Critical Queues and Random Graphs

Johan van Leeuwaarden
TU Eindhoven and EURANDOM
joint work with Shankar Bhamidi and Remco van der Hofstad

2nd Israeli-Dutch Workshop on QT

Erdős-Rényi random graph

Take n vertices labeled by $\{1, \ldots, n\}$ and put an edge between any pair independently with probability p

Phase transition (Erdős and Rényi 1960)

Consider $p=c / n$

- For $c<1$, the largest connected component has size $O(\log n)$
- For $c>1$, the largest connected component has size $\Theta(n)$ (and the others are all $O(\log n)$)
- For $c=1$, the largest component has size $\Theta\left(n^{2 / 3}\right)$

Exploring the graph (Aldous 1997)

- Pick a vertex v not visited before and put it in a queue Q
- While Q is nonempty, pull a vertex v from the head of Q, draw edges to all the neighbors that have not been previously visited, and put these children at the back of Q
Label the vertices in their order of visitation, and define

$$
Q(i)=Q(i-1)+\text { \#children of vertex } i-1
$$

Exploring the graph (Aldous 1997)

- Pick a vertex v not visited before and put it in a queue Q
- While Q is nonempty, pull a vertex v from the head of Q, draw edges to all the neighbors that have not been previously visited, and put these children at the back of Q

Label the vertices in their order of visitation, and define

$$
Q(i)=Q(i-1)+\text { \#children of vertex } i-1
$$

... a reflected random walk!

Exploring the graph (Aldous 1997)

$$
\begin{aligned}
\text { \#children of vertex } i & \stackrel{d}{=} \operatorname{Binomial}(n-i-\text { \#queue }-1, p) \\
& \stackrel{d}{\approx} \operatorname{Binomial}(n, p) \\
& \stackrel{d}{\approx} \operatorname{Poisson}(1)
\end{aligned}
$$

if we would ignore \#queue, take $n \gg i$, and $p=1 / n$

However, the increments are not i.i.d., so we do not have a random walk, and the classical FCLT will not work. Luckily, the FCLT for martingales is suited for the dependencies we are facing.

Inhomogeneous random graphs

Poissonian graph process or Norros-Reittu model (2006):
Attach an edge with probability $p_{i j}$ between vertices i and j, where

$$
p_{i j}=1-\exp \left(-\frac{w_{i} w_{j}}{I_{n}}\right), \quad I_{n}=\sum_{i=1}^{n} w_{i}
$$

Different edges are independent
The weight sequence $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ is an i.i.d. sequence of random variables with distribution function F satisfying

$$
\mathbb{E}\left[W^{3}\right]<\infty
$$

Inhomogeneous random graphs

Equivalent to random graphs with prescribed expected degrees, studied by Chung and Lu (2002-2006); see also Bollobás, Janson and Riordan (2007)

$$
p_{i j}=\min \left\{\frac{w_{i} w_{j}}{I_{n}}, 1\right\}
$$

When $w_{i}=c$ we retrieve Erdős-Rényi with $p=c / n$
Also equivalent to generalized random graphs introduced by Britton, Deijfen and Martin-Löf (2005):

$$
p_{i j}=\frac{w_{i} w_{j}}{I_{n}+w_{i} w_{j}}
$$

See Janson (2010) for asymptotic equivalences of inhomogeneous random graphs

Where is the phase transition?

Define

$$
\nu=\frac{\mathbb{E}\left[W^{2}\right]}{\mathbb{E}[W]}
$$

Theorem (Bollobás-Janson-Riordan 2007)

- largest component $\sim \rho n$ with $\rho \in(0,1)$ for $\nu>1$
- largest component o(n) for $\nu<1$

The phase transition occurs at $\nu=1$

When the third moment exists

Let $\mu=\mathbb{E}[W], \sigma^{2}=\mathbb{E}\left[W^{3}\right] / \mathbb{E}[W]$. Consider the process $\left(B_{t}^{\beta}\right)_{t \geq 0}$

$$
B_{t}^{\beta}=\sigma B_{t}+t \beta-t^{2} \sigma^{2} /(2 \mu)
$$

where $\left(B_{t}\right)_{t \geq 0}$ is standard Brownian motion. Define its reflected version as

$$
R_{t}^{\beta}=B_{t}^{\beta}-\min _{0 \leq u \leq t} B_{u}^{\beta}
$$

Aldous (1997): Excursions of $\left(R_{t}^{\beta}\right)_{t \geq 0}$ can be ranked in increasing order as $\gamma_{1}(\beta)>\gamma_{2}(\beta)>\ldots$

Reflected inhomogeneous Brownian motion

Reflected inhomogeneous Brownian motion

Theorem (Bhamidi-van der Hofstad-vL 2009)
Fix the Norros-Reittu graphs with weights

$$
\tilde{w}_{i}=\left(1+\beta n^{-1 / 3}\right) w_{i}
$$

Assume that $\nu=1$, and $\mathbb{E}\left[W^{3}\right]<\infty$. Let $\left|\mathcal{C}_{(1)}(\beta)\right| \geq\left|\mathcal{C}_{(2)}(\beta)\right| \ldots$ denote sizes of the components in increasing order. Then, for all $\beta \in \mathbb{R}$,

$$
\left(n^{-2 / 3}\left|\mathcal{C}_{(i)}(\beta)\right|\right)_{i \geq 1} \xrightarrow{d}\left(\gamma_{i}(\beta)\right)_{i \geq 1}
$$

Theorem (Bhamidi-van der Hofstad-vL 2009)
Fix the Norros-Reittu graphs with weights

$$
\tilde{w}_{i}=\left(1+\beta n^{-1 / 3}\right) w_{i}
$$

Assume that $\nu=1$, and $\mathbb{E}\left[W^{3}\right]<\infty$. Let $\left|\mathcal{C}_{(1)}(\beta)\right| \geq\left|\mathcal{C}_{(2)}(\beta)\right| \ldots$ denote sizes of the components in increasing order. Then, for all $\beta \in \mathbb{R}$,

$$
\left(n^{-2 / 3}\left|\mathcal{C}_{(i)}(\beta)\right|\right)_{i \geq 1} \xrightarrow{d}\left(\gamma_{i}(\beta)\right)_{i \geq 1}
$$

Alternative proof by Turova (2009). Proved by Aldous (1997) for $w_{i}=1$ (Erdős-Rényi). Scaling limit studied in Groeneboom (1989), Martin-Löf (1998), Pittel (2001) and van der Hofstad, Janssen, vL (2010): connection with SIR model and e.g.

$$
\mathbb{P}\left(\left|\mathcal{C}_{(1)}(\beta)\right|>t n^{2 / 3}\right)=\frac{4 \sqrt{t} \exp \left(-\frac{1}{8} t(t-2 \beta)^{2}\right)\left(1+O\left(t^{-3 / 2}\right)\right)}{\sqrt{2 \pi}(t-2 \beta)(3 t-2 \beta)}
$$

When the third moment does not exist...

Take

$$
w_{i}=[1-F]^{-1}(i / n)
$$

where $F(x)$ a distribution function with $1-F(x) \sim c x^{-(\tau-1)}$

When the third moment does not exist...

Take

$$
w_{i}=[1-F]^{-1}(i / n)
$$

where $F(x)$ a distribution function with $1-F(x) \sim c x^{-(\tau-1)}$ Simple example:

$$
F(x)= \begin{cases}0 & \text { for } x<a \\ 1-(a / x)^{\tau-1} & \text { for } x \geq a\end{cases}
$$

so $[1-F]^{-1}(u)=a(1 / u)^{-1 /(\tau-1)}$ and $w_{i}=a(n / i)^{1 /(\tau-1)}$
Also,

$$
\mathbb{E}[W]=\frac{a(\tau-1)}{\tau-2} \quad \mathbb{E}\left[W^{2}\right]=\frac{a^{2}(\tau-1)}{\tau-3}
$$

so that critical case arises when

$$
\nu=\frac{\mathbb{E}\left[W^{2}\right]}{\mathbb{E}[W]}=\frac{a(\tau-2)}{\tau-3}=1 \quad \Longleftrightarrow \quad a=\frac{\tau-3}{\tau-2}
$$

Theorem (Bhamidi-van der Hofstad-vL 2009)
Fix the Norros-Reittu graphs with weights

$$
\tilde{w}_{i}=\left(1+\beta n^{-(\tau-3) /(\tau-1)}\right) w_{i}
$$

Assume that $\nu=1$ and $\tau \in(3,4)$. Let $\left|\mathcal{C}_{(1)}(\beta)\right| \geq\left|\mathcal{C}_{(2)}(\beta)\right| \ldots$ denote sizes of components arranged in increasing order. Then,

$$
\left(n^{-(\tau-2) /(\tau-1)}\left|\mathcal{C}_{(i)}(\beta)\right|\right)_{i \geq 1} \xrightarrow{d}\left(H_{i}(\beta)\right)_{i \geq 1}
$$

with $H_{i}(\beta)$ corresponding to ordered hitting times of 0 of a certain fascinating 'thinned' Lévy process

Thinned Lévy process

$$
\mathcal{S}_{t}=c+b t+\sum_{i=2}^{\infty} i^{-a}\left[\mathcal{I}_{i}(t)-t i^{-a}\right]
$$

with $\mathcal{I}_{i}(t)=\mathbf{1}_{\left\{\operatorname{Exp}\left(i^{-a}\right) \in[0, t]\right\}}$

Thinned Lévy process

$$
\mathcal{S}_{t}=c+b t+\sum_{i=2}^{\infty} i^{-a}\left[\mathcal{I}_{i}(t)-t i^{-a}\right]
$$

with $\mathcal{I}_{i}(t)=\mathbf{1}_{\left\{\operatorname{Exp}\left(i^{-a}\right) \in[0, t]\right\}}$
Compare with the spectrally positive Lévy process

$$
\mathcal{R}_{t}=c+b t+\sum_{i=2}^{\infty} i^{-a}\left[N_{i}(t)-t i^{-a}\right]
$$

with $\left(N_{i}\right)$ independent Poisson processes with rates i^{-a}

$$
\mathcal{S}_{t} \leq \mathcal{R}_{t}
$$

Thinned Lévy process

$$
\mathcal{S}_{t}=c+b t+\sum_{i=2}^{\infty} i^{-a}\left[\mathcal{I}_{i}(t)-t i^{-a}\right]
$$

with $\mathcal{I}_{i}(t)=\mathbf{1}_{\left\{\operatorname{Exp}\left(i^{-a}\right) \in[0, t]\right\}}$
Compare with the spectrally positive Lévy process

$$
\mathcal{R}_{t}=c+b t+\sum_{i=2}^{\infty} i^{-a}\left[N_{i}(t)-t i^{-a}\right]
$$

with $\left(N_{i}\right)$ independent Poisson processes with rates i^{-a}

$$
\mathcal{S}_{t} \leq \mathcal{R}_{t}
$$

\mathcal{R}_{t} is a poor approximation for \mathcal{S}_{t} (thinning is important)
Special case of the multiplicative coalescents in Aldous and Limic $(1997,1998)$. Detailed study with Elie Aidekon, Remco van der Hofstad and Sandra Kliem.

Proof: weak convergence stochastic processes

(1) Exploration of components
(2) Removal of possible further neighbors due to their exploration: depletion of points effect
(3) Under the right scaling, the exploration process weakly converges. Cluster sizes correspond to excursion lengths limiting process having an increasing negative drift

- $\mathbb{E}\left[W^{3}\right]<\infty$: exploration process has finite variance steps, so that Brownian motion appears in limit, and

$$
\mathbb{P}\left(1 \in \mathcal{C}_{\max }\right) \rightarrow 0 \quad \text { (power to the masses) }
$$

- $\mathbb{E}\left[W^{3}\right]=\infty$: exploration process is dominated by vertices with high weights, and

$$
\mathbb{P}\left(1 \in \mathcal{C}_{\max }\right) \rightarrow p(\beta) \in(0,1) \quad \text { (power to the wealthy) }
$$

References

[1] Aldous, D. (1997) Brownian excursions, critical random graphs and the multiplicative coalescent. AoP 25, 812-854.
[2] Bollobás, B., Janson, S. and Riordan, O. (2007) The phase transition in inhomogeneous random graphs. RSA, 31, 3-122.
[3] Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. (2009) Scaling limits for critical inhomogeneous random graphs with finite third moments. http://arxiv.org/abs/0907.4279. To appear in EJP.
[4] Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. (2009) Novel scaling limits for critical inhomogeneous random graphs. http://arxiv.org/abs/0909.1472.

