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Erdés-Rényi random graph
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Take n vertices labeled by {1,..

pair independently with probability p



Phase transition (Erdds and Rényi 1960)
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Consider p = c/n
@ For ¢ < 1, the largest connected component has size O(log n)

@ For ¢ > 1, the largest connected component has size ©(n)

(and the others are all O(log n))
@ For ¢ = 1, the largest component has size ©(n?/3)



Exploring the graph (Aldous 1997)

@ Pick a vertex v not visited before and put it in a queue @

@ While @ is nonempty, pull a vertex v from the head of @,
draw edges to all the neighbors that have not been previously
visited, and put these children at the back of @

Label the vertices in their order of visitation, and define

Q(i) = Q(i — 1) + #children of vertex i — 1




Exploring the graph (Aldous 1997)

@ Pick a vertex v not visited before and put it in a queue @

e While @ is nonempty, pull a vertex v from the head of @,
draw edges to all the neighbors that have not been previously
visited, and put these children at the back of @

Label the vertices in their order of visitation, and define

Q(i) = Q(i — 1) + #children of vertex i — 1
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.. a reflected random walk!



Exploring the graph (Aldous 1997)

#£children of vertex | 4 Binomial(n — i — #queue — 1, p)

Binomial(n, p)

d
d

Poisson(1)

if we would ignore #queue, take n > i, and p=1/n

However, the increments are not i.i.d., so we do not have a random
walk, and the classical FCLT will not work. Luckily, the FCLT for
martingales is suited for the dependencies we are facing.



Inhomogeneous random graphs

Poissonian graph process or Norros-Reittu model (2006):
Attach an edge with probability p;; between vertices / and j, where

w,
pfjl—eXp( Y 1)7 n—zw,

Different edges are independent

The weight sequence w = (wy, ..., w,) is an i.i.d. sequence of
random variables with distribution function F satisfying

E[W3] < oo



Inhomogeneous random graphs

Equivalent to random graphs with prescribed expected degrees,
studied by Chung and Lu (2002-2006); see also Bollobas, Janson

and Riordan (2007)
pjj = min ; ,1

When w; = ¢ we retrieve Erdés-Rényi with p = ¢/n

Also equivalent to generalized random graphs introduced by
Britton, Deijfen and Martin-L&f (2005):

Wi W;

W:m+mw

See Janson (2010) for asymptotic equivalences of inhomogeneous
random graphs



Where is the phase transition?

Define
_ E[W?]
YT EW]

Theorem (Bollobas-Janson-Riordan 2007)

@ largest component ~ pn with p € (0,1) forv > 1

@ largest component o(n) forv < 1

The phase transition occurs at v =1



When the third moment exists

Let ;o = E[W], 02 = E[W3]/E[W)]. Consider the process (B )0
BY = 0B, + t3 — t°02/(2p)

where (B;)¢>0 is standard Brownian motion. Define its reflected

version as

Re= B ymin B

Aldous (1997): Excursions of (Rtﬁ)tzo can be ranked in increasing
order as 1 (3) > 72(8) > ...



Reflected inhomogeneous Brownian motion
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Reflected inhomogeneous Brownian motion
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Theorem (Bhamidi-van der Hofstad-vL 2009)
Fix the Norros-Reittu graphs with weights

w; = (1 + ﬁn_1/3)w,-

Assume that v = 1, and E[W3] < co. Let |Ct)(B)| > [Coy(B)] - - -
denote sizes of the components in increasing order. Then, for all
0 €R,

(”72/3\%)(5)!) i>1 - (7"(6)) i>1



Theorem (Bhamidi-van der Hofstad-vL 2009)
Fix the Norros-Reittu graphs with weights

w; = (1 + ﬁn_1/3)w,-

Assume that v = 1, and E[W3] < co. Let |Ct)(B)| > [Coy(B)] - - -
denote sizes of the components in increasing order. Then, for all
0 €R,

(”72/3‘C(f)(5)’) i>1 - (7"(6)) i>1

Alternative proof by Turova (2009). Proved by Aldous (1997) for
w; = 1 (Erd6s-Rényi). Scaling limit studied in Groeneboom
(1989), Martin-Lof (1998), Pittel (2001) and van der Hofstad,
Janssen, vL (2010): connection with SIR model and e.g.

4/texp (—gt(t —20)) (L + O(t*?))

n?/3) =
P(\C(l)(ﬁ)\ > tn? 3) V2r(t — 28)(3t — 28)



When the third moment does not exist...

Take
w; = [L = F]7'(i/n)

where F(x) a distribution function with 1 — F(x) ~ cx~ (71



When the third moment does not exist...
Take
wi = [L— F]7(i/n)

where F(x) a distribution function with 1 — F(x) ~ cx~ (71
Simple example:

F(x):{o for x < a

1—(a/x)""1 forx>a

so [1— F] Yu) = a(1/u)~1) and w; = a(n/i)Y/ (7D
Also,

—1 2(r—1
E[W] _ 3(7' ) E[WZ] _ a (T )
-2 T—3
so that critical case arises when
2 o _
7]E[W]fa(r 2):1 a:T 3

"TEW] T r-3 -2



Theorem (Bhamidi-van der Hofstad-vL 2009)
Fix the Norros-Reittu graphs with weights

Assume that v =1 and 7 € (3,4). Let |Cy)(5)] > [C(B)] - ..
denote sizes of components arranged in increasing order. Then,

(n_(T_z)/(T_l)|C(i)(ﬁ)|);21 - (Hi(ﬂ))izl

with H;(3) corresponding to ordered hitting times of 0 of a certain
fascinating ‘thinned’ Lévy process



Thinned Lévy process

Se=c+bt+Y i?[Ti(t) - ti~?]
=2

with Z;(t) = I{Exp(i*a)e[o,t]}



Thinned Lévy process

Se=c+bt+Y i?[Ti(t) - ti~?]
i=2

with Z;(t) = 1{Exp(i*a)e[0,t]}

Compare with the spectrally positive Lévy process
Re = c+ bt + Z i~ [Ni(t) — ti )

=2

with (N;) independent Poisson processes with rates /¢

St <Ry



Thinned Lévy process

Se=c+bt+Y i?[Ti(t) - ti~?]
i=2

with Z;(t) = Ligyp(i-2)e0,4}

Compare with the spectrally positive Lévy process
Re=c+bt+> i ?[Ni(t)—ti 7]
i=2
with (/V;) independent Poisson processes with rates /—?
St S Rt

R+ is a poor approximation for S; (thinning is important)

Special case of the multiplicative coalescents in Aldous and Limic
(1997,1998). Detailed study with Elie Aidekon, Remco van der
Hofstad and Sandra Kliem.



Proof:

weak convergence stochastic processes

Exploration of components

Removal of possible further neighbors due to their exploration:
depletion of points effect

Under the right scaling, the exploration process weakly
converges. Cluster sizes correspond to excursion lengths
limiting process having an increasing negative drift



e E[W3] < oco: exploration process has finite variance steps, so
that Brownian motion appears in limit, and

P(1 € Cpax) — 0 (power to the masses)

o E[W?3] = oco: exploration process is dominated by vertices
with high weights, and

P(1 € Ciax) — p(B) € (0,1) (power to the wealthy)
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