Mathematics converts multi-item multiechelon networks into serial multiechelon systems

Ton de Kok

Real-life supply "chain"

Definitions

$h_{i} \quad$ added value created (holding cost) at item i
$U_{i} \quad$ set of predecessors of i, i.e. all child items
$V_{i} \quad$ set of successors of i, i.e. all child items
$W_{i} \quad$ set of all items in the echelon of i
$E_{i} \quad$ set of all end-items in the echelon of i
$Y_{i} \quad$ echelon inventory position of i
$X_{i} \quad$ net stock of item i net stock of end-item k in a system with root
$I_{k i}$ node i

Base stock policies and linear allocation

 rules

$$
Y_{j}(t)=S_{j}-q_{j}\left(Z_{i}\left(t-L_{i}\right)+D_{i}\left(t-L_{i}, t\right]-\Delta_{j}\right)^{+}
$$

$S_{i}=\sum_{j \in V_{i}}\left(S_{j}+q_{j} \Delta_{j}\right)$
demand during lead time of i

Key recursion
$Z_{j}(t)=q_{j}\left(Z_{i}\left(t-L_{i}\right)+D_{i}\left(t-L_{i}, t\right]-\Delta_{j}\right)^{+}$

Allocation fractions

- Eppen and Schrage (1981): equal stockout probability

$$
q_{j}=\frac{\sigma_{j}}{\sum_{m \in V_{i}} \sigma_{m}}
$$

- Van der Heijden et al (1997): minimal imbalance

$$
q_{j}=\frac{\sigma_{i}^{2}}{2 \sum_{j \in V_{i}} \sigma_{m}^{2}}+\frac{\mu_{j}^{2}}{2 \sum_{j \in V_{i}}^{2} \mu_{m}^{2}}
$$

Optimization problem

- Given allocation fractions, determine base stock levels for all items
- Expressions for costs and performance are similar to expressions for serial systems
- Imbalance should be sufficiently low to ensure validity of analytical results
- in case imbalance too high, base stock levels should be such that average stocks are increased at upstream stages with high imbalance
- requires experimental research

Optimal order-up-to-policies for divergent MEIS:

Generalized Newsvendor equations theorem for periodic review systems without setup costs
Optimal order-up-to-policies and allocation functions under balance assumption satisfy generalized Newsvendor equations:

Probability of non-stockout at downstream stockpoint k in the divergent subsystem with stockpoint i as most upstream stage equals
or equivalently

$$
P\left\{I_{k i} \geq 0\right\}=\frac{p_{k}+\sum_{j \in U_{i}} h_{j}}{p_{k}+h_{k}+\sum_{j \in U_{k}} h_{j}}
$$

$$
\left(p_{k}+\sum_{j \in U_{i}} h_{j}\right)=\left(p_{k}+h_{k}+\sum_{j \in U_{k}} h_{j}\right) P\left\{I_{k i} \geq 0\right\}
$$

Sample path condition on control policies

Assume that each node i is controlled according to a policy, which is defined by a parameter ξ_{i} and possibly other parameters and functions

Sample path condition

If ξ_{j} is increased by $\left|E_{j}\right| \varepsilon$ for all $j \in W_{j}$, and there is upstream availability, then a one-time additional flow of ε units is created towards each $k \in E_{j}$

Main theorem

- If sample path condition holds then $\forall i \in I$

$$
\sum_{k \in E_{i}}\left(p_{k}+\sum_{j \in U_{k} \mid w_{i}} h_{j}\right)=\sum_{k \in E_{i}}\left(p_{k}+h_{k}+\sum_{j \in U_{k}} h_{j}\right) P\left\{I_{k i} \geq 0\right\}
$$

- Proof based on echelon costs and similar to proof of single-item Newsvendor equation
- Relationship can be used as heuristic

TU/e

Net stocks of end-items

Key recursion

$$
Z_{j}(t)=q_{j}\left(Z_{i}\left(t-L_{i}\right)+D_{i}\left(t-L_{i}, t\right]-\Delta_{j}\right)^{+}
$$

with
$D_{L_{i}}=D_{i}\left(t-L_{i}, t\right]$
results into
$I_{k i}=S_{k}-\left\{\left(\ldots q_{n}\left(q_{j}\left(D_{L_{i}}-\Delta_{i}\right)^{+}+D_{L_{j}}-\Delta_{j}\right)^{+}+\ldots\right)^{+}+D_{L_{k}+1}\right\}, k \in E_{n}, n \in V_{j}, j \in V_{i}$
and
$P\left\{I_{k_{i}} \geq 0\right\}=P\left\{\left(\left(\ldots q_{n}\left(q_{j}\left(D_{L_{i}}-\Delta_{i}\right)^{+}+D_{L_{j}}-\Delta_{j}\right)^{+}+\ldots\right)^{+}+D_{L_{k}+1}-S_{k}\right)^{+}=0\right\}, k \in E_{n}, n \in V_{j}, j \in V_{i}$
/School of Industrial Engineering

Ruin probabilities and generalized Newsboy equations

Let X_{1}, \ldots, X_{N} be independent random variables and x_{1}, \ldots, x_{N} be nonnegative real numbers. Then
$P\left\{\left\{\left(\left(\left(X_{N}-x_{N}\right)^{+}+X_{N-1}-x_{N-1}\right)^{+}+\ldots\right)^{+}+X_{1}-x_{1}\right)^{+}=0\right\}=P\left\{X_{1} \leq x_{1}, X_{1}+X_{2} \leq x_{1}+x_{2}, \ldots, \sum_{i=1}^{N} X_{i} \leq \sum_{i=1}^{N} x_{i}\right\}$
I.e. non-stockout probabilities in multi-echelon order-up-to-systems are equivalent to general finite horizon ruin probabilities

Finite horizon ruin probabilities

- Non-stockout probabilities $P\left\{I_{k i} \geq 0\right\}$ can be written as finite horizon ruin probabilities

$$
P\left\{I_{k i} \geq 0\right\}=P\left\{\sum_{k=1}^{j} X_{k} \leq \xi_{j}, j=1, \ldots, i\right\}
$$

- Expressions can be accurately approximated recursively

$$
G_{i}\left(\xi_{1}, \ldots, \xi_{i}\right)=P\left\{\sum_{k=1}^{j} X_{k} \leq \xi_{j}, j=1, \ldots, i\right\}
$$

Recursive computations

- Define random variables Y_{i}

$$
\begin{aligned}
& P\left\{Y_{1} \leq x\right\}=P\left\{X_{1} \leq x\right\} \\
& P\left\{Y_{i} \leq x\right\}=\frac{G_{i}\left(\xi_{1}, \ldots, \xi_{i-1}, x\right)}{G_{i-1}\left(\xi_{1}, \ldots, \xi_{i-1}\right)}, x \geq 0, i=2, \ldots, N .
\end{aligned}
$$

- Theorem

$$
P\left\{Y_{i} \leq x\right\}=\frac{P\left\{X_{i}+Y_{i-1} \leq x, Y_{i-1} \leq \xi_{i-1}\right\}}{P\left\{Y_{i-1} \leq \xi_{i-1}\right\}}, i=2, \ldots, N
$$

Two-moment recursion

- Fit mixture of Erlang distributions on $E\left[Y_{i}\right]$ and $\sigma^{2}\left(Y_{i}\right)$

$$
E\left[Y_{i}\right]=E\left[X_{i}\right]+E\left[Y_{i-1} \mid Y_{i-1} \leq \xi_{i-1}\right], i=2, \ldots, N-1
$$

$$
\sigma^{2}\left(Y_{i}\right)=\sigma^{2}\left(X_{i}\right)+\sigma^{2}\left(Y_{i-1} Y_{i-1} \leq \xi_{i-1}\right), i=2, \ldots, N-1
$$

- Compute $P\left\{I_{k i} \geq 0\right\}=G_{i}\left(\xi_{1}, \ldots, \xi_{l}\right)$ recursively

$$
G_{1}\left(\xi_{1}\right)=P\left\{Y_{1} \leq \xi_{1}\right\}
$$

$$
G_{i}\left(\xi_{1}, \ldots, \xi_{i}\right)=P\left\{Y_{i} \leq \xi_{i}\right\} G_{i-1}\left(\xi_{1}, \ldots, \xi_{i-1}\right), i=2, \ldots, N
$$

/School of Industrial Engineering

Main theorem

- If sample path condition holds then $\forall i \in I$

$$
\sum_{k \in E_{i}}\left(p_{k}+\sum_{j \in U_{k} \mid w_{i}} h_{j}\right)=\sum_{k \in E_{i}}\left(p_{k}+h_{k}+\sum_{j \in U_{k}} h_{j}\right) P\left\{I_{k i} \geq 0\right\}
$$

- Proof based on echelon costs and similar to proof of single-item Newsvendor equation
- Relationship can be used as heuristic

TU/e

Key transformations for divergent systems

Optimality equation can be rewritten as

$$
\begin{aligned}
& \sum_{k \in E_{j}} \phi_{k} P\left\{I_{k i} \geq 0\right\}=\pi_{j} \\
& P\left\{I_{k i} \geq 0\right\}=P\left\{q_{j} D_{i}+\sum_{s=1}^{K_{k-1}-1} Z_{s k}^{(j)} \leq q_{j} \Delta_{j}+\sum_{s=1}^{K_{k-1}-1} \tilde{\Delta}_{s k}^{(j)},\left(\left(\ldots\left(Z_{K_{k}-1 k}^{(j)}-\tilde{\Delta}_{K_{k}-1 k}^{(j)}\right)^{+}+\ldots\right)^{+}+Z_{1 k}^{(j)}-\tilde{\Delta}_{1 k}^{(j)}\right)^{+}=0\right\} \\
& \xi_{j}=\max _{k \in E_{j}} \sum_{s=1}^{K_{k}-1} \tilde{\Delta}_{s k}^{(j)} \\
& x=q_{j} \Delta_{j}+\xi_{j} \\
& P\left\{I_{k i} \geq 0\right\}=P\left\{q_{j} D_{i}+\sum_{s=1}^{K_{k}-1} Z_{s k}^{(j)}+\xi_{j}-\sum_{s=1}^{K_{k}-1} \tilde{\Delta}_{s k}^{(j)} \leq x,\left(\left(\ldots\left(Z_{K_{k}-1 k}^{(j)}-\tilde{\Delta}_{K_{k}-1 k}^{(j)}\right)^{+}+\ldots\right)^{+}+Z_{1 k}^{(j)}-\tilde{\Delta}_{1 k}^{(j)}\right)^{+}=0\right\}
\end{aligned}
$$

Key transformations for divergent systems

$$
\begin{aligned}
& P\{\theta=k\}=\phi_{k} \\
& \sum_{k \in E_{j}} \phi_{k} P\left\{I_{k i} \geq 0\right\}=P\left\{I_{\theta i} \geq 0, \theta \in E_{j}\right\}
\end{aligned}
$$

Optimality equation can be rewritten as

$$
\begin{aligned}
& P\left\{q_{j} D_{i}+\sum_{s=1}^{K_{\theta}-1} Z_{s \theta}^{(j)}+\xi_{j}-\sum_{s=1}^{K_{\theta}-1} \tilde{\Delta}_{s \theta}^{(j)} \leq x,\left(\left(\ldots\left(Z_{K_{\theta}-1 \theta}^{(j)}-\tilde{\Delta}_{K_{\theta}-1 \theta}^{(j)}\right)^{+}+\ldots\right)^{+}+Z_{1 \theta}^{(j)}-\tilde{\Delta}_{1 \theta}^{(j)}\right)^{+}=0, \theta \in E_{j}\right\} \\
& Y_{j}=\left(\sum_{s=1}^{K_{\theta}-1} Z_{s \theta}^{(j)}-\sum_{s=1}^{K_{\theta}-1} \tilde{\Delta}_{s \theta}^{(j)}+\xi_{j} \mid\left(\left(\ldots\left(Z_{K_{\theta}-2 \theta}^{(j)}-\tilde{\Delta}_{K_{\theta}-2 \theta}^{(j)}\right)^{+}+\ldots\right)^{+}+Z_{1 \theta}^{(j)}-\tilde{\Delta}_{1 \theta}^{(j)}\right)^{+}=0, \theta \in E_{j}\right)
\end{aligned}
$$

Optimality equation can be rewritten as

$$
P\left\{q_{j} D_{i}+\left(Y_{j} \mid Y_{j} \leq \xi_{j}\right) \leq x\right\}=\frac{\pi_{j}}{\sum_{n \in V_{j}} \pi_{n}}
$$

/School of Industrial Engineering

Key transformations for divergent systems

Considering successor n of j, we find

$$
\left(Y_{j} \mid \theta \in E_{n}\right)=D_{j}+\xi_{j}-\Delta_{n}-\frac{\xi_{n}}{q_{n}}+\frac{1}{q_{n}}\left(Y_{n} \mid Y_{n} \leq \xi_{n}\right),
$$

resulting in the following recursive relationship

$$
\mathrm{P}\left\{Y_{j} \leq x\right\}=\sum_{n \in V_{j}}\left(\frac{\sum_{k \in E_{n}} \phi_{k}}{\sum_{k \in E_{j}} \phi_{k}}\right) P\left\{D_{j}+\frac{1}{q_{n}}\left(Y_{n} \mid Y_{n} \leq \xi_{n}\right) \leq x-\xi_{j}+\Delta_{n}+\frac{\xi_{n}}{q_{n}}\right\}
$$

Computational efficiency

- Solving cost-balance equations or generalized Newsvendor equations is equivalent to solving a one-dimensional bisection scheme to find a target value in $(0,1)$
- Finding base stock levels for N -item divergent structure requires solution of N bisection schemes
- As efficient as solving N single-echelon systems
- Finding base stock levels for N -item general systems requires solution of at most 3N bisection schemes

Transformation towards review period 1

- With nested review period the system runs through a "super cycle" with length equal to the review period of the root node R_{N}
- For each item we must distinguish R_{N} / R_{i} different cycles
- For the simplest (serial) situation we need to consider for item $i R_{N} / R_{i}$ different random variables

$$
W_{m_{1, n}, m_{1-1}, m_{m}}=D\left(\sum_{j=1}^{N}\left(L_{j}+m_{j} R_{j-1}\right), \sum_{j=1}^{N}\left(L_{j}+m_{j} R_{j-1}\right)\right]
$$

- Which are aggregated into

$$
\hat{W}_{i}=D\left(\sum_{j=+1}^{N}\left(L_{j}+M_{j} R_{j-1}\right), \sum_{j=1}^{N}\left(L_{j}+M_{j} R_{j-1}\right)\right], P\left\{M_{j}=m\right\}=\frac{R_{j-1}}{R_{j}}
$$

Open issues to be resolved

- Recursive gamma fit approach becomes less accurate as the number of echelons increases
- The aggregation approach for the lot sizing case needs to take into account that as $\frac{R_{j-1}}{R_{j}}$ approaches infinity

$$
\hat{W}_{i}=D\left(\sum_{j=i+1}^{N}\left(L_{j}+M_{j} R_{j-1}\right) \cdot \sum_{j=i}^{N}\left(L_{j}+M_{j} R_{j-1}\right)\right]
$$

- approaches a uniform distribution, i.e. does not resemble a gamma distribution
- Currently this problem is addressed by not aggregating the random variables involved

