On the damped geometric telegrapher’s process
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Abstract The geometric telegrapher’s process has been proposed in 2002 as a model
to describe the dynamics of the price of risky assets. In this contribution we con-
sider a similar stochastic process, for which the random times between consecu-
tive slope changes have exponential distribution with linearly increasing parame-
ters. This leads to a process characterized by a damped behavior. We study the main
features of the transient probability law of the process, and of its stationary limit.



2 The stochastic model and probability laws

Let us assume that the price of risky assets is described by the following stochastic
process, that we shall call damped geometric telegrapher’s process:

¢
S; =spexplat+ X/, with X,=cf (—1)Mdr, t>0, (2)
0

where sgp > 0, a € R, ¢ > 0, and where N, is an alternating counting process charac-
terized by independent random times Uy, Dy, k = 1. Hence,

No =0, Ny = ZlfTHEf}? >0,
n=1

where T = U™ + D& and Byy g = Top + Upsq fork=0,1,..., withU® =p® =0
and

UK =0 +Upt o4 Uy, D®=Di4+Dy+ 4Dy, k=12,.... (3)



We assume that {U} } and {D;} are mutually independent sequences of independent
random variables characterized by exponential distribution with parameters

Av=Ak, M= Uk, (A,n>0k=12,.), (4)

respectively, We remark that process S; has bounded variations and its sample-paths

ara rometitiited by connected linee havino exnnnential hehavinr characterized alter-

nately by growth rates a + ¢ and @ — ¢, where a is the growth rate of risky assets’
price in the absence of randomness, and ¢ is the intensity of the random factor of
alternating type. Assumption (4) implies that the reversal rates A; and py, linearly
increase with the number of reversals, so that the sample paths of §; are subject
to an increasing number of slope changes when ¢ increases, this giving a damped
behavior. (An example is shown in Fig. 1).
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Proposition 1. Fork=1,2,... we have
FO @) =PU® <y)=(1—-e*F,  u>0. (5)

Proof. The proof proceeds by induction on k. For k = 1, the result is obvious. Let us
now assume (5) holding forallm=1,...,k— 1. Denoting by U; {j > 1) independent
and exponentially distributed random variables with parameters A, due to (4) and
recalling (3) we have

e
uth 2 Y= k=12,
=i

Then, due to independence, we have

= Ak / =My (] _ g~ Mumhyk=lg,
= Ak 2 -1y ( ) —Aju f: et ':k—i}.}’dy
=0
— _k_ ki: [:_ I )J’ (k - ])ﬂ—lju[l _ E-—.l[k—j}u]
k=7i%0 J
k=1 k=1 |
= E{,.,]}J (k) [e“““-—c“““] = 2(__1}1 (‘k_)ewlju+ {_Uke—lku
j=0 1/ j=0 J
— (1 e-lu)k’

this giving (5).
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In order to obtain the distribution function of process X;, let us now introduce the
compound process

M, n
1’;=ZDH, where ﬂﬂ:=max{n:_>[}:z[f;£r}, t=>0.
j=1

n={ J=
Notice that P(¥; = 0) = e~*', Hereafter we obtain the distribution function of ¥;.

Proposition 2. For any fixedt > 0 and y € (0, +e=), we have

e"““

)

H'[:J.?,f] = P{}r!' EJ".} = B_AI —I—E‘-“-"'[i'—*ﬂ"lr).

Proof. Fort > 0 the distribution function of ¥; can be expressed as

How) = S P, = n) G (y),
n=0

where, due to (5),
P(My=n) = F®(t) - F' V() =e (1 —e™)", n=0,1,....

Hence, recalling (6), we obtain

Hl::y:tj = B_lr 2{1 _E'_MJM(I - E'Hm;)nn



¢
W =[} l{mcvcn}dﬁ': 1> 0,

s0 that
X, =c(2W,—1), >0

Proposition 3. For all 0 < t© < t, the distribution function of W, is:

e—_u{f—r}{] _eulr}
PW, <1)= P T TR T

Moreover,
PW, <t)=1—e"*  PW, <t =1.

Proof. Note that, for a fixed value #p > 0,

Wy, =inf{t > 0:Y(t) >t —t}.

®

®)

10

Moreover, if W, = 7, T < fp, and Yr = £y — 7 (Y1 > tp — 1), then the motion is moving
upward (downward) at time . Finally, since ¥; is an increasing process, due to (10),

the survival distribution of W, is given by
P(W,>1)=H(t—1,1), O<t<t,

so that Eq. (9) follows.



Proposition 4, Let 7, = t.(x,t) = (x+ct)/(2¢). Forallt > 0 and x < ct we have

E—n{;—n}{l _ﬂ—lr.}
e"‘jvﬁ - e—#{:r—f;} {1 ._e-ﬂ-'ﬁ] ’

P(X; < x) =

Moreover, P(X, < ct)=1—e * and P(X, < ct) = 1.
In the following proposition we finally obtain the distribution function of §;.
Proposition 5. Forall 1 > 0 and x < spel%", we have

P(S, < x) = Ay(t) [xfgul{lﬂ-!}f{lcll —Ag(DAL (1) [x!SU]ﬂf{ZC]I
= o .."-’I.A{:f} +A# (f} [x,’rgﬁlmv-l'ﬂ}f{zﬂ _AH (f}.-dtl (f} [I!m]u’fuc} ¥

where Ay (1) = e.xp{u% (1-— %)r} and Ay (t) = exp{—5 (1+ ) t}. Moreover,

P(S <soe@ M)y =1-eM,  P(S <spe@¥) =1.
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Fig. 2 Plotof p(xt) forsg=1,a=0.1,c=1,u =2, and A = 2,3,4,5, from bottom to top near
the origin, with = 1 {left-hand-side) and ¢ = 3 (right-hand-side}.



Proposition 6. For all t > 0 we have
P{S; = 50 e[a+r:]|:} — E_"'r,

and, for x € (sgeld—N gyelatal)

bt (2) % exp( i)y

2ex
1

A— .
{2cosh{ 4 log () + Mlemalomuleta)} _ () """ eqp(Mledpptlcial s

50

d
piut) = P <x)=

x

Some plots of density p(x,#) are shown in Fig. 2 for various choices of A and r.
Let us now analyze the behavior of p(x,z) in the limit as ¢ tends to +oo.

Corollary 1. [f A(c —a) = u(c+ a) then

B (x/s0)?-!
so [1+ (x/s0)P]?’

where B = A /(c + a); whereas, if A{c —a) # [t(c+ a) then

Fl!]_ﬂnp{x?f}z I'E{ﬂ,-f-mj,

Jim_p(x,z) =0.



Corollary 2, Let o = spexp{at}. If A = 4 = oo, ¢ — +oo, with A /c — 0, then

0 (/o)
0 [1+(x/ o)1

We now analyse the behavior of p(x,t) when x approaches the endpoints of its sup-
port, i.e. the interval [s1,52] := [spel®~) spelatel],

p(x,r) = X € (0,+e),

Corollary 3. For any fixed t > 0, we have

[A +p(1— e—lr}] g—(e+ati )
2¢5) '

A
limp(x,r) = ——elc—a-H)t limp(x,t) =
-ﬂ-flpi: ) 2¢5n ﬂszp( }

Hereafter we express the m-th moment of §; in terms of the Gauss hypergeomet-
ric function 2/F.



Proposition 7. Let m be a positive integer. Then, fort > 0,

2me 35 (1 _E—MJHI
A AT k+1

£ (k
X Z( )[ma_“’)’zﬂ (m+‘u nk+Lk+2,1—e” ‘) } (11)
=\ A A
Proof. Due to Proposition 4, by setting y = (¢t + x)/2¢ we have

—(A—Z2ex)y
— x| _ L—ser c
My, (s) .—E[e ]_e {]+23"£e-ﬁfﬁ-+e—nir—ﬂ[1-e-ly}dy}‘ (12)

After some calculations Eq. (12) becomes

MX;(S] — —:-‘CT{1+_ 2 z ( )(_E—Hi)k—r/ﬁ;xk(l _x]“[zfﬂﬂ-#fk‘-‘rﬂfldx} ,

k=0r=0

E[S;n] — ngﬁm{a—c}t{l +

where # = (0,1 —e~*"), Hence, recalling Eq. (3.194.1) of [5], and noting that
E[SP"] = sf'e™¥ My, (m) due to (2), the right-hand-side of (11) immediately follows.

Remark 1. If A = p, then the moment (11) can be expressed as:

Yme E= 'I:k' —AJ)HH

,5‘3 {2k+l}

Elsy) = sgente-{ 1+

2
% 2F (%+k,k+l;?}c+2;l—ﬁ_ﬂ") }



EfS5)
OO0~

Fig. 3 Plot of E(S;) for (A, ) = (1.5,0.9), (1.75,1.05), (2, 1.2) (left-hand-side) and for (A, ) =
(3,1.8),(3.5,2.1), (4, 2.4) (right-hand-side) from top to bottom, withsp = 1, @ = 0.5, c = 2.
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Fig. 4 Plot of Var(S;) for (A,u) = (1,0.6),{1.5,0.9),(2,1.2) (left-hand-side) and for (A, u) =
(6,3.6),(7,4.2),(8,4.8) (right-hand-side) from top to bottom, with sy =1, 8 =05, ¢ = 2.
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