Queues with Skill Based Routing and Resource Pooling under
 First Come First Served / Assign Longest Idle Server

 DisciplineEURANDOM 2nd Dutch-Israeli Conference, September 2010

Gideon Weiss
University of Haifa joint work with and work by:
Ivo Adan, Rene Caldentey, Cor Hurkens, Ed Kaplan,
Rishi Talreja, Jeremy Visschers, Damon Wischik, Ward Whitt

Motivating Question 1: Infinite matching Kaplan '84,

In assigning housing to entitled families several housing projects are available (Kaplan, '84.'88).
". . . Households applying for public housing are allowed to specify those housing projects in which they are willing to live; when a public housing unit becomes newly available, of those households willing to live in the associated housing project, the one that has been waiting the longest is offered the unit. . .

FCFS discipline by law
OR question, game theoretic
How many choices should you mark?

- Mark only 1st choice: long wait
- Mark several: shorter wait but worse allotment
if everyone marks many choices: long wait and bad allotment
Q: How many profile i applicants go to project j ?

Skill based routing and resource pooling:

Multi-type servers with overlaps:
Customer types $i=a, b, c, \ldots$
$S(i)$ servers of i
Server types $j=1,2, \ldots, K$
$C(\mathrm{j})$ customers of j

Bipartite system graph
Custom Tailored Service
as well as Resource Pooling
C
S

Motivating Question 2: Overloaded system (Talreja Whitt)

Skill based routing in a call center type system:
Overloaded systems, arrival rates $\Sigma \lambda_{\mathrm{i}}>\Sigma \mu_{\mathrm{j}}$ Stabilized by abandonment
general arrival streams, general service times,

$$
\text { patience distributions } F_{i}
$$

FCFS discipline

OR Question: How does it perform?
How should we assign skills and staff them?

[^0]
Matching rates

When you use skill based routing,
How many type customers get served by type j servers?

EASY?
C

S

	β_{1}	β_{2}	β_{3}
α_{a}			
α_{b}		\times	\times
α_{c}	\times		\times

Matching rates

When you use skill based routing,
How many type c customers get served by type j servers?

NOT EASY !!

C
S

	β_{1}	β_{2}	β_{3}
α_{a}	\times		
α_{b}		\times	
α_{c}			\times

Overloaded system with abandonment (Talreja Whitt, ManSci'08)

Call Centers
Overloaded $\quad \lambda=\Sigma \lambda_{\mathrm{i}}>\Sigma \mu_{\mathrm{j}}=\mu$
Abandonments: patience F_{i}
FCFS

Fluid Arguments:

Uniform acceleration - many server scaling servers are busy almost all the time successive customers wait almost same time on fluid scale we may get GLOBAL FCFS - everyone with patience <W abandons everyone with patience $>W$ waits exactly W.

$$
\sum \lambda_{i}\left(1-F_{i}(W)\right)=\sum \mu_{j}
$$

The Housing problem: Infinite matching

(Caldentey Kaplan ‘02, Caldentey, Kaplan, W'09)

This is not a customer server situation --
Housing units leave with the households and don't come back for many years
Other examples: Taxi-Cabs in the airport Adoptions,
Kidney Transplants,
C
S
 Auctions?

For any ω, we have a unique FCFS matching

NO TIMES INVOLVED
NO QUESTION OF LOAD
PURE MATCHING QUESION

FCFS Infinite matching - Markovian description

```
Data: i.i.d. \alpha,\beta
    graph G
    FCFS
```

C
$-$ $-$
$c^{n-3} e^{n-2}$ $\left.s^{n}\right)^{-3} s^{n} s^{n-1} s^{n}--$

$$
r_{i, j}^{n} \xrightarrow{\text { a.s. }} r_{i, j}
$$

Markovian description

Consider then s^{n+1} he will first look at those c left by $s^{1} \ldots s^{n}$ If he finds a match he will take the first, and leave one less unmatched behind. Else he will look for a match among those not considered previously, until he finds a match, adding a geometric number of c from $C\left(s^{n+1}\right)$

Can we work with this ?

Define: X_{n} the Markov chain of: ordered list of unmatched customers state space is words in alphabet of $i=1, \ldots, I$

Conjecture: The Markov chain \boldsymbol{X} is ergodic iff for all non-trivial S, C :

$$
\alpha(C)<\beta(S(C)), \quad \beta(S)<\alpha(C(S))
$$

Theorem: If the Markov chain is ergodic then $r_{i, j}^{n} \xrightarrow[n \rightarrow \infty \text { a.s. }]{ } r_{i, j}$
This chain is intractable, we could only do some special cases
Example 1 Almost complete graph --- each node connected to all but one

$$
r_{i, j}=\frac{\alpha_{i} \beta_{j}\left[\left(1-\alpha_{i}\right)\left(1-\beta_{j}\right)-\alpha_{j} \beta_{i}\right]}{\left(1-\alpha_{i}-\beta_{i}\right)\left(1-\alpha_{j}-\beta_{j}\right)} /\left(1+\sum_{i=1}^{I} \frac{\alpha_{i} \beta_{i}}{1-\alpha_{i}-\beta_{i}}\right)
$$

Example 2: 'NN' model

A Lyapunov function of Fayolle, Malyshev and Menshikov.

To show positive recurrence we need to show that $E(\Delta f(x, y)) \leq-h<0$

We were able to construct the right f (choice of u, v, w)

Back to Queueing - Manufacturing system 'N' model

Adan, Foley, and Mcdonald, '08 ' N ' system queueing model
Memoryless,

- FCFS.

If system is empty, and type a arrives, machine 1 will take him w.p η

Typical state:

Machine m_{1} serves first customer
x type b customers behind it
Machine m_{2} serves next type a customer
y customers behind second machine

Results: steady state exact asymptotics, for large (x, y)

$$
\Pi(x, y) \sim c(x / y)\left(\frac{\lambda_{a}+\lambda_{b}}{\mu_{1}+\mu_{2}}\right)^{y}\left(\frac{\lambda_{b}}{\mu_{1}}\right)^{x}
$$

Product form solution for the ' N ' queueing system

When $\eta=\eta^{*}=\frac{\lambda_{a}}{2 \lambda_{a}+\lambda_{b}}$ this has a product form solution:

$$
\begin{aligned}
& \alpha \equiv \frac{\lambda_{a}+\lambda_{b}}{\mu_{1}+\mu_{2}}<1, \quad \beta \equiv \frac{\lambda_{b}}{\mu_{1}}<1,
\end{aligned}
$$

$$
\begin{aligned}
& c^{*} \equiv 1 /\left(1+\frac{\left(1-\eta^{*}\right) \lambda_{a}}{\mu_{2}}+\frac{\eta^{*} \lambda_{a}+\lambda_{b}}{\mu_{1}(1-\beta)}+\frac{\eta^{*} \lambda_{a}\left(\lambda_{a}+\lambda_{b}\right)^{2}}{\mu_{1} \mu_{2}(1-\alpha)}+\frac{\lambda_{a}\left(\eta^{*} \lambda_{a}+\lambda_{b}\right) \beta}{\left(\mu_{1}+\mu_{2}\right) \mu_{1}(1-\alpha)(1-\beta)}\right)
\end{aligned}
$$

[^1]What worked - 4 skill based service models

- Loss systems: Servers $m_{1}, m_{2}, \ldots, m_{k}$

Stable FCFS queues:

Infinite matching

- Overloaded system with abandonment: $F_{a}, F_{b}, F_{c} \ldots$

A reversible multi-type loss system (Adan, Hurkens, W'10)

Loss system:
State: set of idle machines $\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$

Assume MC reversible. Detailed balance:

$$
\text { out: }\left\{M_{1}, M_{2}, \ldots, M_{k-1}\right\}-->\left\{M_{1}, M_{2, \ldots}, M_{k}\right\} \text { rate } \mu_{M k}
$$

C

In: $\left\{M_{1}, M_{2, \ldots}, M_{k}\right\} \rightarrow\left\{M_{1}, M_{2}, \ldots, M_{k-1}\right\}$ rate $\lambda_{M_{k}}\left\{M_{1}, \ldots, M_{k}\right\}$

$$
\begin{gathered}
\lambda_{M_{k}}\left\{M_{1}, \ldots, M_{k}\right\}=\sum_{i \in C\left(M_{k}\right)} \lambda_{i} P\left(i \text { chooses server } M_{k} \mid\left\{M_{1}, \ldots, M_{k}\right\} \text { idle }\right) \\
\pi\left\{M_{1}, \ldots, M_{k-1}\right\} \mu_{M_{k}}=\pi\left\{M_{1}, \ldots, M_{k}\right\} \lambda_{M_{k}}\left\{M_{1}, \ldots, M_{k}\right\}
\end{gathered}
$$

Solution:

$$
\pi\left\{M_{1}, \ldots, M_{k}\right\}=\pi\{\varnothing\} \frac{\mu_{M_{1}} \mu_{M_{2}} \cdots \mu_{M_{k}}}{\lambda_{M_{1}}\left\{M_{1}\right\} \lambda_{M_{2}}\left\{M_{1}, M_{2}\right\} \cdots \lambda_{M_{k}}\left\{M_{1}, \ldots, M_{k}\right\}}
$$

Gideon Weiss, University of Haifa, FCFS Multi-Type, ©2010

Skill based queues - FCFS (Visschers ‘00, Visschers, Adan, W'10)

Service exponential μ_{j}

Graph G Arrivals Poisson λ_{i} Poisson
CFS service, random assignment to idle servers
State

$$
\mathbf{s}=\left(M_{1}, n_{1}, \cdots, M_{k}, n_{k}\right)
$$

Thm: Use loss system assignment, then: MC obeys partial balance, product form:

$$
\begin{gathered}
\pi_{\text {Queue }}(\mathbf{s})=\frac{\lambda_{M_{1}}\left\{M_{1} \cdots M_{K}\right\} \lambda_{M 2}\left\{M_{2} \cdots M_{K}\right\} \cdots \lambda_{M_{k}}\left\{M_{k+1} \cdots M_{K}\right\}}{\mu_{M_{1}}\left(\mu_{M_{1}}+\mu_{M 2}\right) \cdots\left(\mu_{M_{1}}+\cdots \mu_{M_{k}}\right)} \rho_{1}^{n_{1}} \cdots \rho_{k}^{n_{k}} \\
\rho_{l}=\frac{\lambda_{U\left\{M_{1} \cdots, M_{l}\right\}}}{\mu_{M_{1}}+\cdots \mu_{M_{l}}}
\end{gathered}
$$

[^2]
Assignment condition

Solution:

$$
\pi_{\text {Loss }}\left\{M_{1}, \ldots, M_{k}\right\}=\pi\{\varnothing\} \frac{\mu_{M_{1}} \mu_{M_{2}} \cdots \mu_{M_{k}}}{\lambda_{M_{1}}\left\{M_{1}\right\} \lambda_{M_{2}}\left\{M_{1}, M_{2}\right\} \cdots \lambda_{M_{k}}\left\{M_{1}, \ldots, M_{k}\right\}}
$$

Makes sense only if for all permutations
$\lambda_{M_{1}}\left\{M_{1}\right\} \lambda_{M_{2}}\left\{M_{1}, M_{2}\right\} \cdots \lambda_{M_{k}}\left\{M_{1}, \ldots, M_{k}\right\}=\lambda_{\bar{M}_{1}}\left\{\bar{M}_{1}\right\} \lambda_{\bar{M}_{2}}\left\{\bar{M}_{1}, \bar{M}_{2}\right\} \cdots \lambda_{\bar{M}_{k}}\left\{\bar{M}_{1}, \ldots, \bar{M}_{k}\right\}$
This uniquely determines

$$
\lambda_{M}(S)=\sum_{i \in C(S)} \lambda_{i} /\left(1+\sum_{j \in S} \frac{\lambda_{j}(S \backslash M)}{\lambda_{M}(S \backslash j)}\right)
$$

Question: Can you find $P(i, M \mid S)$

$$
\lambda_{M}(S)=\sum_{i \in C(M)} \lambda_{i} P(i, M \mid S)
$$

Answer: Yes, always, max-flow of $\sum_{i \in C(S)} \lambda_{i}$ does it
This max-flow exists by monotonicity

$$
\lambda_{M}(R) \geq \lambda_{M}(S), \quad M \in R \subset S
$$

Gideon Weiss, University of Haifa, FCFS Multi-Type, ©2010

Waiting time in queue

Using distributional form of Little's law we get the waiting time from arrival till start of service for a customer of type c :

W_{c} is a mixture of sums of exponentials, each equal to an $M / M / 1$ waiting time, as if customer is going through a tandem queue till he finds a server,

$$
\begin{gathered}
W_{c} \sim \pi_{\text {Queue }}\left\{M_{1}, \cdot, M_{2}, \cdot, \ldots, M_{k}, \cdot\right\} \exp \left(\lambda_{U\left\{M_{1} \cdots M_{k}\right\}}-\mu_{\left\{M_{1} \cdots M_{k}\right\}}\right) * \\
* \exp \left(\lambda_{U\left\{M_{1} \cdots M_{k-1}\right\}}-\mu_{\left\{M_{1} \cdots M_{k-1}\right\}}\right) * \cdots
\end{gathered}
$$

Back to FCFS ∞-Matching : A new Markov chain

Server s^{n} sees the last match of customers to each type of server, and counts unmatched customers inbetween them:

$$
\mathbf{s}=\left(s_{5}, 0, s_{1}, 3, s_{4}, 2, s_{2}, 3, s_{3}\right)
$$

Stationary distribution:

$$
\pi_{\text {Match }}(\mathbf{s})=B \prod_{k=1}^{J-1} \frac{\left(\alpha_{U\left\{M_{1}, \ldots, M_{k}\right\}}\right)^{n_{k}}}{\left(\beta_{M_{1}}+\ldots+\beta_{M_{k}}\right)^{n_{k}+1}}
$$

Gideon Weiss, University of Haifa, FCFS Multi-Type, O2010

Symmetry lost ? Symmetry regained:

The Matching model is symmetric between customers and servers.
The Loss and Queueing models are not!
Consider now the loss system, replace random assignment with ALIS: Assign arrivals to Longest Idle Servers

New system is not reversible, but is tractable:
State: $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ idle servers, ordered, M_{k} has been idle longest

$$
\pi_{L o s s}\left(M_{1}, \ldots, M_{k}\right)=B \frac{\mu_{M_{1}} \mu_{M_{2}} \cdots \mu_{M_{k}}}{\lambda_{C\left\{M_{1}, M_{2} \cdots M_{k}\right\}} \cdots \lambda_{C\left\{M_{k-1}, M_{k}\right\}} \lambda_{C\left\{M_{k}\right\}}}
$$

Adding over permutations we get the same as for random assignment

$$
\pi_{L o s s}\left\{M_{1}, \ldots, M_{k}\right\}=\pi\{\varnothing\} \frac{\mu_{M_{1}} \mu_{M_{2}} \cdots \mu_{M_{k}}}{\lambda_{M_{1}}\left\{M_{1}, \ldots, M_{k}\right\} \cdots \lambda_{M_{k-1}}\left\{M_{k-1}, M_{k}\right\} \lambda_{M_{k}}\left\{M_{k}\right\}}
$$

MATCHING RATES - THE FORMULA

$r_{c_{i} s_{j}}=\beta_{s_{j}} \sum_{P} B\left(\prod_{k=1}^{J-1} \frac{1}{\beta_{(k)}-\alpha_{(k)}}\right)\left(\left(\sum_{k=1}^{J-1} \phi_{k} \frac{\alpha_{(k)}}{\beta_{(k)}-\alpha_{(k)} \chi_{k}} \prod_{l=1}^{k-1} \frac{\beta_{(l)}-\alpha_{(l)}}{\beta_{(l)}-\alpha_{(l)} \chi_{l}}\right)+\frac{\phi_{J}}{\phi_{J}+\psi_{J}} \prod_{l=1}^{J-1} \frac{\beta_{(l)}-\alpha_{(l)}}{\beta_{(l)}-\alpha_{(l)} \chi_{l}}\right)$

$$
\begin{aligned}
& \alpha_{(k)}=\alpha_{U\left(S_{1}, \ldots, S_{k}\right)} \\
& \beta_{k}=\beta_{c}+\cdots+\beta_{c}
\end{aligned}
$$

for permutation $\left(S_{1}, S_{2}, \ldots, S_{J}\right)$
$\beta_{(k)}=\beta_{S_{1}}+\cdots+\beta_{S_{k}}$
ϕ_{k} probability of i, j match with customer in k interval
ψ_{k} probability of wrong match with customer in k interval
χ_{k} probability of no match with customer in k interval

I tried to get expressions for special cases - just as horrible
I programmed it and calculated for $I=J=7$
SUSPICION: These quantities are \#P-hard to evaluate
Gideon Weiss, University of Haifa, FCFS Multi-Type, ©2010

FCFS-ALIS Queueing model

State $\mathbf{s}=\left(M_{1}, n_{1}, \cdots, M_{k}, n_{k}, M_{k+1}, \cdots, M_{K}\right)$
$\pi_{\text {Queиe }}(\mathbf{s})=B \frac{1}{\mu_{M_{1}}\left(\mu_{M_{1}}+\mu_{M 2}\right) \cdots\left(\mu_{M_{1}}+\cdots \mu_{M_{k}}\right) \lambda_{C\left\{M_{i+1} \cdots M_{K}\right\}} \cdots \lambda_{C\left\{M_{K}\right\}}} \rho_{1}^{n_{1}} \cdots \rho_{k}^{n_{k}}$

$$
\rho_{l}=\frac{\lambda_{U\left\{M_{1}, \ldots, M_{l}\right\}}}{\mu_{M_{1}}+\cdots \mu_{M_{l}}}
$$

Summing over permutations of the idle machines we get the same as for the random assignment model

Resource pooling

Stability of Queue:

$\lambda(C)<\mu(S(C))$ for all C

$$
\lambda=\sum \lambda_{i}, \quad \mu=\sum \mu_{j}, \quad \rho=\frac{\lambda}{\mu}, \quad \alpha_{i}=\frac{\lambda_{i}}{\lambda}, \quad \beta_{j}=\frac{\mu_{j}}{\mu}
$$

Queue is stable if ρ is small enough

complete resource pooling

$\alpha(C)<\beta(S(C)), \quad \beta(S)<\alpha(C(S))$, all non-trivial C
max-flow / min-cut

Overloaded system:

Conjecture: under complete resource pooling, when $\rho>1$
all the servers stay together, just the last queue blows up:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} P\left(M_{1}, n_{1}, \cdots, n_{K-1}, M_{K}\right)=\pi_{\text {Match }}\left(M_{1}, n_{1}, \cdots, n_{K-1}, M_{K}\right) \\
& \lim _{t \rightarrow \infty} P\left(n_{K}<100000\right)=0
\end{aligned}
$$

Overloaded system with abandonments:

Solve for global waiting time $\quad \sum \lambda_{i}\left(1-F_{i}(W)\right)=\sum \mu_{j}=\mu$

$$
\alpha_{i}=\frac{\lambda_{i}(1-F(W))}{\mu}, \quad \beta_{j}=\frac{\mu_{j}}{\mu}
$$

Conjecture: if overloaded system with abandonment has complete resource pooling then under uniform acceleration scaled state is distributed like

$$
\pi_{M a t c h}\left(M_{1}, n_{1}, \cdots, n_{K-1}, M_{K}\right)
$$

Gideon Weiss, University of Haifa, FCFS Multi-Type, ©2010

[^0]: Q: How many type i customer get served by server of type j ?

[^1]: Gideon Weiss, University of Haifa, FCFS Multi-Type, ©2010

[^2]: Gideon Weiss, University of Haifa, FCFS Multi-Type, ©2010

