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Erdős-Rényi random graph

Take n vertices labeled by {1, . . . , n} and put an edge between any
pair independently with probability p



Phase transition (Erdős and Rényi 1960)

Consider p = c/n

For c < 1, the largest connected component has size O(log n)

For c > 1, the largest connected component has size Θ(n)
(and the others are all O(log n))

For c = 1, the largest component has size Θ(n2/3)



Exploring the graph (Aldous 1997)

Pick a vertex v not visited before and put it in a queue Q

While Q is nonempty, pull a vertex v from the head of Q,
draw edges to all the neighbors that have not been previously
visited, and put these children at the back of Q

Label the vertices in their order of visitation, and define

Q(i) = Q(i − 1) + #children of vertex i − 1
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draw edges to all the neighbors that have not been previously
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... a reflected random walk!



Exploring the graph (Aldous 1997)

#children of vertex i
d
= Binomial(n − i −#queue− 1, p)

d
≈ Binomial(n, p)

d
≈ Poisson(1)

if we would ignore #queue, take n� i , and p = 1/n

However, the increments are not i.i.d., so we do not have a random
walk, and the classical FCLT will not work. Luckily, the FCLT for
martingales is suited for the dependencies we are facing.



Inhomogeneous random graphs

Poissonian graph process or Norros-Reittu model (2006):
Attach an edge with probability pij between vertices i and j , where

pij = 1− exp

(
−

wiwj

ln

)
, ln =

n∑
i=1

wi

Different edges are independent

The weight sequence w = (w1, . . . ,wn) is an i.i.d. sequence of
random variables with distribution function F satisfying

E[W 3] <∞



Inhomogeneous random graphs

Equivalent to random graphs with prescribed expected degrees,
studied by Chung and Lu (2002-2006); see also Bollobás, Janson
and Riordan (2007)

pij = min

{
wiwj

ln
, 1

}
When wi = c we retrieve Erdős-Rényi with p = c/n

Also equivalent to generalized random graphs introduced by
Britton, Deijfen and Martin-Löf (2005):

pij =
wiwj

ln + wiwj

See Janson (2010) for asymptotic equivalences of inhomogeneous
random graphs



Where is the phase transition?

Define

ν =
E[W 2]

E[W ]

Theorem (Bollobás-Janson-Riordan 2007)

largest component ∼ ρn with ρ ∈ (0, 1) for ν > 1

largest component o(n) for ν < 1

The phase transition occurs at ν = 1



When the third moment exists

Let µ = E[W ], σ2 = E[W 3]/E[W ]. Consider the process (Bβ
t )t≥0

Bβ
t = σBt + tβ − t2σ2/(2µ)

where (Bt)t≥0 is standard Brownian motion. Define its reflected
version as

Rβ
t = Bβ

t − min
0≤u≤t

Bβ
u

Aldous (1997): Excursions of (Rβ
t )t≥0 can be ranked in increasing

order as γ1(β) > γ2(β) > . . .



Reflected inhomogeneous Brownian motion



Reflected inhomogeneous Brownian motion



Theorem (Bhamidi-van der Hofstad-vL 2009)

Fix the Norros-Reittu graphs with weights

w̃i = (1 + βn−1/3)wi

Assume that ν = 1, and E[W 3] <∞. Let |C(1)(β)| ≥ |C(2)(β)| . . .
denote sizes of the components in increasing order. Then, for all
β ∈ R, (

n−2/3|C(i)(β)|
)
i≥1

d−→
(
γi (β)

)
i≥1

Alternative proof by Turova (2009). Proved by Aldous (1997) for
wi = 1 (Erdős-Rényi). Scaling limit studied in Groeneboom
(1989), Martin-Löf (1998), Pittel (2001) and van der Hofstad,
Janssen, vL (2010): connection with SIR model and e.g.

P
(
|C(1)(β)| > tn2/3

)
=

4
√

t exp
(
−1

8 t(t − 2β)2
) (

1 + O(t−3/2)
)

√
2π(t − 2β)(3t − 2β)
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When the third moment does not exist...
Take

wi = [1− F ]−1(i/n)

where F (x) a distribution function with 1− F (x) ∼ cx−(τ−1)

Simple example:

F (x) =

{
0 for x < a

1− (a/x)τ−1 for x ≥ a

so [1− F ]−1(u) = a(1/u)−1/(τ−1) and wi = a(n/i)1/(τ−1)

Also,

E[W ] =
a(τ − 1)

τ − 2
E[W 2] =

a2(τ − 1)

τ − 3

so that critical case arises when

ν =
E[W 2]

E[W ]
=

a(τ − 2)

τ − 3
= 1 ⇐⇒ a =

τ − 3

τ − 2
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Theorem (Bhamidi-van der Hofstad-vL 2009)

Fix the Norros-Reittu graphs with weights

w̃i = (1 + βn−(τ−3)/(τ−1))wi

Assume that ν = 1 and τ ∈ (3, 4). Let |C(1)(β)| ≥ |C(2)(β)| . . .
denote sizes of components arranged in increasing order. Then,(

n−(τ−2)/(τ−1)|C(i)(β)|
)
i≥1

d−→
(
Hi (β)

)
i≥1

with Hi (β) corresponding to ordered hitting times of 0 of a certain
fascinating ‘thinned’ Lévy process



Thinned Lévy process

St = c + bt +
∞∑
i=2

i−a
[
Ii (t)− ti−a

]
with Ii (t) = 1{Exp(i−a)∈[0,t]}

Compare with the spectrally positive Lévy process

Rt = c + bt +
∞∑
i=2

i−a
[
Ni (t)− ti−a

]
with (Ni ) independent Poisson processes with rates i−a

St ≤ Rt

Rt is a poor approximation for St (thinning is important)

Special case of the multiplicative coalescents in Aldous and Limic
(1997,1998). Detailed study with Elie Aidekon, Remco van der
Hofstad and Sandra Kliem.
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Proof: weak convergence stochastic processes

(1) Exploration of components

(2) Removal of possible further neighbors due to their exploration:
depletion of points effect

(3) Under the right scaling, the exploration process weakly
converges. Cluster sizes correspond to excursion lengths
limiting process having an increasing negative drift



E[W 3] <∞: exploration process has finite variance steps, so
that Brownian motion appears in limit, and

P(1 ∈ Cmax)→ 0 (power to the masses)

E[W 3] =∞: exploration process is dominated by vertices
with high weights, and

P(1 ∈ Cmax)→ p(β) ∈ (0, 1) (power to the wealthy)
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