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Motivation

= Signal searching in space — SETI(@home
project

= File sharing

» Arazi, Ben-Jacob and Yechiali [2005]:
Specific example from the field of computer
networks



General Structure of the Model

2 connected queueing systems

0, is a limited-buffer multi-server
M)/ M(u,) / min{L,, N}/ N system.

The L, customers of Q, are the servers in Q,.

0, is an infinite-buffer M(4,) / M(*) / ** / co system

* exponentially distributed service time.

** The L, customers of Q, are the servers in Q, as follows:



i 2 Service Schemes for Q,

= Model 1: Q,is an M(4,) / M(u,L,)/ 1/ system.

That is, the L, customers of Q, join hands together

and form a single server for the customers of Q,.

= Model 2: Q, is a multi-server M(4,) / M(u,) / L,/ o
system. Each one of the L, customers present in Q,

acts as an individual server for the customers in Q,.



i Model 1

n Q2 M)/ M(u,)/ min{L,, N}/ N.
s 0,0 M(4,)/ M(u,L,)/ 1/ .

= L;- Total number of customers present in Qj, j=1,2.

= System’s stationary probabilities.

P, .=PWLi=n,L,=m),0<n<N,0=<m.



Transition Rate Diagram for Model 1
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Balance Equations in Matrix Geometric
Form

State (n, m) - there are m jobs in O, and the system 1s in
phase n .\We construct a QBD process with generator, 0
Satisfying, PO =0 (4 4 0
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i Matrix Geometric - Continued

0 4, 0 ... ... 0
0 A4, 0 -

0 .. o ol 0 Ay

Nx(N+1)

A, = diag (4,)



Matrix Geometric - Continued
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Matrix Geometric - Continued
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Matrix Geometric - Continued
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i

Matrix Geometric - Continued

0 0

o0

0 24,
L0

0 0
0
0 Ny,

(N+1)xN

(0

0 )
0 0
0 2u, :
N, )

12



i Matrix Geometric - Continued

O LetAl =A1N

m 4=A4,+A,+ A, - Infinitesimal generator of the
M(4,) / M(u,)/ N/ O model

n = (7, Ty, ..

., ) - stationary vector of the matrix A4,

tA=0, we=1
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i Matrix Geometric - Continued

= System’s stability condition

EA()§<EA2§

= Resulting in

A, < i, = IUZE[LM(/Il)/M(,ul)/N/O]
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i Matrix Geometric - Continued

" }—)m — (P0m9 P
vector.

s P =P, ,R"W-D m>N,

—m

., Py,) - Steady state probability

lm, oo

= R 1s the minimal nonnegative solution of the matrix

quadratic equation

Ay+ RA, + R*4,=0
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Matrix Geometric - Continued

+

u }_)09 ]_)19 cee
system,

P, , are derived by solving the linear

P,A’+P.A =0
P,A) +P, A +P, A4, =0

P, A+P A"+P A =0 ,2<m<N-2

Py Ay +Py (4" +R4,)=0

N=-2
N P,e+Py [[-R] e=
m=0
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Matrix Geometric - Continued

= Mean total number of customers in Q,,

s

N-=-2 o0
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An Alternative Approach
Generating Functions

= A system of linear equations,

A(2)G(z) = P(z)

where,

G(2) =(G,(z),G,(2),...,G, (2))
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Generating Functions - Continued
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i Generating Functions - Continued

A(N+1)><(N+1) (z) =

(aM(z)  -pu 0 0 )
Az a"(z) 2wz 0 - 0
0 a(z) .0 :
. : . . . 0
; : : : . —Nypyz
. 0 0 —-Az a](VN)(z)/

a,"(2) =4 + A (1= 2)

1<n<N-1: a"™(2)=A +nu)z+(Az—nu,)(1-z)

az(vN) (2)=Npz+(Az-Nu,)1-z2)
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i Generating Functions - Continued

To derive the PGFs we need to find the N(N +1)/2

boundary probabilities, P,y; Py, Py -

appearing in P(z).

By Cramer’s Rule:

4,(2)

Gn(z): ‘A(Z)‘

5 Pyos Py Py vt
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i Derivation of the Boundary Probabilities

Theorem: Forany A, >0, u,4,>0,u,>0and N> 1,
|A(z)| 1s a polynomial of degree 2N + 1 possessing N -1

distinct roots in the open interval (0,1), a single root at
z=1, and N roots 1n the open interval (1, ). Another root
exists 1n the open interval (0,1) provided that

Ay > 1 E[L(M(4)) / M(u,) / N/ 0)]
We derive the probabilities by utilizing the N - 1 roots 1n

(0,1) and by using some of the balance equations.
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i Covariance

o Cov(Ll,Lz):Q—E[Lz](E[LI]—ﬁj
M, M,

= We argue that in steady state Cov (L,, L,) <0.
We thus get a lower bound for E[L,]:
ﬂ“Z

ElL]>—t o RML) M(wE[L])/]
Ll g, L) M LD )
H,
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i Model 2

= (), operates as in Model 1:
M4, | M(u,) / min{L,, N}/ N

= (O, : Each customer present in O, acts as an
individual server. That 1s, O, 1s an

M(4,) I M(u,) / L,/ oo system with dynamically
changing L,.

24



Transition Rate DiLagram for Model 2
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3 Stability Condition

Using similar analytical approach we
arrive at the same stability condition, and
derive the system’s stationary
probabilities.
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i Models 3 & 4

= Model 3
(), operates as a limited buffer single-server
M(4,) I M(u,L,)/ 1/ N-1 queue, while Q, 1s an
M(4,) I M(u,L,) /1 /oo system.

s Model 4

(), operates as in Model 3, but O, i1s an
M(4,) I M(u,) / L,/ oo system.
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i Models 3 & 4

= For these models using PGF’s leads to a set of
unsolvable differential equations.

s Matrix Geometric can not be used

since there 1s no geometric structure.
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