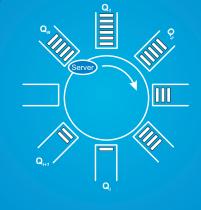


Fairness and Efficiency in Waiting Times for Polling Models

Sandra van Wijk

A.C.C.v.Wijk@tue.nl

Joint work with Ivo Adan, Onno Boxma, and Adam Wierman



TU/e

Technische Universiteit **Eindhoven** University of Technology

Second Israeli–Dutch Workshop on Queueing Theory

Wednesday September 29, 2010

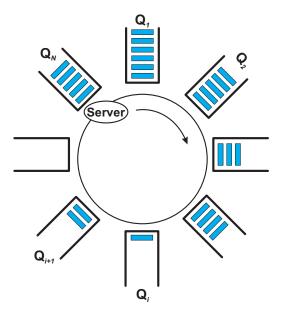
Polling Model

- N queues,
- Arrivals at Q_i : Poisson(λ_i),
- Service time at Q_i : B_i ,
- Load at Q_i : $\rho_i = \lambda_i \mathsf{E}(B_i)$,
- Visit time at $Q_i: V_i$,
- Switch-over time from Q_i to Q_{i+1} : S_i ,
- Waiting time customer at Q_i : W_i .

Cycle: $V_1 - S_1 - V_2 - S_2 - \ldots - V_N - S_N$.

Ordinary service discipline: e.g. exhaustive, (glob.) gated.

Applications: telecommunication, repairman, production, etc.



2/14

/ department of mathematics and computer science

Fairness vs. Efficiency

Fairness: (other definitions exist)

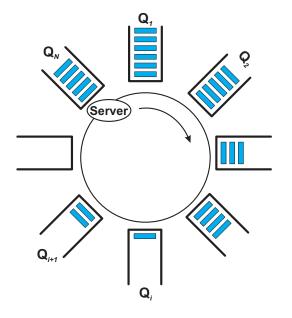
$$\max_i \mathsf{E}(W_i) - \min_j \mathsf{E}(W_j)$$

Efficiency:

$$\sum_i \rho_i \, \mathsf{E}(W_i)$$

Typically:

- efficient service disciplines are unfair (e.g. exhaustive)
- fair service disciplines are inefficient



Fairness vs. Efficiency (II)

Fair service disciplines (less efficient), e.g.:

- gated
- two stage gated (Park et al. 2005; Van der Mei and Resing 2008)
- elevator polling glob. gated (Altman et al. 1992)

Previous work:

- one cycle gated, one cycle exhaustive (Boxma et al. 2008)
- \rightarrow Introduce κ -Gated Discipline

κ-Gated Discipline

 κ -Gated discipline is hybrid version of:

- exhaustive: efficient but not fair
- gated: more fair but inefficient

Parameter: $\kappa = (\kappa_1, \kappa_2, \ldots, \kappa_N)$

Serve queue *i* subsequently (at most) κ_i 'times' gated



κ-Gated Discipline (II)

Goal: set κ to minimize

$$\gamma(\alpha) = \max_{i} \mathsf{E}(W_{i}) - \min_{j} \mathsf{E}(W_{j}) + \alpha \sum_{i} \rho_{i} \mathsf{E}(W_{i})$$

Outline

- Pseudo conservation law
- Waiting time distributions
- Mean waiting times
- Fluid limits \rightarrow heuristic setting for κ
- Performance heuristic

Pseudo Conservation Law

expression for $\sum_{i} \rho_i E(W_i)$ (cf. Boxma and Groenendijk 1987)

$$\sum_{i} \rho_{i} \mathsf{E}(W_{i}) = \rho \frac{\sum_{i} \rho_{i} \mathsf{E}(R_{B_{i}})}{1 - \rho} + \rho \mathsf{E}(R_{S}) + \frac{\mathsf{E}(S)}{2(1 - \rho)} \left(\rho^{2} - \sum_{i} \rho_{i}^{2}\right) + \sum_{i} \mathsf{E}(M_{i}).$$

where

$$\mathsf{E}(M_i) = \rho_i^{\kappa_i + 1} \frac{1 - \rho_i}{1 - \rho_i^{\kappa_i}} \frac{\mathsf{E}(S)}{1 - \rho}.$$

Efficiency: $\sum_i E(M_i)$

Waiting Time Distributions

using Multi-Type Branching Processes (cf. Resing 1993)

Queue length process: *N*-type branching process with immigration.

Each customer present effectively replaced (i.i.d.) by random population with pgf $h_i(z_1, \ldots, z_N)$:

$$h_{i}^{(1\text{-gated})}(\underline{z}) = h_{i}^{(\text{gated})}(\underline{z}) = \beta_{i} \left(\sum_{j=1}^{N} \lambda_{j} (1-z_{j}) \right);$$

$$h_{i}^{(m\text{-gated})}(\underline{z}) = \beta_{i} \left(\sum_{j=1, j\neq i}^{N} \lambda_{j} (1-z_{j}) + \lambda_{i} \left(1 - h_{i}^{((m-1)\text{-gated})}(\underline{z}) \right) \right), \ m = 2, 3, \dots$$

We derive joint and marginal queue length distributions, and waiting time distributions.

Mean Waiting Times

(cf. Boon et al. 2009)

 κ -Gated discipline fits into the framework of a polling model with smart customers (arrival rate depends on server position).

Introduce extra queues and route customers and route to correct queue:

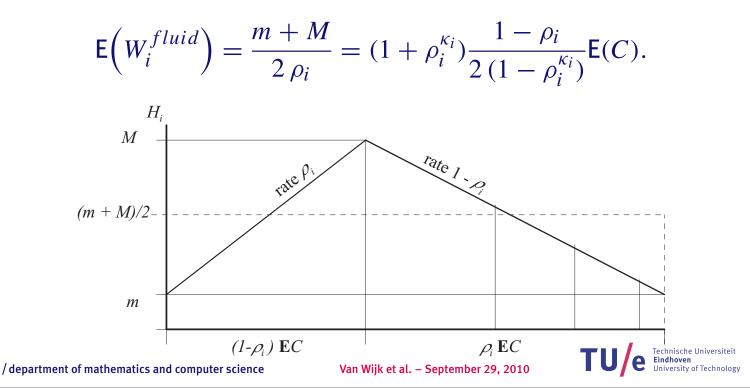
$$V_1^{(1)} - V_1^{(2)} - \ldots - V_1^{(\kappa_1)} - S_1 - V_2^{(1)} - V_2^{(2)} - \ldots - V_2^{(\kappa_2)} - S_2 - \ldots - S_{N-1} - V_N^{(1)} - \ldots - V_N^{(\kappa_N)} - S_N$$

Now Mean Value Analysis for polling models gives mean waiting times in an easy way.

Fluid limits

scale: $\lambda_i \to \infty$ and $E(B_i) \to 0$ while keeping the workload $\lambda_i E(B_i) = \rho_i$ fixed

Gives closed form expression for (approximation of) $E(W_i)$:



Fluid limits \rightarrow heuristic

Maximal fairness using fluid limits:

$$\mathsf{E}\Big(W_1^{fluid}\Big) = \mathsf{E}\Big(W_2^{fluid}\Big) = \dots = \mathsf{E}\Big(W_N^{fluid}\Big)$$

 \rightarrow family of solutions for $\kappa_1, \kappa_2, \ldots, \kappa_N$.

Take most efficient solution:

For all *i* such that $i = \arg \min \rho_i$, let $\kappa_i = \infty$; For all j = 1, 2, ..., N where $j \neq i$, let $\kappa_j = \log_{\rho_j} \frac{\rho_j - \rho_i}{2 - \rho}$

/ department of mathematics and computer science

Fluid limits \rightarrow heuristic (II)

For all *i* such that $i = \arg \min \rho_i$, let $\kappa_i = \infty$; For all j = 1, 2, ..., N where $j \neq i$, let $\kappa_j = \log_{\rho_j} \frac{\rho_j - \rho_i}{2 - \rho}$ 1.0 $\kappa_{opt} = 2$ 0.8 $\kappa_{opt} = 3$ 0.6 $\kappa_{\rm opt} = 4$ \mathcal{Q} 0.4 0.2 Kopt 0.0 0.1 0.2 0.3 0.4 0.5 0.0 $\rho 1$ Van Wijk et al. - September 29, 2010 / department of mathematics and computer science

Results

Numerical results

Example for 2 queues: $\lambda_1 = 0.35$, $\lambda_2 = 0.25$,

 $B_i \sim \exp(1), S_i \sim \exp(2).$

Heuristic settings: $\kappa = (3, \infty)$.

<i>к</i> ₁	<i>к</i> ₂	$E(W_1)$	$E(W_2)$	Δ	$\sum E(M_i)$	$\gamma(0)$	$\gamma(1)$	$\gamma(2)$	$\gamma(5)$
1	1	9.3	8.6	0.6	1.8	0.6	2.5	4.3	9.9
∞	1	5.1	9.5	4.3	0.6	4.3	5.0	5.6	7.5
1	∞	9.7	5.6	4.0	1.2	4.1	5.3	6.5	10.2
2	∞	6.7	6.0	0.7	0.3	0.7	1.0	1.4	2.3
3	∞	6.0	6.2	0.2	0.1	0.3	0.4	0.5	0.8
∞	∞	5.6	6.4	0.8	0.0	0.9	0.9	0.9	0.9
Elev.GG		11.5	11.5	0.0	3.9	0.0	3.9	7.9	39.3

Testbed with over 4,500 instances: heuristics performs very well

Summary

Introduced κ -gated service discipline for polling systems.

Waiting times (distribution and means), PCL, fluid limits.

Heuristic setting for κ for 'fairness and efficiency', performs well.

A.C.C. van Wijk, I.J.B.F. Adan, O.J. Boxma and A. Wierman,

Fairness in Waiting Times for Polling Models with the κ -Gated Service Discipline, In preparation.

/ department of mathematics and computer science