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General setting

Two interacting queues, @1 and @>, with the following special
features:

(i) regulated overflow from the first to the second queue;

(i) state-dependent arrival and service rates;

(iii) the customers in the first queue act as servers for the second
one;

(iv) jockeyeing mechanism from the second queue to the first one.
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The basic model

@ number of customers in Qq: a birth and death chain with
state space {0,..., N}

e birth rates Ay, >0, n€{0,..., N — 1}, death rates y11 , > 0,
ne{l,...,N} and p10=0

@ Ay ny >0 arrival rate if Qq is in state V.

@ @o: infinite waiting room, service rate nuy as long as n
customers are present in

o If Qq is fully occupied, a new arrival of @1 moves to Q> with
probability p and leaves with probability 1 — p.
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Extensions

@ (» may have its own Poisson arrival stream, independent of
Q1, so that its arrival rate is \» as long as @y is not fully
occupied and pAy y + A2 if it is

o Limited jockeying: k customers (1 < k < N) of Q,, provided

k or more are present, are forced to move to @7 as soon as (1
empties.

o Exhaustive jockeying: as soon as @ is not fully occupied, it is
filled with customers from Q> until it reaches its capacity
bound or @» empties.

Generalization of Perel and Yechiali (2008): special case
Map=A1>0, p1pp1=p1>0forn=0,..., N—1, \» >0,
p = 0 (no overflow), no jockeying.
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The basic model: steady-state equations

Aim: to determine the distribution of the two-dimensional queue
lengths process for the various models
— irreducible Markov chain with state space

{(n,m)|n=0,....N, meZ;}
(n,m) = numbers of customers present in Q; and Q», resp.

(L1, Ly) = steady-state queue lengths of (Q1, Q2)
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The first queue

The first queue is a one-dimensional birth and death chain with
finite state space; thus the steady-state distribution of L; exists
and is well-known:

n—1 N n—1
H Pi Z n Pi
P(Ly = n) = —=0 —— and EL; = L (1)
1+ > I pi L+ > I pi
j=1i=0 n=1i=0

where pp = A1 p/p1,p41, n=0,..., N — 1.
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Examples: @

With constant arrival and service rates A1, = A1, p1,n = p1 we get
the standard M/M/1/N — 1 queue: For A\1 # u1,

(&) _ (g)"“ \ (N 4+ )N+

H1 H1 1 1

P(Ly = n) = and EL; = — .

(h=n) 1—(g)”“ Fm -
H1

In the case A\; = p1, we have P(Ly = n) =1/(N+1) and

EL; = N/2. For service rates t1,, = npy and constant arrival rate
A1,n = A1 the first queue is a classical M/M/N/0 Erlang loss
system.
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Steady-state probabilities

Pam=P(Li=nLo=m), n=0,...Nand meZ,

In the stable case:
(Pn,m)o<n<n,m>0 is the unique nonnegative and normalized
solution of the steady-state equations:

(A1,n(1 = 0pn) + PALNOaN + (1 — 6n0) 1,0 + (1 — Omo)Nii2) Pr,m
= (1 - 5n0))\1,nflpnfl,m + (]- - 5nN),Uf1,n+1pn+l,m
+ (1 - 5m0)5an)\1,an,mfl + (]- - 5n0(1 - 5mO))n;u2pn,er1
(2)

forn=20,...,N and m > 0 (where §;; =1 for i = j and 0
otherwise).
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Stability condition

First conjecture:  pAyn < poEL;.
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Stability condition

First conjecture:  pAy n < polEL;. However, on second thought,
probably:
p)\l,N]P)(Ll = N) < ,LLQEL:[. (3)
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Stability condition

First conjecture:  pAy n < polEL;. However, on second thought,
probably:
p)\l,N]P)(Ll = N) < ,LL2EL1. (3)

Proposition

The system (2) has a unique nonnegative and normalized solution
if and only if (3) holds, with P(Ly = N) and EL; as given above,
or, equivalently,

px\lNHpn<uzz Hp,

n=1 =0

holds, where p, = X1, pn/p1,n+1 forn=0,...,N —1.
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Stability condition

First conjecture:  pAy n < polEL;. However, on second thought,
probably:
p)\l,N]P)(Ll = N) < ,LL2EL1. (3)

Proposition

The system (2) has a unique nonnegative and normalized solution
if and only if (3) holds, with P(Ly = N) and EL; as given above,
or, equivalently,

px\lNHpn<uzz Hp,

n=1 =0
holds, where p, = X1, pn/p1,n+1 forn=0,...,N —1.

Proof. Theory of quasi birth and death processes, regarding Q; as
the phase process and @ as the level process.
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Generating functions and steady-state distribution

Method of Avi-ltzhak and Mitrani (1968) and Perel and Yechiali
(2008): probability generating function of the queue length of Q>
for fixed queue length n of Q1:

[o¢]
Gn(2) =Y pamz™, |2 <1, n=0,...,N.
m=0
From the steady-state equations, forn=1,... , N —1:

A1,0Go(z) = p1,16G1(2),
(AL 4 p1,0)z = np2(1 = 2)) Go(2) = A1n-12Gp-1(2) + p1,n412Gn11(2)
— np2(1 — z)pno

(H1,nz + (pPAr,nz — Np2)(1 — 2)) Gu(2)
= A,n-12Gn-1(2) — Npo(1 — z)p o
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Equations in matrix form

Define the ((N 4 1) x (N + 1))-matrix A(z) by

ag(z)  —p11 0 e e 0
A0z o1(z) —pi2z ;
A(Z) = O B az(Z) )
' ' 0
: : —H1,NZ
0 ‘e “o 0 —)\1’[\/_12 aN(z)
where
ao(z) = A1,0,

an(z) = (M,p+ p1,n)z — nup(l —z) forn=1,...,N—1and
an(z) = panz + (PA,vz — Np2)(1 — 2).
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Equations in matrix form (continuation)

Define

G(z) = (Go(2),. .., GN(Z))T,
P = (0, p1.0,2P20;---, Npno) "
= A(2)G(z) = —p2(l — z)P.

Let A,(z) be the matrix obtained from A(z) by replacing the
(n + 1)th column by the vector —px(1 — z)P for n=0,...,N. By
Cramer's rule we can write

det(A(2))Gn(z) = det(An(2)) (4)
The generating functions Gy, ..., Gy are uniquely determined by
the equations (4) and thus by p1,. .., pno, since these are the

only unknowns occurring in the equations.

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



The roots of det(A(z))

Theorem

det(A(z)) is a polynomial of degree N + 1 and has N — 1 distinct
zeros in the interval (0,1) and one zero at z = 1. Moreover,
det(A(z)) has another zero in the interval (1,00) if and only if the
queueing system is stable.
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Finding p1o,...,Pno

We can use the N — 1 zeros z1,...,zy_1 of det(A(z)) in (0,1) to
find the N unknown probabilities p1,. .., pn.o:

det(Ao(Zl)) =0,... ,det(Ao(zN,l)) =

One more equation relating the unknowns is

N n—1
N p2 o n [T pi— pAin H pi
Zn _ n=1 =0 i=0
Pn,0 N n-1
n=1 p2 > 11 pi
n=0 /=0
== N linear equations in the N unknowns p1,...,pn,o-
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Stationary quantities and numerical aspects

N
EL, = Z Gp(1)
n=0

E(L1L2) = p5 ' pAr,n[Gn(1) + Gp(1)]

Covariance of L1 and Ly for N > 2:

- changes signs when the system parameters are varied;

- nice function of p on the interval [0, p*]: either convex or
concave, either monotone decreasing or increasing or unimodal
with one or two zeros (where one zero is p = 0);

- Cov(L1,Lp) =0 for N=1:

At ph
A1+ p1 o p2 — pAr
- Cov(Ly, L) <0 for p =0 when @, has its own arrival stream
(Perel and Yechiali (2008)).
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The model with single-customer jockeying

Limited jockeying: one customer of @, if one is present, is forced
to move to @1 as soon as @ empties. This jockeying customer
then starts acting as a server for @».

—— Markov chain of queue lengths, which is irreducible on the

state space

{(0,0)}u{(n,m) | n=1,....N, m> 0}
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The balance equations (again)

A1,0P0,0 = [41,1P1,05 (5)

()\l,n + Ml,n)pn,O = )\1,n71Pn—1,0 + p1,n+1Pn+1,0 + (n,u2 + 51n,ul,1)pn,l
forn=1,...,.N-1 (6)
(PA1N + p1,n)PN,0 = A1 N—1PN—1,0 + Npopn 1 (7)

(A, + p1,n + 012)Pam = Atn—1Pn—1,m(1 — 61,n) + 11, n+1Pn+1,m
+ (np2 + 61nfe1,1) P m+1
(8)
forn=1,....N—-1, m>1
9)
(PALN + pan + Np2)pn,m = A N—1PN—1,m + PALNPN,m—1
+ Nuapy,m+1, m=> 1. (10)
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Stability condition

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

N-1 N n—1
pun [ on<p2d 0] i+ ma (11)
n=1 n=1 i=1

holds, where p, = A1.n/pt1,n+1 forn=0,...,N —1.
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Stability condition

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

N-1 N n—1
pun [T oo <2 n ] pi+ ma (11)
n=1 n=1 i=1

holds, where p, = A1.n/pt1,n+1 forn=0,...,N —1.
Heuristic condition:

p)\LN]P’(Ll = N) < u171]P’(L1 = 1) + uoELy. (12)
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Stability condition

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

N-1 N n—1
pun [T oo <2 n ] pi+ ma (11)
n=1 n=1 i=1

holds, where p, = A1.n/pt1,n+1 forn=0,...,N —1.
Heuristic condition:
p)\LN]P’(Ll = N) < u171]P’(L1 = 1) + uoELy. (12)

However, the distribution of L1 is not known!
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Stability condition

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

N-1 N n—1
pun [T oo <2 n ] pi+ ma (11)
n=1 n=1 i=1

holds, where p, = A1.n/pt1,n+1 forn=0,...,N —1.

Heuristic condition:
p)\LN]P’(Ll = N) < u171]P’(L1 = 1) + uoELy. (12)

However, the distribution of L1 is not known!
But (11) < (12).
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Generating functions (again)

[e.e]
Gn(2) =D prmz™, 2| <1
m=0

Recursions:
M,0Go(z) = p1,1p1,0 = A1,0P0,0 (13)
(A1,12 — (pa,1 + p2)(1 — 2)) Gi(2)

= 111,22G2(2) — (11 + p2)(1 = 2)pro (14)
((/\1,,, + p1,n)z — npo(1 — z)) Gn(z)
= A,n-12Gn-1(2) + p11,n+12Gn41(2) — np2(1 — z)pno

forn=2,...,N—1 (15)
(Ha,nz + (PAnz — Np2)(1 — 2)) Gu(2)
= A,N-12Gn-1(2) — Np2(1 — z)pw o- (16)

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Equations in matrix form

Define the (N x N)-matrix A(z) by

ai(z)  —p10z 0 .. . 0
—-A0z  o(z) —m3z :
Alz) = 0 o oale) ;
: . . 0
: : —H1,NZ
0 cee “e 0 —/\1,N712 aN(z)
(17)
where
a1(z) = A1z — (p11 + p2)(1 - 2), (18)
an(z) = (A0 + pa,n)z — npo(l —z) forn=2,...,N -1 (19)
an(z) = pinz + (pAivz — Nuo)(1 — z). (20)
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Equations in matrix form

G(z) = (Gi(2),...,Gn(2)T,

P = ((p11 + 12)p10, 262p2,0, - - - Npapno) -

The equations (14), (15) and (16) are equivalent to

A(z)G(z) = —(1 — 2)P. (21)
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The roots of det(A(z))

Theorem

det(A(z)) is a polynomial of degree N + 1 and has N — 1 distinct
zeros in the interval (0,1) and one zero at z = 1. Additionally,
det(A(z)) has another zero in the interval (1,00) if and only if the
system of equations (5)-(10) has a unique nonnegative and
normalized solution, i.e., if and only if

pALNP(L1 = N) < p11P(Ly = 1) + poELy or, equivalently,

N—-1 N n—1
prn [ on <p2d n]]pi+ pas (22)
n=1 =1 i=1
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Exhaustive jockeying: closed-form solution

Assume, for simplicity, constant arrival and service rates in Q1:

@ Qi: works like a M/M/1/N — 1 queue with arrival rate
A1 > 0 and service rate pg > 0.

o (o fed by the p-weighted overflow stream from @1,
p € [0, 1], with service rate nuy as long as Ly = n.

@ As soon as @1 is not fully occupied, customers from @, are
instantly transferred to @ until Q; is fully occupied or Q>
empties, whatever happens first.

State space: {(N,m) | m>0}U{(n,0)|0<n< N}.
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Solution of the balance equations

A\ pA1 m
== _— = =0,....N—1
Pn,m < > <M1+NM2> poo, m=0, n=0,...,

orm>0,n=N
-1

A N—-1
> <>\1>N p1 + Npo +“1_)‘1<#l>
0,0 — -

’ p1)  p1+ Npa — pA p1— A1

The necessary and sufficient stability condition is pA1 < p1 + Npuo.
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An alternative approach

Model the two queues as an ordinary single I\/I(,,)/I\/I(n)/l queue.
with state space Z4y ={0,... , N}U{N+1,N+2 ...}

e {0,...,N} «—— {(0,0),...,(N,0)}
o (N+L,N+2,...} «—— {(N,1),(N,2),(N,3),...}

@ Arrival rate: Ap in the states 0,..., N — 1 and pA; in the
states m > N
@ Service rate: puy in the states 1,..., N and pg + Npyg in the

states m> N +1
—— equivalent infinite birth and death chain!
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