UNIVERSITY OF TWENTE.

SERVICE TOOLS: WHY BOTHER?

Optimization of stock levels for service tool inventory

SECOND ISRAELI-DUTCH WORKSHOP ON QUEUEING THEORY SEPTEMBER 29 - OCTOBER 1, 2010

INGRID VLIEGEN¹

Co-authors: Ana Bušić², Alan Scheller-Wolf³, Geert-Jan van Houtum⁴

¹University of Twente, Enschede, The Netherlands
² INRIA, Paris, France
³ Carnegie Mellon University, Pittsburgh, USA
⁴Technische Universiteit Eindhoven, The Netherlands

INTRODUCTION

- ASML: High tech company produces technical machines
- Responsible for machine uptime
- To ensure uptime:
 - preventive maintenance
 - corrective maintenance
- Needed for maintenance:
 - service engineers
 - spare parts
 - service tools

INTRODUCTION – SERVICE TOOLS

- Tools used for, among others, the repair, cleaning and/or calibration of machines
- Expensive
- Low demand rates
- Many different tools
- So, no screw drivers...

INTRODUCTION - DIFFERENCES PARTS AND TOOLS

- Main differences with spare parts:
 - Tools are usually demanded in sets
 - Coupling in demands
 - Spare parts are consumed, while tools are only used
 - After usage returned to stock point together
 - Coupling in returns
- Now the question is:
 - Do we need to develop new heuristics for the stock planning of service tools? Or can we (continue to) use available heuristics for spare parts?

INTRODUCTION – MAIN QUESTION

Service tools: why bother?

INTRODUCTION – SITUATION

IN LAND FEIN MICH CHERRE SE MICH MICH CHERRE COMPLEX AND COMPLEX A

Central warehouse

INTRODUCTION – SITUATION

Central warehouse

INTRODUCTION – GOAL STUDY

- Objective ASML:
- Min Inventory holding costs
- s.t. Service level ≥ Target service level
- Goal of research:
 - Develop an efficient heuristic to determine near-optimal stock levels for service tools for this optimization problem
 - Compare heuristic with known heuristic for the planning of spare parts

OUTLINE

- Introduction
- Literature
- Model
- Approach
- Results
- Conclusions & Implications
- Ongoing research

LITERATURE

- Spare parts:
 - Kennedy et al., 2002, Sherbrooke, 2004, and Muckstadt, 2005
 - No coupling in demands
- Repair kit problem:
 - Single period problem
 - Brumelle and Granot (1993), Mamer and Smith (1982, 1985), Mamer and Shogan (1987), Teunter (2006)

LITERATURE

- Kit management problem:
 - Slightly different model, but analysis differs considerably
 - Güllü and Köksalan (2008)
- Assemble-to-order:
 - Mostly backordering
 - Lost sales: no coupled returns
 - Song and Zipkin (2003) (overview), Song, Xu, Liu (1999), Iravani, Luangkesorn and Simchi-Levi (2003), Dayanik, Song and Xu (2003)

OUTLINE

- Introduction
- Literature
- Model
- Approach
- Results
- Conclusions & Implications
- Ongoing research

MODEL

OUTLINE

- Introduction
- Literature
- Model
- Approach
- Results
- Conclusions
- Implications
- Ongoing research

APPROACH

- Developed 3 heuristics
- Compared costs with a lower bound
- Validated whether solutions meet the target

HEURISTICS

- 3 Heuristics developed:
 - All use a greedy algorithm
 - Different evaluation methods

		Coupled demands	
		Included	Excluded
led 1S	Included	Heuristic 1	
Coup returi	Excluded	Heuristic 3	Heuristic 2

HEURISTIC 1

- Vliegen and van Houtum (2009)
- Exact evaluation: very time consuming
- 3 approximate evaluation methods
 - 1. Overestimates the service level
 - 2. Underestimates the service level
 - 3. Weighted average of (1) and (2)
 - Leads to efficient and accurate results

		Coupled demands	
		Y	N
Coupled	Y		
returns	N		

HEURISTIC 1 (2)

HEURISTIC 2

- Model currently used for spare parts
- Two main assumptions:
 - No coupling in demands
 - No coupling in returns
- The demand for sets of tools is decoupled into demands for each separate tool $\beta^2 = \sum_{i \in I} \frac{\tilde{\lambda}_i}{\tilde{\lambda}} \tilde{\beta}_i$
- Where
 - β^2 is the aggregate order fill rate approximated by method 2
 - $\tilde{\lambda}_i$ is the aggregate demand rate for item *i*
 - $\hat{\lambda} = \sum_{i \in I} \hat{\lambda}_i$ is the total demand rate
 - $\tilde{\beta}_i$ is the fill rate for item *i* (using Erlang loss formula)

		Coupled demand	l s
		Y	Ν
Coupled	Y		
Telums	N		

HEURISTIC 3

- Similar to Schaefer (1983)
- Two main assumptions:
 - No coupling in returns
 - On hand stock levels are independent

$$\beta_k^3 = \prod_{i \in I_k} \tilde{\beta}_i$$

- Where
 - β_k^3 is the order fill rate for demand stream *k* approximated by evaluation method 3
 - I_k is the set of tools demanded by demand stream k
 - $\tilde{\beta}_i$ is the fill rate for item *i* (using Erlang loss formula)

		Coupled demands	
		Y	Ν
Coupled	Y		
	Ν		

APPROACH

- Developed 3 heuristics
- Compared costs with a lower bound
- Validated whether solutions meet the target

LOWER BOUND - STEPS

- 1. Using Lagrangian relaxation (Fisher, 1981);
- 2. Splitting the problem in smaller subproblems (similar as done in Kranenburg and van Houtum (2007));
- Using bounds on the service level (Busic, Vliegen, Scheller-Wolf, 2009);
- 4. Using smart enumeration.

APPROACH

- Developed 3 heuristics
- Compared costs with a lower bound
- Validated whether solutions meet the target
- Simulation tool:
 - Establish solution's fill rate
 - Tune solutions

VALIDATION – ESTABLISH FILL RATE

VALIDATION – TUNE SOLUTION

OUTLINE

- Introduction
- Literature
- Model
- Approach
- Results
- Conclusions & Implications
- Ongoing research

RESULTS

- Test bed:
 - 972 instances:
 - Amount of demand streams
 - Demand rate
 - Size of demand streams
 - Service level
 - Division of demand over demand streams with different sizes
 - Relation between tool demand and price

RESULTS - ACCURACY

RESULTS – VARIABILITY OF ACCURACY

RESULTS – COST EFFICIENCY

RESULTS – RUNNING TIME

OUTLINE

- Introduction
- Literature
- Model
- Approach
- Results
- Conclusions & Implications
- Ongoing research

CONCLUSIONS – HEURISTIC 1

- Most detailed
 - Leads to lowest costs
 - But very high running times
 - Cannot be used in practice

		Coupled demand	l s
		Y	Ν
Coupled	Y		
	Ν		

CONCLUSIONS - HEURISTIC 2

- Very fast (seconds)
- Very inaccurate & accuracy variable
- Highest costs (7% higher)

		Coupled demands	
		Y	N
Coupled	Y		
Telums	N		

 So, spare parts models are not appropriate to be used for the stock planning of service tools

CONCLUSIONS – HEURISTIC 3

- Takes into account coupling in demands, but not in returns
- Very accurate
- Higher costs than Heuristic 1 (5% higher)
- \rightarrow Use Heuristic 3

		Coupled demands	
		Y	N
Coupled	Y		
returns	Ν		

IMPLICATIONS

- ASML has started collecting data on:
 - What sets are demanded
 - Demand rates for these sets
- A business case is being carried out to see the implications for the whole network
- A case study is done to see the performance of Heuristic 1 and 3 in a multi-location setting

OUTLINE

- Introduction
- Literature
- Model
- Approach
- Results
- Conclusions & Implications
- Ongoing research

ONGOING RESEARCH

- This study:
 - Improving lower bound/Decreasing gap with solutions
 - Larger subsets
 - More items
 - Include heuristic based on total order service
 - Include transportation costs
- Further:
 - Substitution of tools by so-called tool kits
 - Interaction with spare parts and service engineers

SUMMARY

- Planning the stock levels of service tools with the spare part model leads to more costly solutions that are very inaccurate
- Taking into account all special characteristics of service tools leads to the cheapest solutions, but to very high running times
- By taking into account only coupling in demand, the accuracy of the heuristics becomes very good, and the costs are only slightly higher than when all details are taken into account