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The supermarket model

• A system of n FIFO queues. Represent states by vectors in Zn
≥.

• E.g., n = 7: (1, 4, 7, 0, 4, 4, 6) has queue 3 with 7 customers, etc...

• Arrival times form a Poisson process of rate λn, where λ ∈ (0, 1).
Each arriving customer chooses d ≤ n queues uniformly at random
(with replacement), then joins the shortest queue.

• E.g., if choices = (5, 7), then (1, 4, 7, 0, 4, 4, 6) → (1, 4, 7, 0, 5, 4, 6).

• Resolve ties by joining the leftmost queue.

• E.g., if choices = (5, 6), then (1, 4, 7, 0, 4, 4, 6) → (1, 4, 7, 0, 5, 4, 6).

• Service times are i.i.d. Exp (1) random variables. So model all
departures by a Poisson process of rate n, and for each departure
time, pick a queue uniformly at random and remove a customer.

• E.g., if choice = 7, then (1, 4, 7, 0, 4, 4, 6) → (1, 4, 7, 0, 4, 4, 5).

• Ignore departures from empty queues.

• E.g., if choice = 4, then (1, 4, 7, 0, 4, 4, 6) → (1, 4, 7, 0, 4, 4, 6).
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The supermarket model with memory

• A memory tracks the index of an additional queue. Represent states
by pairs in Q̂ := Zn

≥ × {1, ..., n}.

• E.g., ((1, 4, 7, 0, 4, 4, 6) , 1) has queue 1 as its memory.
(1, 4, 7, 0, 4, 4, 6) is more readable.

• Each arriving customer will add the memory queue to his/her d
choices, before joining the shortest queue. The memory then saves
the index of the shortest queue out of those under consideration.
Saving the memory: resolve ties by saving the leftmost queue out of
those considered.

• E.g., if choices = (5, 6), then (1, 4, 7, 0, 4, 4, 6) → (2, 4, 7, 0, 4, 4, 6).

• Joining a queue: resolve ties by joining the leftmost non-memory
queue.

• E.g., if choices = (5, 6), then (1, 4, 7, 0, 4, 4, 6) → (1, 4, 7, 0, 5, 4, 6) .

• Departures still the same.
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Motivation and applications

• Studied by numerous authors, e.g. Graham, Luczak and McDiarmid,
Luczak and Norris, Mitzenmacher.

• Origins in the classical balls and bins model:
Throw n balls into n bins, with each ball going into the least loaded
of d ≤ n bins chosen uniformly at random.

Theorem (Gonnet, 1981; Azar, Broer, Karlin and Upfal 1999.)
With high probability, the maximum queue length is

log n

log log n
if d = 1,

log log n

log d
if d ≥ 2.

• Theme: the power of two choices in load distribution.
Applications in computer science, e.g.:

• In a table to be searched, lower maximum load =⇒ faster search
times.

• In network systems, better distribution =⇒ faster processing times.
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Queue ranks

• For q ∈ Q̂, rank the queues from 1 to n so that each arriving
customer joins the lowest ranked queue amongst his/her choices.
Let R (q, j) be the rank of queue j in state q, and let

R (q) := (R (q, 1) , ..., R (q, n)) .

Example
If q = (4, 1, 8, 4) then R (q) = (2, 1, 4, 3), since

1. q = (4, 1, 8, 4) =⇒ R (q) = (!, 1, !, !).

2. q = (4, 1, 8, 4) =⇒ R (q) = (2, !, !, 3).

3. q = (4, 1, 8, 4) =⇒ R (q) = (!, !, 4, !).
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Lengths processes

• Let Q = (Qt)t≥0
be a copy of the supermarket model with memory.

This is a stochastic process on Q̂; call this a lengths process. It is
easy to see that lengths processes are Markov.

Example
If Q has initial state q = (5, 17, 20, 14, 6, 6, 14, 11), then writing Tr for
the time of the rth event (r ≥ 1), a sample path might look like:
..Q_0... = ( 5 17 20 14 .6 .6 14 11)

..Q_{T_1} = ( 5 17 20 13 .6 .6 14 11)

..Q_{T_2} = ( 5 17 20 13 .6 .6 14 10)

..Q_{T_3} = ( 5 17 20 13 .6 .7 14 10)

..Q_{T_4} = ( 5 17 20 13 .6 .8 14 10)

..Q_{T_5} = ( 5 16 20 13 .6 .8 14 10)

..Q_{T_6} = ( 5 16 19 13 .6 .8 14 10)

....................................



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Lengths processes

• Let Q = (Qt)t≥0
be a copy of the supermarket model with memory.

This is a stochastic process on Q̂; call this a lengths process. It is
easy to see that lengths processes are Markov.

Example
If Q has initial state q = (5, 17, 20, 14, 6, 6, 14, 11), then writing Tr for
the time of the rth event (r ≥ 1), a sample path might look like:
..Q_0... = ( 5 17 20 14 .6 .6 14 11)

..Q_{T_1} = ( 5 17 20 13 .6 .6 14 11)

..Q_{T_2} = ( 5 17 20 13 .6 .6 14 10)

..Q_{T_3} = ( 5 17 20 13 .6 .7 14 10)

..Q_{T_4} = ( 5 17 20 13 .6 .8 14 10)

..Q_{T_5} = ( 5 16 20 13 .6 .8 14 10)

..Q_{T_6} = ( 5 16 19 13 .6 .8 14 10)

....................................



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

What do we study about Q?

• Q converges to its unique stationary distribution π. We are
interested in how fast this convergence is.

• Justification of existence coming up...
• Precise definitions coming up...
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Coupling of Markov chains

• A Markovian coupling of Markov chains on Ω with transition matrix
M is a Markov process ((Xt , X ′

t ))t≥0
on Ω × Ω such that

1. X = (Xt)t≥0
and X′ = (X ′

t )t≥0
are both Markov chains on Ω with

transition matrix M, and
2. if Xs = X ′

s for some s ≥ 0, then Xt = X ′
t for all t ≥ s.

• Note that the initial distributions of X and X′ maybe arbitrary.
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Example of a coupling

Example (Simple random walk on {0, 1, ..., n})
If ♠ and ♣ are independent, a sample path might look like:

5 ♠
4 ♠ ♣
3 ♠ ♠ ♣
2 ♣ ♠ ♠ ♠ ♣
1 ♣ ♣ ♣ ♠ ♣ ♠ ♠
0 ♣ ♣ ♣ ♠

0 1 2 3 4 5 6 7 8 9 10 → t

(Move down with probability 1

2
, doing nothing at state 0. Move up with

probability 1

2
, doing nothing at state n.)
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Example of a coupling

Example (Simple random walk on {0, 1, ..., n})
Consider letting ♠ walk randomly as usual, but make ♣ walk in the same
direction as ♠. Then they will eventually meet (here at t = 9):

5 ♠
4 ♠
3 ♠ ♠
2 ♣ ♠ ♠ ♠
1 ♣ ♣ ♠ ♣ ♠ ♠
0 ♣ ♣ ♣ ♣ ♣ ♠

0 1 2 3 4 5 6 7 8 9 10 → t

• We make deductions like: if x ≤ y , then

M t (y , 0) = P (♠t = 0) ≤ P (♣t = 0) = M t (x , 0) .



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Example of a coupling

Example (Simple random walk on {0, 1, ..., n})
Consider letting ♠ walk randomly as usual, but make ♣ walk in the same
direction as ♠. Then they will eventually meet (here at t = 9):

5 ♠
4 ♠
3 ♠ ♠
2 ♣ ♠ ♠ ♠
1 ♣ ♣ ♠ ♣ ♠ ♠
0 ♣ ♣ ♣ ♣ ♣ ♠

0 1 2 3 4 5 6 7 8 9 10 → t

• We make deductions like: if x ≤ y , then

M t (y , 0) = P (♠t = 0) ≤ P (♣t = 0) = M t (x , 0) .



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

How we couple the supermarket model(s)

• Couple Q and Q′ so they share event times (a common source of
randomness).

• So a single Poisson process of rate λn (resp. n) gives all arrival (resp.
potential departure) times.

• Make random choices for Q as usual:

(

C 1
T , ..., Cd

T

)

for arrivals, CT for departures.

• Make choices for Q′ based on those made for Q. In particular, for
each event time T , construct a permutation αT on {1, ..., n}. Then

(

αT

(

C 1
T

)

, ..., αT

(

Cd
T

))

for arrivals, αT (CT ) for departures.

As required, these are still uniformly random choices.
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Why the stationary distribution exists

• Let Q be a lengths process for the supermarket model with memory
as usual. Let Q′ be one for the supermarket model (without
memory) with d = 1 arrival choice.

• So Q′ is a system of n independent M/M/1 queues. They are stable
since birth rate = λn < n = death rate.

• So Q′ has a well-known, unique stationary distribution.

• For each event T , let ρT be the permutation bijecting between
queues of equal rank.

• Formally, let ρT satisfy R (QT , j) = R (Q ′
T , ρT (j)) for all

j ∈ {1, ..., n}.

• Then Q is at least as well-behaved as Q′.

• E.g., if the customer in Q′ joins the shortest queue (rank 1), then so
does his/her counterpart in Q.

• So Q has a unique stationary distribution π, to which it converges.

• But what does this mean?
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Total variation distance

• Total variation distance is a metric on the space of distributions on
Ω. For distributions µ, ν on Ω,

dTV (µ, ν) = max {|µ (A) − ν (A)| : A ⊆ Ω} .

• Then ‘Q(n) converges to π(n)’ means

dTV

(

L
(

Q
(n)
t , q

)

, π(n)
)

→ 0 as t → ∞, ∀q ∈ Q̂,

where L
(

Q
(n)
t , q

)

is the law of Q
(n)
t given initial state q.

• Recall: the law L (X ) of an V -valued random variable X is the
distribution v %→ P

`

X−1 (v)
´

on V .

• We are interested in the speed of this convergence as a function of
n. But what does ‘speed’ mean?
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Mixing times

• The mixing time of Q(n) is

τ (n) (ε, q) := inf
{

t ≥ 0 : dTV

(

L
(

Q
(n)
t , q

)

, π(n)
)

≤ ε
}

,

defined for 0 < ε ≤ 1, q ∈ Q̂.

• The mixing is rapid if

τ (n)
(

1

4
, q

)

= O (log n) ,

for all sufficiently ‘nice’ initial states q ∈ Q̂ (made precise later).

• ε = 1

4
is canonical as it gives neater algebra.

• Cannot require log n time for all initial states, consider (a)
q1 = (50, 50, 50) with many customers or (b) q2 = (100, 0, 0) with
high maximum queue-length.

• ‘Speed’ is then described by upper bounds on τ (n). But how do we
establish such bounds? Coupling is one way.
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The coupling inequality

Theorem (Coupling inequality – Aldous, 1983)
For a coupling (X,X′), all t ≥ 0 and x , x ′ ∈ Ω,

dTV (L (Xt , x) ,L (X ′
t , x

′)) ≤ P (Xt -= X ′
t | X0 = x , X ′

0 = x ′) .

• Note that different couplings give different bounds.

• So if (Q,Q′) is a coupling of the lengths process with Q′ in
equilibrium, then

dTV (L (Qt , q) , π) ≤ P (Qt -= Q ′
t | Q0 = q) ,

for all t ≥ 0, q ∈ Q̂.

• In general, constructing a coupling (let alone a good one) is quite
difficult. Path coupling makes this easier.
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Path coupling

Theorem (Path coupling – Bubley and Dyer, 1997)
Let Ω be the vertex set of some connected graph with the graph metric
ρ. If there exists α ≤ 1 and a coupling (X,X′) such that

E
[

ρ
(

Xt+1, X
′
t+1

)

| Xt , X
′
t

]

≤ αρ (Xt , X
′
t )

whenever ρ (Xt , X ′
t ) = 1, for all t ≥ 0, then the coupling can extended to

Ω × Ω.

• Recall: the graph metric ρ (x , x ′) gives the length of the shorest
path from x to x ′.

• Key: we only need to consider pairs (x , x ′) which are edges, and not
arbitrary pairs.
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Two stage coupling

• We couple Q and Q′ in two stages:

1. first so that their profiles agree (defined next slide)
2. then so that they themselves agree.

• Multi-stage coupling is a commonly used technique.

• We only present the profile coupling.
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Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile vectors

• Informally: profiles capture queue-lengths information but not
queue-order information.

• For q ∈ Q̂, let L (q, r) be the number of queues of length ≥ r in q.
Then the profile of q = (h, i) is the pair

Pr (q) := ((L (q, 1) , L (q, 2) , ...) , h (i)) .

• Note that h (i) is the length of the memory queue in q.

Example
If q = (4, 1, 3, 4) then Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1), since

1. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, !, !, !, ...) , !).

2. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, !, !, ...) , !).

3. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, ...) , !).

4. q = (4, 1, 2, 4) =⇒ Pr (q) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1).



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile processes

• From last slide, the profile vector

Pr (q) = (l , m) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1)

is an element of the profiles space

P̂ :=















(l , m) ∈ Z
N
≥ × Z≥ :

n ≥ l (1) ≥ l (2) ≥ ... ≥ 0,
l (r) > 0 for finitely many r ,
l (m) − l (m + 1) ≥ 1

with the convention l (0) = n















.

• The profile of Q = (Qt)t≥0
is the process P = (Pr (Qt))t≥0

. This is

a stochastic process on P̂ , and can be shown to also be Markov.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Profile processes

• From last slide, the profile vector

Pr (q) = (l , m) = ((4, 3, 2, 2, 0, 0, 0, ...) , 1)

is an element of the profiles space

P̂ :=















(l , m) ∈ Z
N
≥ × Z≥ :

n ≥ l (1) ≥ l (2) ≥ ... ≥ 0,
l (r) > 0 for finitely many r ,
l (m) − l (m + 1) ≥ 1

with the convention l (0) = n















.

• The profile of Q = (Qt)t≥0
is the process P = (Pr (Qt))t≥0

. This is

a stochastic process on P̂ , and can be shown to also be Markov.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The profile coupling

• As before: couple P and P′ so they share event times. Make random
choices for P, then dependent choices for P′.

• Transitions will be described in Q̂. The choice of q ∈ Q̂ to represent
a profile will not matter.

• For each event T , let φT be the permutation defined as follows. Let
φT biject between the memory queues, then pair off the remaining
queues by rank (lowest up).

Example
If QT = (1, 4, 2, 7) , Q ′

T = (2, 5, 3, 4) then φT = (2, 3, 4), since

1. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (2) = 3.

2. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (1) = 1.

3. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (3) = 4.

4. QT = (1, 4, 2, 7) , Q ′
T = (2, 5, 3, 4) =⇒ φT (4) = 2.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The neighbourhood structure
• Say p = (l , m) and p′ = (l ′, m′) are adjacent, i.e., set ρ (p, p′) = 1, if

∃!k > 0 s.t.

{

l (r) = l ′ (r) − δr ,k , ∀r ∈ N, and

m = m′ or m = m′ − 1 = k − 1.

• Must verify P̂ is connected, so that ρ is finite-valued.

Lemma (Monotonicity of distance)
Under the profile coupling, we have ρ (Pt , P ′

t) ≤ ρ (Ps , P ′
s) for all

0 ≤ s ≤ t.

Proof (outline).

• Check the result for ρ (Ps , P ′
s) = 1, i.e. check that adjacent states

remain adjacent or coalesce.

• For δ := ρ (Ps , P ′
s) > 1, let Ps = P0

s , ..., Pδ
s = P ′

s be a path, then

ρ (Pt , P
′
t) ≤

δ
∑

j=1

ρ
(

P j−1

t , P j
t

)

≤
δ

∑

j=1

ρ
(

P j−1
s , P j

s

)

= ρ (Ps , P
′
s) .
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Rapid mixing

Lemma
Let c = c (λ) > λ

1−λ , let P and P′ have adjacent inital states p and p′.
Then there exist α = α (c) , β = β (c) > 0 such that

E
(

ρ (Pt , P
′
t) 1An

1Bn,t

)

≤ e−βt + 2e−βn,

for all n ∈ N, t ≥ 0. Here An = {#customers in p ≤ cn} and
Bn,t = {p has a queue length ≤ t/α}.
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Rapid mixing

Proof (outline).

• By monotonicity of distance, there is a process K = (Kt)t≥0
on Z≥

such that if Kt = 0 then Pt = P ′
t , and if Kt is large then Kt has drift

< 0.

• Upper bound

E (ρ (Pt , P
′
t)) = P (ρ (Pt , P

′
t) = 1) = P (Pt -= P ′

t)

by the probability of 3 events... By time t,

1. P has not had many customers and K has not reached 0; unlikely by
a technical lemma.

2. P has had many customers. Then a coupled process in equilibrium
will have many customers too; unlikely.

3. K has not had many jumps. Then a Poisson random variable is far
from its mean; unlikely.
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Rapid mixing

Theorem
Let c = c (λ) > λ

1−λ
. Then there exists η = η (c) > 0 such that

dTV (L (Pt , p) , π) ≤ ne−ηt + e−ηn + P
(

An

)

+ P
(

Bn,t

)

,

for all n ∈ N, t ≥ 0. Here An = {#customers in p ≤ cn} and
Bn,t = {p has a queue length ≤ t/α}, and A′

n, B
′
n,t defined similarly.

Proof (outline).

• Build path to apply previous lemma. Handle ‘bad cases’ separately.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Rapid mixing

Theorem
Let c = c (λ) > λ

1−λ
. Then there exists η = η (c) > 0 such that

dTV (L (Pt , p) , π) ≤ ne−ηt + e−ηn + P
(

An

)

+ P
(

Bn,t

)

,

for all n ∈ N, t ≥ 0. Here An = {#customers in p ≤ cn} and
Bn,t = {p has a queue length ≤ t/α}, and A′

n, B
′
n,t defined similarly.

Proof (outline).

• Build path to apply previous lemma. Handle ‘bad cases’ separately.



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

The model

Coupling, Markov chain mixing and path coupling

The profile coupling

Further work



The model Coupling, Markov chain mixing and path coupling The profile coupling Further work

Further work

• We have shown rapid mixing of P and P′.

• Assuming identical profiles, we have successfully coupled Q and Q′.

• Trying to show this is rapid mixing.

• Thank you!
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