Second Israeli-Dutch Queueing Workshop, Eindhoven, Sept. 2010

Design of Spare Parts Networks for High-Tech Equipment

Geert-Jan van Houtum, School of Industrial Engineering, Eindhoven University of Technology

Joint work with Bram Kranenburg (CQM) and Alan Scheller-Wolf (Carnegie Mellon)

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

/School of Industrial Engineering

- Capital goods and their maintenance become more and more complicated
- Users require higher availabilities (less downtime)
- Users look at TCO

- Maintenance is outsourced to a third party
- Manufacturers sell capital goods with full service contracts
- Or one even sells the "function + system availability"

Spare parts networks

Typical procedure for demand fulfillment

- 1. Normal delivery: 2 hrs.
- 2. Lateral transshipment: 14 hrs.
- 3. Emergency replenishment: 48 hrs.

10/21/2010

PAGE 4

Main research question (1)

Where to place your spare parts stocks in a service region?

At a central place in a service region, or at close distance of the capital goods?

/School of Industrial Engineering

Main research question (2)

Close to capital goods:

- Weak inventory pooling
- Short downtimes
- Low transportation costs for demand fulfillment

At a central place:

- Strong inventory pooling
- Long downtimes
- High transportation costs for demand fulfillment

<u>Close to capital goods plus</u> <u>lateral transsshipments:</u>

- Strong inventory pooling
- Short downtimes
- Transportation costs: ???

e Technische Universiteit Eindhoven University of Technology

CONTENTS

- Introduction
- Literature
- Model
- Analysis
- Numerical results
- Conclusion

Literature

- Design of spare parts networks:
 - Nothing available (to the best of our knowledge)
- <u>Spare parts inventory models with lateral</u> <u>transshipments</u>:
 - A lot available
 - In study II, we use an existing evaluation algorithm of Reijnen et al. (2009) (in line with Axsäter, 1990)
- Design of distribution systems:
 - A lot available
 - Some literature where inventory holding costs are incorporated
 - Nothing with the effect of lateral transshipments included

Model

- Single item
- Typical: low demand rate, expensive
- Assumptions (base model):
 - set of points where demand occurs: J
 - equal demand rates *m* (Poisson)
 - equal waiting time constraints
 - at most one item in stock in each local warehouse
 - randomized policies ("continuous base stock policies")

Problem: Minimize inv. holding and transportation cost subject to waiting time constraint(s)

Failure rate

Model: Situation 1

Situation 1 – Separate stock points

Model: Situation 2

Situation 2 – One joint stock point

Model: Situation 3

Situation 3 – Separate stock points with lateral transshipment

Analysis: Sit. 1 (Separate stock points)

 Exponential leadtimes: Markov process per stock point (state = # items in replenishment):

- Generally distributed lead times: M/G/c/c model (service represents replenishment; c = S)
- Closed queueing network

Closed queueing network for situation 1

Analysis of Situation 2 (Joint Warehouse) Similar to Sitation 1

BCMP (1975)

Closed-form expressions for queueuing networks with stations of type:

- (i) ample server
- (ii) processor sharing
- (iii) LCFS-PR
- (iv) FCFS

with PhaseType distr. in stations of type (i), (ii), (iii), and exponential distr. in stations of type (iv)

Barbour (1976) Phase type \rightarrow General

Analysis: Situation 3 (Separate stock points with lateral transshipments)

Closed queuing network with a *Processor Sharing (PS) server*

Analysis: Situation 3 (Separate stock points with lateral transshipments)

For general |J|:

- If $S/|J| \le 1$ (at most one item on stock per stock point):
 - Standard processing sharing
 - Product-form solution
- If S/|J| > 1 (more than one item on stock per stock point):
 - Generalized PS, no closed-form solution known
- Asymmetric demand:
 - Discriminatory PS, no closed-form solution known

Waiting time comparison: Sit. 1 vs. Sit. 3

$$WT^{1}(|J|) - WT^{3}(|J|) = (t^{em} - (1 + mt^{repl})t^{lat})(p^{1}(|J|) - p^{3}(|J|))$$

$$\geq 0 \text{ in "convex case"} \geq 0$$

In convex case:

Under relatively weak additional conditions:

"Optimal cost situation $3" \leq$ "Optimal cost situation 1"

Waiting time comparison: Sit. 2 vs. Sit. 3

$$WT^{2}(S) - WT^{3}(S) = (t^{jw} - (1 + mt^{repl})t^{lat})(1 - p^{2}(S)) + \frac{S}{|J|}t^{lat}$$

Observation:

Situation 2 is often infeasible

/School of Industrial Engineering

Numerical results (1)

Base case

Parameter	Value	Ratio	Value
m	0.001 demands per day		
C^{jw}	450 Euro	C^{jw}/C^{lat}	0.9
C^{lat}	500 Euro	$C^{\text{lat}}/C^{\text{em}}$	0.5
C^{em}	1000 Euro	-	
h	10 Euro	h/C^{em}	0.01
WT^{obj}	0.2 days	WT^{obj}/t^{em}	0.1
t ^{jw}	0.45 days	$t^{\mathrm{jw}}/t^{\mathrm{lat}}$	0.9
t^{lat}	0.5 days	$t^{\rm lat}/t^{\rm em}$	0.25
t ^{em}	2 days		
t ^{reg}	10 days	$t^{\rm reg}/t^{\rm em}$	5
J	10	-	

PAGE 20 10/21/2010

iteit ology

Numerical results (2)

- For a <u>base case</u> with data matching real-life characteristics:
 - Sit. 2 (joint warehouse) is infeasible
 - Sit. 3 is 33% cheaper than Sit. 1
- => Lateral transshipment is good

Numerical results (3)

- For an <u>adjusted base case</u> (less strict waiting time constraint):
 - Sit. 2 saves 73% compared to Sit. 1
 - Sit. 3 saves 75% compared to Sit. 1
- => Situations 2 and 3 are comparable

Numerical results (4)

Target waiting time

Where to place your spare parts stocks in a service region?

- At a sufficiently close distance of the demand points
- Use lateral transshipments in the "convex case", and otherwise not

