2\mathbb{E}L_1. \tag{3}$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}(L_1 = N)$ and $\mathbb{E}L_1$ as given above, or, equivalently,

$$p\lambda_{1,N}\prod_{n=0}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=0}^{n-1}\rho_i$$

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Proof. Theory of quasi birth and death processes, regarding Q_1 as the phase process and Q_2 as the level process. $\Box \rightarrow \Box = \Box \rightarrow \Box = \Box \rightarrow \Box$

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...

Generating functions and steady-state distribution

Method of Avi-Itzhak and Mitrani (1968) and Perel and Yechiali (2008): probability generating function of the queue length of Q_2 for fixed queue length n of Q_1 :

$$G_n(z) = \sum_{m=0}^{\infty} p_{n,m} z^m, \quad |z| \leq 1, \quad n = 0, \ldots, N.$$

From the steady-state equations, for n = 1, ..., N - 1:

$$\lambda_{1,0}G_0(z) = \mu_{1,1}G_1(z),$$

$$((\lambda_{1,n} + \mu_{1,n})z - n\mu_2(1-z))G_n(z) = \lambda_{1,n-1}zG_{n-1}(z) + \mu_{1,n+1}zG_{n+1}(z)$$

$$- n\mu_2(1-z)p_{n,0}$$

$$ig(\mu_{1,N}z + (p\lambda_{1,N}z - N\mu_2)(1-z)ig)G_N(z) \ = \lambda_{1,N-1}zG_{N-1}(z) - N\mu_2(1-z)p_{N,0}.$$

Equations in matrix form

Define the $((N + 1) \times (N + 1))$ -matrix A(z) by

$$A(z) = \begin{pmatrix} \alpha_0(z) & -\mu_{1,1} & 0 & \dots & 0 \\ -\lambda_{1,0}z & \alpha_1(z) & -\mu_{1,2}z & \ddots & \vdots \\ 0 & \ddots & \alpha_2(z) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & -\mu_{1,N}z \\ 0 & \dots & 0 & -\lambda_{1,N-1}z & \alpha_N(z) \end{pmatrix},$$

where

$$\begin{aligned} &\alpha_0(z) = \lambda_{1,0}, \\ &\alpha_n(z) = (\lambda_{1,n} + \mu_{1,n})z - n\mu_2(1-z) \text{ for } n = 1, \dots, N-1 \text{ and } \\ &\alpha_N(z) = \mu_{1,N}z + (p\lambda_{1,N}z - N\mu_2)(1-z). \end{aligned}$$

回 と く ヨ と く ヨ と

3

Equations in matrix form (continuation)

Define

$$G(z) = (G_0(z), \dots, G_N(z))^{\top},$$

 $P = (0, p_{1,0}, 2p_{2,0}, \dots, Np_{N,0})^{\top}.$

$$\implies A(z)G(z) = -\mu_2(1-z)P.$$

Let $A_n(z)$ be the matrix obtained from A(z) by replacing the (n+1)th column by the vector $-\mu_2(1-z)P$ for n = 0, ..., N. By Cramer's rule we can write

$$\det(A(z))G_n(z) = \det(A_n(z)) \tag{4}$$

The generating functions G_0, \ldots, G_N are uniquely determined by the equations (4) and thus by $p_{1,0}, \ldots, p_{N,0}$, since these are the only unknowns occurring in the equations.

det(A(z)) is a polynomial of degree N + 1 and has N - 1 distinct zeros in the interval (0, 1) and one zero at z = 1. Moreover, det(A(z)) has another zero in the interval $(1, \infty)$ if and only if the queueing system is stable.

伺 ト く ヨ ト く ヨ ト

We can use the N-1 zeros z_1, \ldots, z_{N-1} of det(A(z)) in (0,1) to find the N unknown probabilities $p_{1,0}, \ldots, p_{N,0}$:

$$\det(A_0(z_1)) = 0, \dots, \det(A_0(z_{N-1})) = 0.$$

One more equation relating the unknowns is

$$\sum_{n=1}^{N} n p_{n,0} = \frac{\mu_2 \sum_{n=1}^{N} n \prod_{i=0}^{n-1} \rho_i - p \lambda_{1,N} \prod_{i=0}^{N-1} \rho_i}{\mu_2 \sum_{n=0}^{N} \prod_{i=0}^{n-1} \rho_i}.$$

 \implies N linear equations in the N unknowns $p_{1,0}, \ldots, p_{N,0}$.

Stationary quantities and numerical aspects

$$\mathbb{E} L_2 = \sum_{n=0}^N G'_n(1) \ \mathbb{E}(L_1 L_2) = \mu_2^{-1} p \lambda_{1,N} [G_N(1) + G'_N(1)]$$

Covariance of L_1 and L_2 for $N \ge 2$:

- changes signs when the system parameters are varied;
- nice function of p on the interval $[0, p^*]$: either convex or concave, either monotone decreasing or increasing or unimodal with one or two zeros (where one zero is p = 0);
- $Cov(L_1, L_2) = 0$ for N = 1:

$$\mathbb{E}(L_1L_2) = \frac{\lambda_1}{\lambda_1 + \mu_1} \cdot \frac{p\lambda_1}{\mu_2 - p\lambda_1} = \mathbb{E}L_1\mathbb{E}L_2.$$

- $Cov(L_1, L_2) \le 0$ for p = 0 when Q_2 has its own arrival stream (Perel and Yechiali (2008)).

Limited jockeying: one customer of Q_2 , if one is present, is forced to move to Q_1 as soon as Q_1 empties. This jockeying customer then starts acting as a server for Q_2 .

 \longrightarrow Markov chain of queue lengths, which is irreducible on the state space

$$\{(0,0)\} \cup \{(n,m) \mid n = 1, \dots, N, m \ge 0\}$$

The balance equations (again)

$$\lambda_{1,0}p_{0,0} = \mu_{1,1}p_{1,0},$$
(5)

$$(\lambda_{1,n} + \mu_{1,n})p_{n,0} = \lambda_{1,n-1}p_{n-1,0} + \mu_{1,n+1}p_{n+1,0} + (n\mu_2 + \delta_{1n}\mu_{1,1})p_{n,1}$$
for $n = 1, ..., N - 1$
(6)

$$(p\lambda_{1,N} + \mu_{1,N})p_{N,0} = \lambda_{1,N-1}p_{N-1,0} + N\mu_2p_{N,1}$$
(7)

$$(\lambda_{1,n} + \mu_{1,n} + n\mu_2)p_{n,m} = \lambda_{1,n-1}p_{n-1,m}(1 - \delta_{1,n}) + \mu_{1,n+1}p_{n+1,m} + (n\mu_2 + \delta_{1n}\mu_{1,1})p_{n,m+1}$$
(8)

for $n=1,\ldots,N-1,\ m\geq 1$

(9) $(p\lambda_{1,N} + \mu_{1,N} + N\mu_2)p_{N,m} = \lambda_{1,N-1}p_{N-1,m} + p\lambda_{1,N}p_{N,m-1} + N\mu_2p_{N,m+1}, \quad m \ge 1.$ (10)

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$p\lambda_{1,N}\prod_{n=1}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=1}^{n-1}\rho_i + \mu_{1,1}$$
(11)

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Heuristic condition:

$$p\lambda_{1,N}\mathbb{P}(L_1=N) < \mu_{1,1}\mathbb{P}(L_1=1) + \mu_2\mathbb{E}L_1.$$
(12)

However, the distribution of L_1 is not known! But (11) \iff (12).

伺 ト く ヨ ト く ヨ ト

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$p\lambda_{1,N}\prod_{n=1}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=1}^{n-1}\rho_i + \mu_{1,1}$$
(11)

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Heuristic condition:

$$p\lambda_{1,N}\mathbb{P}(L_1=N) < \mu_{1,1}\mathbb{P}(L_1=1) + \mu_2\mathbb{E}L_1.$$
(12)

However, the distribution of L_1 is not known! But (11) \iff (12).

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$p\lambda_{1,N}\prod_{n=1}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=1}^{n-1}\rho_i + \mu_{1,1}$$
(11)

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Heuristic condition:

$$p\lambda_{1,N}\mathbb{P}(L_1 = N) < \mu_{1,1}\mathbb{P}(L_1 = 1) + \mu_2\mathbb{E}L_1.$$
 (12)

However, the distribution of L_1 is not known! But (11) \iff (12).

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$p\lambda_{1,N}\prod_{n=1}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=1}^{n-1}\rho_i + \mu_{1,1}$$
(11)

holds, where $\rho_n = \lambda_{1,n}/\mu_{1,n+1}$ for $n = 0, \dots, N-1$.

Heuristic condition:

$$p\lambda_{1,N}\mathbb{P}(L_1 = N) < \mu_{1,1}\mathbb{P}(L_1 = 1) + \mu_2\mathbb{E}L_1.$$
 (12)

However, the distribution of L_1 is not known! But (11) \iff (12).

Generating functions (again)

$$G_n(z) = \sum_{m=0}^{\infty} p_{n,m} z^m, \quad |z| \leq 1.$$

Recursions:

3

ъ

Equations in matrix form

Define the $(N \times N)$ -matrix A(z) by

$$A(z) = \begin{pmatrix} \alpha_{1}(z) & -\mu_{1,2}z & 0 & \dots & \dots & 0 \\ -\lambda_{1,0}z & \alpha_{2}(z) & -\mu_{1,3}z & \ddots & & \vdots \\ 0 & \ddots & \alpha_{3}(z) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & & 0 & -\lambda_{1,N-1}z & \alpha_{N}(z) \end{pmatrix},$$
(17)

where

$$\begin{aligned} \alpha_1(z) &= \lambda_{1,1} z - (\mu_{1,1} + \mu_2)(1 - z), \\ \alpha_n(z) &= (\lambda_{1,n} + \mu_{1,n}) z - n\mu_2(1 - z) \text{ for } n = 2, \dots, N - 1 \end{aligned} (18) \\ \alpha_N(z) &= \mu_{1,N} z + (p\lambda_{1,N} z - N\mu_2)(1 - z). \end{aligned} (20)$$

A B + A B +

$$G(z) = (G_1(z), \dots, G_N(z))^{\top},$$

$$P = ((\mu_{1,1} + \mu_2)p_{1,0}, 2\mu_2 p_{2,0}, \dots, N\mu_2 p_{N,0})^{\top}$$

The equations (14), (15) and (16) are equivalent to

$$A(z)G(z) = -(1-z)P.$$
 (21)

< ∃ >

det(A(z)) is a polynomial of degree N + 1 and has N - 1 distinct zeros in the interval (0, 1) and one zero at z = 1. Additionally, det(A(z)) has another zero in the interval $(1, \infty)$ if and only if the system of equations (5)-(10) has a unique nonnegative and normalized solution, i.e., if and only if $p\lambda_{1,N}\mathbb{P}(L_1 = N) < \mu_{1,1}\mathbb{P}(L_1 = 1) + \mu_2\mathbb{E}L_1$ or, equivalently,

$$p\lambda_{1,N}\prod_{n=1}^{N-1}\rho_n < \mu_2\sum_{n=1}^N n\prod_{i=1}^{n-1}\rho_i + \mu_{1,1}.$$
 (22)

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...

伺 ト く ヨ ト く ヨ ト

Assume, for simplicity, constant arrival and service rates in Q_1 :

- Q_1 : works like a M/M/1/N 1 queue with arrival rate $\lambda_1 > 0$ and service rate $\mu_1 > 0$.
- Q_2 : fed by the *p*-weighted overflow stream from Q_1 , $p \in [0, 1]$, with service rate $n\mu_2$ as long as $L_1 = n$.
- As soon as Q_1 is not fully occupied, customers from Q_2 are instantly transferred to Q_1 until Q_1 is fully occupied or Q_2 empties, whatever happens first.

State space: $\{(N, m) \mid m \ge 0\} \cup \{(n, 0) \mid 0 \le n < N\}.$

伺い イラト イラト

$$p_{n,m} = \left(\frac{\lambda_1}{\mu_1}\right)^n \left(\frac{p\lambda_1}{\mu_1 + N\mu_2}\right)^m p_{0,0}, \quad m = 0, \ n = 0, \dots, N-1$$

or $m \ge 0, n = N$
$$p_{0,0} = \left(\left(\frac{\lambda_1}{\mu_1}\right)^N \frac{\mu_1 + N\mu_2}{\mu_1 + N\mu_2 - p\lambda_1} + \frac{\mu_1 - \lambda_1 \left(\frac{\lambda_1}{\mu_1}\right)^{N-1}}{\mu_1 - \lambda_1}\right)^{-1}.$$

The necessary and sufficient stability condition is $p\lambda_1 < \mu_1 + N\mu_2$.

Model the two queues as an ordinary single $M_{(n)}/M_{(n)}/1$ queue. with state space $\mathbb{Z}_+ = \{0, \dots, N\} \cup \{N+1, N+2, \dots\}$:

- $\{0,\ldots,N\} \quad \longleftrightarrow \quad \{(0,0),\ldots,(N,0)\}$
- { $N+1, N+2, \ldots$ } \longleftrightarrow { $(N,1), (N,2), (N,3), \ldots$ }
- Arrival rate: λ_1 in the states $0, \ldots, N-1$ and $p\lambda_1$ in the states $m \ge N$
- Service rate: μ_1 in the states $1, \ldots, N$ and $\mu_1 + N\mu_2$ in the states $m \ge N+1$
- \longrightarrow equivalent infinite birth and death chain!

• • = • • = •