Two Queues Driven by a Birth-Death Process and Coupled by Overflow, Jockeying, and Customers Acting as Servers

Peter Sendfeld and Wolfgang Stadje

Eurandom, September 2010

General setting

Two interacting queues, Q_{1} and Q_{2}, with the following special features:
(i) regulated overflow from the first to the second queue;
(ii) state-dependent arrival and service rates;
(iii) the customers in the first queue act as servers for the second one;
(iv) jockeyeing mechanism from the second queue to the first one.

The basic model

- number of customers in Q_{1} : a birth and death chain with state space $\{0, \ldots, N\}$
- birth rates $\lambda_{1, n}>0, n \in\{0, \ldots, N-1\}$, death rates $\mu_{1, n}>0$, $n \in\{1, \ldots, N\}$, and $\mu_{1,0}=0$
- $\lambda_{1, N}>0$ arrival rate if Q_{1} is in state N.
- Q_{2} : infinite waiting room, service rate $n \mu_{2}$ as long as n customers are present in Q_{1}
- If Q_{1} is fully occupied, a new arrival of Q_{1} moves to Q_{2} with probability p and leaves with probability $1-p$.

Extensions

- Q_{2} may have its own Poisson arrival stream, independent of Q_{1}, so that its arrival rate is λ_{2} as long as Q_{1} is not fully occupied and $p \lambda_{1, N}+\lambda_{2}$ if it is
- Limited jockeying: k customers $(1 \leq k \leq N)$ of Q_{2}, provided k or more are present, are forced to move to Q_{1} as soon as Q_{1} empties.
- Exhaustive jockeying: as soon as Q_{1} is not fully occupied, it is filled with customers from Q_{2} until it reaches its capacity bound or Q_{2} empties.

Generalization of Perel and Yechiali (2008): special case $\lambda_{1, n}=\lambda_{1}>0, \mu_{1, n+1}=\mu_{1}>0$ for $n=0, \ldots, N-1, \lambda_{2}>0$, $p=0$ (no overflow), no jockeying.

The basic model: steady-state equations

Aim: to determine the distribution of the two-dimensional queue lengths process for the various models
\longrightarrow irreducible Markov chain with state space

$$
\left\{(n, m) \mid n=0, \ldots, N, m \in \mathbb{Z}_{+}\right\}
$$

$(n, m)=$ numbers of customers present in Q_{1} and Q_{2}, resp.
$\left(L_{1}, L_{2}\right)=$ steady-state queue lengths of $\left(Q_{1}, Q_{2}\right)$

The first queue

The first queue is a one-dimensional birth and death chain with finite state space; thus the steady-state distribution of L_{1} exists and is well-known:

$$
\begin{equation*}
\mathbb{P}\left(L_{1}=n\right)=\frac{\prod_{i=0}^{n-1} \rho_{i}}{1+\sum_{j=1}^{N} \prod_{i=0}^{j-1} \rho_{i}} \text { and } \mathbb{E} L_{1}=\frac{\sum_{n=1}^{N} n \prod_{i=0}^{n-1} \rho_{i}}{1+\sum_{n=1}^{N} \prod_{i=0}^{n-1} \rho_{i}} \tag{1}
\end{equation*}
$$

where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}, n=0, \ldots, N-1$.

Examples: Q_{1}

With constant arrival and service rates $\lambda_{1, n}=\lambda_{1}, \mu_{1, n}=\mu_{1}$ we get the standard $M / M / 1 / N-1$ queue: For $\lambda_{1} \neq \mu_{1}$,
$\mathbb{P}\left(L_{1}=n\right)=\frac{\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{n}-\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{n+1}}{1-\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{N+1}}$ and $\mathbb{E} L_{1}=\frac{\lambda_{1}}{\mu_{1}-\lambda_{1}}-\frac{(N+1) \lambda_{1}^{N+1}}{\mu_{1}^{N+1}-\lambda_{1}^{N+1}}$.
In the case $\lambda_{1}=\mu_{1}$, we have $\mathbb{P}\left(L_{1}=n\right)=1 /(N+1)$ and $\mathbb{E} L_{1}=N / 2$. For service rates $\mu_{1, n}=n \mu_{1}$ and constant arrival rate $\lambda_{1, n}=\lambda_{1}$ the first queue is a classical $M / M / N / 0$ Erlang loss system.

Steady-state probabilities

$$
p_{n, m} \equiv \mathbb{P}\left(L_{1}=n, L_{2}=m\right), \quad n=0, \ldots N \text { and } m \in \mathbb{Z}_{+}
$$

In the stable case:
$\left(p_{n, m}\right)_{0 \leq n \leq N, m \geq 0}$ is the unique nonnegative and normalized solution of the steady-state equations:

$$
\begin{align*}
& \left(\lambda_{1, n}\left(1-\delta_{n N}\right)+p \lambda_{1, N} \delta_{n N}+\left(1-\delta_{n 0}\right) \mu_{1, n}+\left(1-\delta_{m 0}\right) n \mu_{2}\right) p_{n, m} \\
& \quad=\left(1-\delta_{n 0}\right) \lambda_{1, n-1} p_{n-1, m}+\left(1-\delta_{n N}\right) \mu_{1, n+1} p_{n+1, m} \\
& \quad+\left(1-\delta_{m 0}\right) \delta_{n N} p \lambda_{1, N} p_{n, m-1}+\left(1-\delta_{n 0}\left(1-\delta_{m 0}\right)\right) n \mu_{2} p_{n, m+1} \tag{2}
\end{align*}
$$

for $n=0, \ldots, N$ and $m \geq 0\left(\right.$ where $\delta_{i j}=1$ for $i=j$ and 0 otherwise).

Stability condition

First conjecture: $\quad p \lambda_{1, N}<\mu_{2} \mathbb{E} L_{1}$. However, on second thought, probably:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{2} \mathbb{E} L_{1} . \tag{3}
\end{equation*}
$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}\left(L_{1}=N\right)$ and $\mathbb{E} L_{1}$ as given above, or, equivalently,

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Proof. Theory of quasi birth and death processes, regarding Q_{1} as
the phase process and Q_{2} as the level process.an

Stability condition

First conjecture: $\quad p \lambda_{1, N}<\mu_{2} \mathbb{E} L_{1}$. However, on second thought, probably:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{2} \mathbb{E} L_{1} \tag{3}
\end{equation*}
$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}\left(L_{1}=N\right)$ and $\mathbb{E} L_{1}$ as given above, or, equivalently,

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Droof. Theory of quasi birth and death processes, regarding Q_{1} as
the phase process and Q_{2} as the level process.a. .

Stability condition

First conjecture: $\quad p \lambda_{1, N}<\mu_{2} \mathbb{E} L_{1}$. However, on second thought, probably:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{2} \mathbb{E} L_{1} \tag{3}
\end{equation*}
$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}\left(L_{1}=N\right)$ and $\mathbb{E} L_{1}$ as given above, or, equivalently,

$$
p \lambda_{1, N} \prod_{n=0}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=0}^{n-1} \rho_{i}
$$

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Proof. Theory of quasi birth and death processes, regarding Q_{1} as
the phase process and Q_{2} as the level process.a. .

Stability condition

First conjecture: $\quad p \lambda_{1, N}<\mu_{2} \mathbb{E} L_{1}$. However, on second thought, probably:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{2} \mathbb{E} L_{1} \tag{3}
\end{equation*}
$$

Proposition

The system (2) has a unique nonnegative and normalized solution if and only if (3) holds, with $\mathbb{P}\left(L_{1}=N\right)$ and $\mathbb{E} L_{1}$ as given above, or, equivalently,

$$
p \lambda_{1, N} \prod_{n=0}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=0}^{n-1} \rho_{i}
$$

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Proof. Theory of quasi birth and death processes, regarding Q_{1} as the phase process and Q_{2} as the level process.

Generating functions and steady-state distribution

Method of Avi-Itzhak and Mitrani (1968) and Perel and Yechiali (2008): probability generating function of the queue length of Q_{2} for fixed queue length n of Q_{1} :

$$
G_{n}(z)=\sum_{m=0}^{\infty} p_{n, m} z^{m}, \quad|z| \leq 1, \quad n=0, \ldots, N
$$

From the steady-state equations, for $n=1, \ldots, N-1$:

$$
\begin{aligned}
& \lambda_{1,0} G_{0}(z)= \mu_{1,1} G_{1}(z) \\
&\left(\left(\lambda_{1, n}+\mu_{1, n}\right) z-n \mu_{2}(1-z)\right) G_{n}(z)= \lambda_{1, n-1} z G_{n-1}(z)+\mu_{1, n+1} z G_{n+1}(z) \\
&-n \mu_{2}(1-z) p_{n, 0} \\
&\left(\mu_{1, N} z+\left(p \lambda_{1, N} z-N \mu_{2}\right)(1-z)\right) G_{N}(z) \\
&= \lambda_{1, N-1} z G_{N-1}(z)-N \mu_{2}(1-z) p_{N, 0} .
\end{aligned}
$$

Equations in matrix form

Define the $((N+1) \times(N+1))$-matrix $A(z)$ by

$$
A(z)=\left(\begin{array}{cccccc}
\alpha_{0}(z) & -\mu_{1,1} & 0 & \cdots & \cdots & 0 \\
-\lambda_{1,0} z & \alpha_{1}(z) & -\mu_{1,2} z & \ddots & & \vdots \\
0 & \ddots & \alpha_{2}(z) & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & -\mu_{1, N} z \\
0 & \ldots & \cdots & 0 & -\lambda_{1, N-1 z} & \alpha_{N}(z)
\end{array}\right)
$$

where

$$
\begin{aligned}
\alpha_{0}(z) & =\lambda_{1,0} \\
\alpha_{n}(z) & =\left(\lambda_{1, n}+\mu_{1, n}\right) z-n \mu_{2}(1-z) \text { for } n=1, \ldots, N-1 \text { and } \\
\alpha_{N}(z) & =\mu_{1, N} z+\left(p \lambda_{1, N} z-N \mu_{2}\right)(1-z)
\end{aligned}
$$

Equations in matrix form (continuation)

Define

$$
\begin{aligned}
G(z) & =\left(G_{0}(z), \ldots, G_{N}(z)\right)^{\top} \\
P & =\left(0, p_{1,0}, 2 p_{2,0}, \ldots, N p_{N, 0}\right)^{\top} \\
\Longrightarrow & A(z) G(z)=-\mu_{2}(1-z) P
\end{aligned}
$$

Let $A_{n}(z)$ be the matrix obtained from $A(z)$ by replacing the $(n+1)$ th column by the vector $-\mu_{2}(1-z) P$ for $n=0, \ldots, N$. By Cramer's rule we can write

$$
\begin{equation*}
\operatorname{det}(A(z)) G_{n}(z)=\operatorname{det}\left(A_{n}(z)\right) \tag{4}
\end{equation*}
$$

The generating functions G_{0}, \ldots, G_{N} are uniquely determined by the equations (4) and thus by $p_{1,0}, \ldots, p_{N, 0}$, since these are the only unknowns occurring in the equations.

The roots of $\operatorname{det}(A(z))$

Theorem

$\operatorname{det}(A(z))$ is a polynomial of degree $N+1$ and has $N-1$ distinct zeros in the interval $(0,1)$ and one zero at $z=1$. Moreover, $\operatorname{det}(A(z))$ has another zero in the interval $(1, \infty)$ if and only if the queueing system is stable.

Finding $p_{1,0}, \ldots, p_{N, 0}$

We can use the $N-1$ zeros z_{1}, \ldots, z_{N-1} of $\operatorname{det}(A(z))$ in $(0,1)$ to find the N unknown probabilities $p_{1,0}, \ldots, p_{N, 0}$:

$$
\operatorname{det}\left(A_{0}\left(z_{1}\right)\right)=0, \ldots, \operatorname{det}\left(A_{0}\left(z_{N-1}\right)\right)=0
$$

One more equation relating the unknowns is

$$
\sum_{n=1}^{N} n p_{n, 0}=\frac{\mu_{2} \sum_{n=1}^{N} n \prod_{i=0}^{n-1} \rho_{i}-p \lambda_{1, N} \prod_{i=0}^{N-1} \rho_{i}}{\mu_{2} \sum_{n=0}^{N} \prod_{i=0}^{n-1} \rho_{i}}
$$

$\Longrightarrow N$ linear equations in the N unknowns $p_{1,0}, \ldots, p_{N, 0}$.

Stationary quantities and numerical aspects

$$
\begin{aligned}
\mathbb{E} L_{2} & =\sum_{n=0}^{N} G_{n}^{\prime}(1) \\
\mathbb{E}\left(L_{1} L_{2}\right) & =\mu_{2}^{-1} p \lambda_{1, N}\left[G_{N}(1)+G_{N}^{\prime}(1)\right]
\end{aligned}
$$

Covariance of L_{1} and L_{2} for $N \geq 2$:

- changes signs when the system parameters are varied;
- nice function of p on the interval $\left[0, p^{*}\right]$: either convex or concave, either monotone decreasing or increasing or unimodal with one or two zeros (where one zero is $p=0$);
- $\operatorname{Cov}\left(L_{1}, L_{2}\right)=0$ for $N=1$:

$$
\mathbb{E}\left(L_{1} L_{2}\right)=\frac{\lambda_{1}}{\lambda_{1}+\mu_{1}} \cdot \frac{p \lambda_{1}}{\mu_{2}-p \lambda_{1}}=\mathbb{E} L_{1} \mathbb{E} L_{2}
$$

- $\operatorname{Cov}\left(L_{1}, L_{2}\right) \leq 0$ for $p=0$ when Q_{2} has its own arrival stream (Perel and Yechiali (2008)).

The model with single-customer jockeying

Limited jockeying: one customer of Q_{2}, if one is present, is forced to move to Q_{1} as soon as Q_{1} empties. This jockeying customer then starts acting as a server for Q_{2}.
\longrightarrow Markov chain of queue lengths, which is irreducible on the state space

$$
\{(0,0)\} \cup\{(n, m) \mid n=1, \ldots, N, m \geq 0\}
$$

The balance equations (again)

$$
\begin{align*}
\lambda_{1,0} p_{0,0} & =\mu_{1,1} p_{1,0} \tag{5}\\
\left(\lambda_{1, n}+\mu_{1, n}\right) p_{n, 0} & =\lambda_{1, n-1} p_{n-1,0}+\mu_{1, n+1} p_{n+1,0}+\left(n \mu_{2}+\delta_{1 n} \mu_{1,1}\right) p_{n, 1} \\
& \text { for } n=1, \ldots, N-1 \tag{6}\\
\left(p \lambda_{1, N}+\mu_{1, N}\right) p_{N, 0}= & \lambda_{1, N-1} p_{N-1,0}+N \mu_{2} p_{N, 1} \tag{7}\\
\left(\lambda_{1, n}+\mu_{1, n}+n \mu_{2}\right) p_{n, m}= & \lambda_{1, n-1} p_{n-1, m}\left(1-\delta_{1, n}\right)+\mu_{1, n+1} p_{n+1, m} \\
& +\left(n \mu_{2}+\delta_{1 n} \mu_{1,1}\right) p_{n, m+1} \tag{8}
\end{align*}
$$

for $n=1, \ldots, N-1, m \geq 1$

$$
\begin{align*}
\left(p \lambda_{1, N}+\mu_{1, N}+N \mu_{2}\right) p_{N, m}= & \lambda_{1, N-1} p_{N-1, m}+p \lambda_{1, N} p_{N, m-1} \tag{9}\\
& +N \mu_{2} p_{N, m+1}, \quad m \geq 1 . \tag{10}
\end{align*}
$$

Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$
\begin{equation*}
p \lambda_{1, N} \prod_{n=1}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=1}^{n-1} \rho_{i}+\mu_{1,1} \tag{11}
\end{equation*}
$$

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.

Heuristic condition:

$$
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{1,1} \mathbb{P}\left(L_{1}=1\right)+\mu_{2} \mathbb{E} L_{1} .
$$

However, the distribution of L_{1} is not known!
But (11) $\Longleftrightarrow(12)$.

Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$
\begin{equation*}
p \lambda_{1, N} \prod_{n=1}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=1}^{n-1} \rho_{i}+\mu_{1,1} \tag{11}
\end{equation*}
$$

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Heuristic condition:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{1,1} \mathbb{P}\left(L_{1}=1\right)+\mu_{2} \mathbb{E} L_{1} . \tag{12}
\end{equation*}
$$

However, the distribution of L_{1} is not known!
But (11) $\Longleftrightarrow(12)$.

Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$
\begin{equation*}
p \lambda_{1, N} \prod_{n=1}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=1}^{n-1} \rho_{i}+\mu_{1,1} \tag{11}
\end{equation*}
$$

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Heuristic condition:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{1,1} \mathbb{P}\left(L_{1}=1\right)+\mu_{2} \mathbb{E} L_{1} \tag{12}
\end{equation*}
$$

However, the distribution of L_{1} is not known!

Stability condition

Theorem

The system of equations (5)-(10) has a unique nonnegative and normalized solution if and only if

$$
\begin{equation*}
p \lambda_{1, N} \prod_{n=1}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=1}^{n-1} \rho_{i}+\mu_{1,1} \tag{11}
\end{equation*}
$$

holds, where $\rho_{n}=\lambda_{1, n} / \mu_{1, n+1}$ for $n=0, \ldots, N-1$.
Heuristic condition:

$$
\begin{equation*}
p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{1,1} \mathbb{P}\left(L_{1}=1\right)+\mu_{2} \mathbb{E} L_{1} . \tag{12}
\end{equation*}
$$

However, the distribution of L_{1} is not known!
But (11) $\Longleftrightarrow(12)$.

Generating functions (again)

$$
G_{n}(z)=\sum_{m=0}^{\infty} p_{n, m} z^{m}, \quad|z| \leq 1
$$

Recursions:

$$
\begin{align*}
& \lambda_{1,0} G_{0}(z)=\mu_{1,1} p_{1,0}=\lambda_{1,0} p_{0,0} \tag{13}\\
& \left(\lambda_{1,1} z-\left(\mu_{1,1}+\mu_{2}\right)(1-z)\right) G_{1}(z) \\
& \quad=\mu_{1,2} z G_{2}(z)-\left(\mu_{1,1}+\mu_{2}\right)(1-z) p_{1,0} \tag{14}\\
& \begin{aligned}
\left(\left(\lambda_{1, n}+\mu_{1, n}\right) z-n \mu_{2}(1-z)\right) G_{n}(z)
\end{aligned} \quad \begin{array}{l}
\quad=\lambda_{1, n-1} z G_{n-1}(z)+\mu_{1, n+1} z G_{n+1}(z)-n \mu_{2}(1-z) p_{n, 0} \\
\quad \text { for } n=2, \ldots, N-1
\end{array} \quad \begin{array}{l}
\left(\mu_{1, N} z+\left(p \lambda_{1, N} z-N \mu_{2}\right)(1-z)\right) G_{N}(z) \\
\quad=\lambda_{1, N-1} z G_{N-1}(z)-N \mu_{2}(1-z) p_{N, 0}
\end{array}
\end{align*}
$$

Equations in matrix form

Define the $(N \times N)$-matrix $A(z)$ by

$$
A(z)=\left(\begin{array}{cccccc}
\alpha_{1}(z) & -\mu_{1,2} z & 0 & \cdots & \cdots & 0 \tag{17}\\
-\lambda_{1,0} z & \alpha_{2}(z) & -\mu_{1,3} z & \ddots & & \vdots \\
0 & \ddots & \alpha_{3}(z) & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & -\mu_{1, N} z \\
0 & \cdots & \cdots & 0 & -\lambda_{1, N-1} z & \alpha_{N}(z)
\end{array}\right)
$$

where

$$
\begin{align*}
\alpha_{1}(z) & =\lambda_{1,1} z-\left(\mu_{1,1}+\mu_{2}\right)(1-z) \tag{18}\\
\alpha_{n}(z) & =\left(\lambda_{1, n}+\mu_{1, n}\right) z-n \mu_{2}(1-z) \text { for } n=2, \ldots, N-1 \tag{19}\\
\alpha_{N}(z) & =\mu_{1, N} z+\left(p \lambda_{1, N} z-N \mu_{2}\right)(1-z) \tag{20}
\end{align*}
$$

Equations in matrix form

$$
\begin{gathered}
G(z)=\left(G_{1}(z), \ldots, G_{N}(z)\right)^{\top}, \\
P=\left(\left(\mu_{1,1}+\mu_{2}\right) p_{1,0}, 2 \mu_{2} p_{2,0}, \ldots, N \mu_{2} p_{N, 0}\right)^{\top}
\end{gathered}
$$

The equations (14), (15) and (16) are equivalent to

$$
\begin{equation*}
A(z) G(z)=-(1-z) P . \tag{21}
\end{equation*}
$$

The roots of $\operatorname{det}(A(z))$

Theorem

$\operatorname{det}(A(z))$ is a polynomial of degree $N+1$ and has $N-1$ distinct zeros in the interval $(0,1)$ and one zero at $z=1$. Additionally, $\operatorname{det}(A(z))$ has another zero in the interval $(1, \infty)$ if and only if the system of equations (5)-(10) has a unique nonnegative and normalized solution, i.e., if and only if
$p \lambda_{1, N} \mathbb{P}\left(L_{1}=N\right)<\mu_{1,1} \mathbb{P}\left(L_{1}=1\right)+\mu_{2} \mathbb{E} L_{1}$ or, equivalently,

$$
\begin{equation*}
p \lambda_{1, N} \prod_{n=1}^{N-1} \rho_{n}<\mu_{2} \sum_{n=1}^{N} n \prod_{i=1}^{n-1} \rho_{i}+\mu_{1,1} \tag{22}
\end{equation*}
$$

Exhaustive jockeying: closed-form solution

Assume, for simplicity, constant arrival and service rates in Q_{1} :

- Q_{1} : works like a $M / M / 1 / N-1$ queue with arrival rate $\lambda_{1}>0$ and service rate $\mu_{1}>0$.
- Q_{2} : fed by the p-weighted overflow stream from Q_{1}, $p \in[0,1]$, with service rate $n \mu_{2}$ as long as $L_{1}=n$.
- As soon as Q_{1} is not fully occupied, customers from Q_{2} are instantly transferred to Q_{1} until Q_{1} is fully occupied or Q_{2} empties, whatever happens first.
State space: $\{(N, m) \mid m \geq 0\} \cup\{(n, 0) \mid 0 \leq n<N\}$.

Solution of the balance equations

$$
\begin{gathered}
p_{n, m}=\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{n}\left(\frac{p \lambda_{1}}{\mu_{1}+N \mu_{2}}\right)^{m} p_{0,0}, \quad m=0, n=0, \ldots, N-1 \\
\quad \text { or } m \geq 0, n=N \\
p_{0,0}=\left(\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{N} \frac{\mu_{1}+N \mu_{2}}{\mu_{1}+N \mu_{2}-p \lambda_{1}}+\frac{\mu_{1}-\lambda_{1}\left(\frac{\lambda_{1}}{\mu_{1}}\right)^{N-1}}{\mu_{1}-\lambda_{1}}\right)^{-1} .
\end{gathered}
$$

The necessary and sufficient stability condition is $p \lambda_{1}<\mu_{1}+N \mu_{2}$.

An alternative approach

Model the two queues as an ordinary single $M_{(n)} / M_{(n)} / 1$ queue. with state space $\mathbb{Z}_{+}=\{0, \ldots, N\} \cup\{N+1, N+2, \ldots\}$:

- $\{0, \ldots, N\} \longleftrightarrow\{(0,0), \ldots,(N, 0)\}$
- $\{N+1, N+2, \ldots\} \quad \longleftrightarrow \quad\{(N, 1),(N, 2),(N, 3), \ldots\}$
- Arrival rate: λ_{1} in the states $0, \ldots, N-1$ and $p \lambda_{1}$ in the states $m \geq N$
- Service rate: μ_{1} in the states $1, \ldots, N$ and $\mu_{1}+N \mu_{2}$ in the states $m \geq N+1$
\longrightarrow equivalent infinite birth and death chain!

