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Aggregate Simulations



Semiconductor fab1

Usual model: Faithful representation of the factory using Discrete
Event Simulations, e.g. χ (TU Eindhoven)

Problem:

Simulation of production flows with stochastic demand and
stochastic production processes requires Monte Carlo Simulations

Takes too long for a decision tool

1Dieter Armbruster, Daniel Marthaler, Christian Ringhofer, Karl Kempf,
Tae- Chang Jo: Operations Research 54(5), 933 -950, 2006



A fluid model for a semiconductor fab

Fundamental Idea:
Model high volume, many stages, production via a fluid.

Basic variable

product density (mass density) ρ(x, t).
x- is the position in the production process, x ∈ [0, 1].
- degree of completion
- stage of production



Mass conservation and state equations

Mass conservation and state equation

∂ρ

∂t
+
∂F

∂x
= 0

F = ρveq

Typical models for the equilibrium velocity veq (state equation) are

vtraffic
eq (ρ) = v0(1− ρ

ρc
)

vQ
eq =

µ

1 + L
veq = Φ(L)

with L the total load (WIP) given as L(ρ) =
∫ 1
0 ρ(x , t)dx

Note: Φ(L) may be determined experimentally or theoretically



Clearing function

Equivalence

A clearing function Ω(L) giving the outflux as a function of WIP in
steady state is completely equivalent to veq.

Ω(L) = Lveq

e.g.

ΩQ =
µL

1 + L

ΩK = αL(1− e−βL)



Validation: DES vs. fluid simulation
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Figure: Throughput as a function of time for a sinusoidally varying input



Control of aggregate models



Control on the large scales

Tracking for a continuum model

Model: PDE model based on a product density ρ(x , t) and a state
equation for the velocity.

ρt(x , t) + vQ
eqρx(x , t) = 0, (x , t) ∈ [0, 1]× [0,∞)

ρ(x , 0) = ρ0(x), x ∈ [0, 1]

vQ
eq =

vmax

1 + L
λ(t) = v(ρ)ρ(x , t)|x=0

where λ(t) is the influx.



Tracking problem

Problem setup

• a fixed end time τ > 0.

• an initial profile ρ0(x).

• d(t) - the demand at time t. d(t) ∈ L2([0, τ ]).

Find the influx λ(t), t ∈ [0, τ ]:s.t.

j(ρ, λ) =
1

2

∫ τ

0

(
vQ
eq(ρ)ρ(1, t)− d(t)

)2
dt

is minimal



Constraint Optimization

Method

• variational approach via adjoint calculus

• leads to two coupled PDEs

• solving allows to determine dj(λ)
dλ

• gradient search algorithm finds a local minimum



Results

System Reactivity

The speed

v =
vmax

1 +
∫ 1
0 ρ(s, t) ds

depends on vmax .
Sinusoidal demands with:

• vmax = 1, inert factory

• vmax = 3, agile factory



Low Speed
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High Speed
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Transient Clearing Functions2

2Details see poster by Jasper Fontejin



Modeling transient behavior through clearing functions

Recall H. Missbauer’s talk

• Consider an M/M/1 queue for a fixed time interval [t, t + τ ]
and an arrival rate λ(t).

• Clearing function:

Expected output(t) = Φ(Expected load L)(t)

with

L(t) = w + A = w +

∫ t+τ

t
λ(s)ds

w is the initial WIP.

• Result: Φ depends on w , the arrival A and variance of the
initial WIP σ2

w .



It is more complicated

Functional form of λ

Choose initial WIP, arrival A and vary λ(t)

• Choose λ(t) = c

• linearly increasing inter arrival rate

• linearly decreasing inter arrival rate

• impulse at s = 0

• impulse at s = τ



Results
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(a) constant λ
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(b) impulse at end
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(c) λ increasing
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How good is the PDE model for those transient cases?

PDE model is adiabatic

Should be good for slow changing influx.
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Second order PDE

Modeling the time evolution of the velocity

∂ρ

∂t
+
∂vρ

∂x
= 0

∂v

∂t
+ v

∂v

∂x
= 0

ρv |x=0(t) = λ(t)

v(0, t) = veq(t)



Result
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Continuous models for production lines with finite buffers



Production lines with finite buffers

Current assumption

Buffers can become infinite
ρ can have δ-measures
flux may be restricted but not density

Production lines for larger items, e.g. cars

There exists only a small buffer between machines
Need to implement a limit on ρ in our model



Simulation3

Experiment

100 identical machines with capacity µ = 1
all buffers between machines have identical capacity of M

1 fill an empty factory with a constant influx rate λ < 1

2 shut down the last machine

3 factory fills up and stops working when the first buffer is at its
maximum.

4 restart last machine and drain the factory until it reaches
steady state again.

3P. Goossens, Modeling of manufacturing systems with finite buffer sizes
using PDEs, Masters Thesis, TU Eindhoven, 2007



Phenomenology I

Model needs to explain:

• The maximal steady state throughput λmax of the production
line is much lower than 1



Phenomenology II

More:

• The steady–state WIP distribution ρss(x) for λ << 1 is
constant in x

• The steady–state WIP distribution ρss(x) for λ ≈ λmax decays
almost linearly in x



Phenomenology III

More:

• At shut down, the production line is filled up by a backwards
moving wave.
wave speed is

vshutdown =
λ

M −
∫ 1
0 ρss(x)dx

. (1)

• The transient drain depends on the influx λ.
• If λ ≈ λmax then the factory drains from the end.
• If λ < λmax then WIP is reduced by a wave ”eating” into it

from upstream and at the same time WIP uniformly drains
downstream.



Phenomenology IV

Figure: λ < λmax . The WIP distribution drifts downwards and ”gets
eaten” from the back



Figure: λ ≈ λmax , the system approaches the steady state distribution
almost uniformly in space.



Inhomogeneous processing rate

Two fundamental stochastic processes

• The production process with mean processing rate µ = 1.

• The blocking process when the buffer becomes full.

Together they lead to an inhomogeneous processing rate

µ̃ = c(x)µ.

We make three assumptions for c(x);

• c(1) = 1.

• c(x) linearly increases with the steady state influx λ.

• c(x) linearly increases as a function of x .

Consistent Assumption:

µ̃ = c(x)µ = λk(x − 1) + µ



Model

Inhomogeneous and discontinuous flux

F (ρ, x) :=

{ µρ
1+ρ+kρ(1−x) for ρ < M

0 for ρ ≥ M.
(2)

Figure: Flux functions (2) at positions x = 0, 0.5, 1 in the supply chain.



Steady state WIP distribution

Figure: Steady states for a flux function (2) and different values for the
inflow densities λ



Kinetic waves

Riemann problem

For different initial conditions we get different kinetic waves:

• a rarefaction - speed λ = f ′(ρ). Filling wave - start at a traffic
light.

• a shock wave - speed s = f (ρl )
ρl−M . Blocking wave.

• a shock wave traveling with infinite speed. Information wave
after restart.

• This wave is followed by a classical rarefaction wave
emanating at x = 1 and a shock wave emanating at x = 0



First PDE Simulations I
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First PDE Simulations II
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