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General setting

Two interacting queues, Q1 and Q2, with the following special
features:
(i) regulated overflow from the first to the second queue;
(ii) state-dependent arrival and service rates;
(iii) the customers in the first queue act as servers for the second
one;
(iv) jockeyeing mechanism from the second queue to the first one.
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The basic model

number of customers in Q1: a birth and death chain with
state space {0, . . . ,N}
birth rates λ1,n > 0, n ∈ {0, . . . ,N − 1}, death rates µ1,n > 0,
n ∈ {1, . . . ,N}, and µ1,0 = 0

λ1,N > 0 arrival rate if Q1 is in state N.

Q2: infinite waiting room, service rate nµ2 as long as n
customers are present in Q1

If Q1 is fully occupied, a new arrival of Q1 moves to Q2 with
probability p and leaves with probability 1− p.
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Extensions

Q2 may have its own Poisson arrival stream, independent of
Q1, so that its arrival rate is λ2 as long as Q1 is not fully
occupied and pλ1,N + λ2 if it is

Limited jockeying: k customers (1 ≤ k ≤ N) of Q2, provided
k or more are present, are forced to move to Q1 as soon as Q1

empties.

Exhaustive jockeying: as soon as Q1 is not fully occupied, it is
filled with customers from Q2 until it reaches its capacity
bound or Q2 empties.

Generalization of Perel and Yechiali (2008): special case
λ1,n = λ1 > 0, µ1,n+1 = µ1 > 0 for n = 0, . . . ,N − 1, λ2 > 0,
p = 0 (no overflow), no jockeying.
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The basic model: steady-state equations

Aim: to determine the distribution of the two-dimensional queue
lengths process for the various models
−→ irreducible Markov chain with state space

{(n,m) | n = 0, . . . ,N, m ∈ Z+}

(n,m) = numbers of customers present in Q1 and Q2, resp.

(L1, L2) = steady-state queue lengths of (Q1,Q2)
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The first queue

The first queue is a one-dimensional birth and death chain with
finite state space; thus the steady-state distribution of L1 exists
and is well-known:

P(L1 = n) =

n−1∏
i=0

ρi

1 +
N∑

j=1

j−1∏
i=0

ρi

and EL1 =

N∑
n=1

n
n−1∏
i=0

ρi

1 +
N∑

n=1

n−1∏
i=0

ρi

, (1)

where ρn = λ1,n/µ1,n+1, n = 0, . . . ,N − 1.
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Examples: Q1

With constant arrival and service rates λ1,n = λ1, µ1,n = µ1 we get
the standard M/M/1/N − 1 queue: For λ1 6= µ1,

P(L1 = n) =

(
λ1
µ1

)n
−
(
λ1
µ1

)n+1

1−
(
λ1
µ1

)N+1
and EL1 =

λ1

µ1 − λ1
−

(N + 1)λN+1
1

µN+1
1 − λN+1

1

.

In the case λ1 = µ1, we have P(L1 = n) = 1/(N + 1) and
EL1 = N/2. For service rates µ1,n = nµ1 and constant arrival rate
λ1,n = λ1 the first queue is a classical M/M/N/0 Erlang loss
system.
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Steady-state probabilities

pn,m ≡ P(L1 = n, L2 = m), n = 0, . . .N and m ∈ Z+

In the stable case:
(pn,m)0≤n≤N,m≥0 is the unique nonnegative and normalized
solution of the steady-state equations:

(λ1,n(1− δnN) + pλ1,NδnN + (1− δn0)µ1,n + (1− δm0)nµ2)pn,m

= (1− δn0)λ1,n−1pn−1,m + (1− δnN)µ1,n+1pn+1,m

+ (1− δm0)δnNpλ1,Npn,m−1 + (1− δn0(1− δm0))nµ2pn,m+1

(2)

for n = 0, . . . ,N and m ≥ 0 (where δij = 1 for i = j and 0
otherwise).
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Stability condition

First conjecture: pλ1,N < µ2EL1. However, on second thought,
probably:

pλ1,NP(L1 = N) < µ2EL1. (3)

Proposition

The system (2) has a unique nonnegative and normalized solution
if and only if (3) holds, with P(L1 = N) and EL1 as given above,
or, equivalently,

pλ1,N

N−1∏
n=0

ρn < µ2

N∑
n=1

n
n−1∏
i=0

ρi

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . ,N − 1.

Proof. Theory of quasi birth and death processes, regarding Q1 as
the phase process and Q2 as the level process.
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Generating functions and steady-state distribution

Method of Avi-Itzhak and Mitrani (1968) and Perel and Yechiali
(2008): probability generating function of the queue length of Q2

for fixed queue length n of Q1:

Gn(z) =
∞∑

m=0

pn,mzm, |z | ≤ 1, n = 0, . . . ,N.

From the steady-state equations, for n = 1, . . . ,N − 1:

λ1,0G0(z) = µ1,1G1(z),(
(λ1,n + µ1,n)z − nµ2(1− z)

)
Gn(z) = λ1,n−1zGn−1(z) + µ1,n+1zGn+1(z)

− nµ2(1− z)pn,0

(
µ1,Nz + (pλ1,Nz − Nµ2)(1− z)

)
GN(z)

= λ1,N−1zGN−1(z)− Nµ2(1− z)pN,0.
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Equations in matrix form

Define the ((N + 1)× (N + 1))-matrix A(z) by

A(z) =



α0(z) −µ1,1 0 . . . . . . 0

−λ1,0z α1(z) −µ1,2z
. . .

...

0
. . . α2(z)

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −µ1,Nz

0 . . . . . . 0 −λ1,N−1z αN(z)


,

where

α0(z) = λ1,0,

αn(z) = (λ1,n + µ1,n)z − nµ2(1− z) for n = 1, . . . ,N − 1 and

αN(z) = µ1,Nz + (pλ1,Nz − Nµ2)(1− z).
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Equations in matrix form (continuation)

Define

G (z) = (G0(z), . . . ,GN(z))>,

P = (0, p1,0, 2p2,0, . . . ,NpN,0)>.

=⇒ A(z)G (z) = −µ2(1− z)P.

Let An(z) be the matrix obtained from A(z) by replacing the
(n + 1)th column by the vector −µ2(1− z)P for n = 0, . . . ,N. By
Cramer’s rule we can write

det(A(z))Gn(z) = det(An(z)) (4)

The generating functions G0, . . . ,GN are uniquely determined by
the equations (4) and thus by p1,0, . . . , pN,0, since these are the
only unknowns occurring in the equations.
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The roots of det(A(z))

Theorem

det(A(z)) is a polynomial of degree N + 1 and has N − 1 distinct
zeros in the interval (0, 1) and one zero at z = 1. Moreover,
det(A(z)) has another zero in the interval (1,∞) if and only if the
queueing system is stable.

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Finding p1,0, . . . , pN,0

We can use the N − 1 zeros z1, . . . , zN−1 of det(A(z)) in (0, 1) to
find the N unknown probabilities p1,0, . . . , pN,0:

det(A0(z1)) = 0, . . . , det(A0(zN−1)) = 0.

One more equation relating the unknowns is

N∑
n=1

npn,0 =

µ2

N∑
n=1

n
n−1∏
i=0

ρi − pλ1,N

N−1∏
i=0

ρi

µ2

N∑
n=0

n−1∏
i=0

ρi

.

=⇒ N linear equations in the N unknowns p1,0, . . . , pN,0.

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Stationary quantities and numerical aspects

EL2 =
N∑

n=0

G ′n(1)

E(L1L2) = µ−1
2 pλ1,N [GN(1) + G ′N(1)]

Covariance of L1 and L2 for N ≥ 2:
- changes signs when the system parameters are varied;
- nice function of p on the interval [0, p∗]: either convex or
concave, either monotone decreasing or increasing or unimodal
with one or two zeros (where one zero is p = 0);
- Cov(L1, L2) = 0 for N = 1:

E(L1L2) =
λ1

λ1 + µ1
· pλ1

µ2 − pλ1
= EL1EL2.

- Cov(L1, L2) ≤ 0 for p = 0 when Q2 has its own arrival stream
(Perel and Yechiali (2008)).
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The model with single-customer jockeying

Limited jockeying: one customer of Q2, if one is present, is forced
to move to Q1 as soon as Q1 empties. This jockeying customer
then starts acting as a server for Q2.
−→ Markov chain of queue lengths, which is irreducible on the
state space

{(0, 0)} ∪ {(n,m) | n = 1, . . . ,N, m ≥ 0}
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The balance equations (again)

λ1,0p0,0 = µ1,1p1,0, (5)

(λ1,n + µ1,n)pn,0 = λ1,n−1pn−1,0 + µ1,n+1pn+1,0 + (nµ2 + δ1nµ1,1)pn,1

for n = 1, . . . ,N − 1 (6)

(pλ1,N + µ1,N)pN,0 = λ1,N−1pN−1,0 + Nµ2pN,1 (7)

(λ1,n + µ1,n + nµ2)pn,m = λ1,n−1pn−1,m(1− δ1,n) + µ1,n+1pn+1,m

+ (nµ2 + δ1nµ1,1)pn,m+1

(8)

for n = 1, . . . ,N − 1, m ≥ 1

(9)

(pλ1,N + µ1,N + Nµ2)pN,m = λ1,N−1pN−1,m + pλ1,NpN,m−1

+ Nµ2pN,m+1, m ≥ 1. (10)
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Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

pλ1,N

N−1∏
n=1

ρn < µ2

N∑
n=1

n
n−1∏
i=1

ρi + µ1,1 (11)

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . ,N − 1.

Heuristic condition:

pλ1,NP(L1 = N) < µ1,1P(L1 = 1) + µ2EL1. (12)

However, the distribution of L1 is not known!
But (11) ⇐⇒ (12).

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

pλ1,N

N−1∏
n=1

ρn < µ2

N∑
n=1

n
n−1∏
i=1

ρi + µ1,1 (11)

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . ,N − 1.

Heuristic condition:

pλ1,NP(L1 = N) < µ1,1P(L1 = 1) + µ2EL1. (12)

However, the distribution of L1 is not known!
But (11) ⇐⇒ (12).

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

pλ1,N

N−1∏
n=1

ρn < µ2

N∑
n=1

n
n−1∏
i=1

ρi + µ1,1 (11)

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . ,N − 1.

Heuristic condition:

pλ1,NP(L1 = N) < µ1,1P(L1 = 1) + µ2EL1. (12)

However, the distribution of L1 is not known!
But (11) ⇐⇒ (12).

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and
normalized solution if and only if

pλ1,N

N−1∏
n=1

ρn < µ2

N∑
n=1

n
n−1∏
i=1

ρi + µ1,1 (11)

holds, where ρn = λ1,n/µ1,n+1 for n = 0, . . . ,N − 1.

Heuristic condition:

pλ1,NP(L1 = N) < µ1,1P(L1 = 1) + µ2EL1. (12)

However, the distribution of L1 is not known!
But (11) ⇐⇒ (12).

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Generating functions (again)

Gn(z) =
∞∑

m=0

pn,mzm, |z | ≤ 1.

Recursions:

λ1,0G0(z) = µ1,1p1,0 = λ1,0p0,0 (13)(
λ1,1z − (µ1,1 + µ2)(1− z)

)
G1(z)

= µ1,2zG2(z)− (µ1,1 + µ2)(1− z)p1,0 (14)(
(λ1,n + µ1,n)z − nµ2(1− z)

)
Gn(z)

= λ1,n−1zGn−1(z) + µ1,n+1zGn+1(z)− nµ2(1− z)pn,0

for n = 2, . . . ,N − 1 (15)(
µ1,Nz + (pλ1,Nz − Nµ2)(1− z)

)
GN(z)

= λ1,N−1zGN−1(z)− Nµ2(1− z)pN,0. (16)
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Equations in matrix form

Define the (N × N)-matrix A(z) by

A(z) =



α1(z) −µ1,2z 0 . . . . . . 0

−λ1,0z α2(z) −µ1,3z
. . .

...

0
. . . α3(z)

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −µ1,Nz

0 . . . . . . 0 −λ1,N−1z αN(z)


,

(17)
where

α1(z) = λ1,1z − (µ1,1 + µ2)(1− z), (18)

αn(z) = (λ1,n + µ1,n)z − nµ2(1− z) for n = 2, . . . ,N − 1 (19)

αN(z) = µ1,Nz + (pλ1,Nz − Nµ2)(1− z). (20)

Peter Sendfeld and Wolfgang Stadje Two Queues Driven by a Birth-Death Process and Coupled...



Equations in matrix form

G (z) = (G1(z), . . . ,GN(z))>,

P =
(
(µ1,1 + µ2)p1,0, 2µ2p2,0, . . . ,Nµ2pN,0)>

The equations (14), (15) and (16) are equivalent to

A(z)G (z) = −(1− z)P. (21)
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The roots of det(A(z))

Theorem

det(A(z)) is a polynomial of degree N + 1 and has N − 1 distinct
zeros in the interval (0, 1) and one zero at z = 1. Additionally,
det(A(z)) has another zero in the interval (1,∞) if and only if the
system of equations (5)-(10) has a unique nonnegative and
normalized solution, i.e., if and only if
pλ1,NP(L1 = N) < µ1,1P(L1 = 1) + µ2EL1 or, equivalently,

pλ1,N

N−1∏
n=1

ρn < µ2

N∑
n=1

n
n−1∏
i=1

ρi + µ1,1. (22)
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Exhaustive jockeying: closed-form solution

Assume, for simplicity, constant arrival and service rates in Q1:

Q1: works like a M/M/1/N − 1 queue with arrival rate
λ1 > 0 and service rate µ1 > 0.

Q2: fed by the p-weighted overflow stream from Q1,
p ∈ [0, 1], with service rate nµ2 as long as L1 = n.

As soon as Q1 is not fully occupied, customers from Q2 are
instantly transferred to Q1 until Q1 is fully occupied or Q2

empties, whatever happens first.

State space: {(N,m) | m ≥ 0} ∪ {(n, 0) | 0 ≤ n < N}.
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Solution of the balance equations

pn,m =

(
λ1

µ1

)n ( pλ1

µ1 + Nµ2

)m

p0,0, m = 0, n = 0, . . . ,N − 1

or m ≥ 0, n = N

p0,0 =

(λ1

µ1

)N µ1 + Nµ2

µ1 + Nµ2 − pλ1
+
µ1 − λ1

(
λ1
µ1

)N−1

µ1 − λ1


−1

.

The necessary and sufficient stability condition is pλ1 < µ1 + Nµ2.
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An alternative approach

Model the two queues as an ordinary single M(n)/M(n)/1 queue.
with state space Z+ = {0, . . . ,N} ∪ {N + 1,N + 2, . . .}:

{0, . . . ,N} ←→ {(0, 0), . . . , (N, 0)}
{N + 1,N + 2, . . .} ←→ {(N, 1), (N, 2), (N, 3), . . .}
Arrival rate: λ1 in the states 0, . . . ,N − 1 and pλ1 in the
states m ≥ N

Service rate: µ1 in the states 1, . . . ,N and µ1 + Nµ2 in the
states m ≥ N + 1

−→ equivalent infinite birth and death chain!
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