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1. One-step policy improvement

To approximately solve an MDP:

1. Choose initial policy π

2. Value determination step

∀x : vπ(x) + gπ = C(x, π(x)) +
∑

y Pxy(π(x))vπ(y).

relative values vπ(x) and gain gπ

3. Policy improvement step

∀x : π′(x) = arg min
a

[
C(x, a) +

∑
y

Pxy(a)vπ(y)

]
.
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Complication

• the number of states can be too large to determine vπ

∀x : vπ(x) + gπ = C(x, π(x)) +
∑

y Pxy(π(x))vπ(y).

• even when vπ is approximate iteratively
e.g. by successive approximations (SA)

∀x : vπn(x) = C(x, π(x)) +
∑

y Pxy(π(x))vπn−1(y).

• especially true when x is multi-dimensional
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Approximate solution

Break down the big MC into sub MCs

by decomposition of the state space (Norman, 1972)

1. Slightly modify the problem assumptions to relax the dependencies

and/or

2. Choose a well structured initial policy that allows decomposition



 

 

6/33

Examples � Decomposition and One-step policy improvement

Routing telephone calls in a network or call center

• Krishnan and Ott (1987), Sassen, Tijms and Nobel (1997), Bhulai
(2008)

Producing multiple items on a single machine

•Wijngaard (1979), De Bruin and Van der Wal (2010)

Tra�c lights

• Haijema and Van der Wal (2008)
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2. Problem of interest

Minimize the overall mean waiting time per car!

• F streams in
C (disjoint) combinations,

• Green to ≤ 1 combination,

• Grouping and sequencing
is given,

• Lights:
green→ yellow→ red→ green.
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Clean problem

• Cars only,

• Known # cars at queue f ,

• Under-saturated cases only,

• Identical clearance times.

Generalization possible!!

When to switch?
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3. Markov Decision Problem (MDP)

3.1. Discrete time

• 1 slot = 2 sec.

• Switching to another combination takes 3 slots:

� 2 slots yellow

� 1 slot all red

• Events within 1 slot:

� observe state,

� change lights,

� 0 or 1 arrival/queue (1 w.p. pf),

� ≤ 1 departure per "G-or-Y" queue.



 

 

11/33

3.2. MDP complexity

• State = (q1, . . . , qF ; l),

qf = # cars at queue f < Q

l = state of light

• Total # states =

QF · [1 + C(1 + 2)]

• Examples � qf ≤ 20 cars
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F = 12, C = 4 : #states ≈ 1017 → intractable.
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F = 4, C = 2 : # states ≈ 106 → (just) tractable
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3.3. Heuristics for more complex cases

MDP: curse of dimensionality

Heuristics:

• Exhaustive control (XC)

• Fixed cycle (FC)

• ...
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4. One-step policy improvement

4.1. Initial policy Fixed Cycle (FC)

• Fixed cyclic order

• Fixed green periods: G1, . . . , GC

→ Fixed cycle length = D slots

G1 G22 + 1
Fixed Cycle
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4.2. FC � Decomposition

Example

• G1 = G2 = 10 → D = 26 slots, labeled 1, 2, . . . ..., 26

stream 1

stream 2

G1 = 10 G2 = 10

1 2 11 14

2 + 12 + 1

Fixed Cycle

• Remaining green time depends on slot number only

• Decomposition → evaluate each stream in isolation.
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4.3. FC � Value determination step

• Relative value of state (t, q1, . . . , qF ) =

F∑
f=1

vFCf (t, qf).

• where under FC for stream f :

vFCf (t, qf) = relative value (bias term) of state (t, qf)

vFCf (t, qf) = lim
n→∞

1

D

n+D−1∑
j=n

(
vfj (t, qf)− vfj (t, 0)

)
• and

vfn(t, qf) = total expected costs at stream f over a planning
horizon of n slots when starting in state (t, qf).
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FC � Value iteration

vfn+1(t, qf) = qf + pf · vfn(t + 1, qf+1) + (1− pf) · vfn(t + 1, qf)

, if t implies red to f

vfn+1(t, qf) = qf + pf · vfn(t + 1, qf) + (1− pf) · vfn(t + 1, qf−1)

, if t implies green/yellow to f .
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4.4. Policy improvement step � break FC

Every decision epoch:

1. observe (t, q1, . . . , qF )

2. adjust state of tra�c light

G1 G2 G2G1

Lengthen or shorten green periods

Choose a best `time-jump' from slot t to slot a: relative values
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4.5. An example
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4 identical streams
in 2 combinations

G1 = G2 = 3 → D = 12

Best slot a given t and q =
(4, 2, 2, 1)?
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4 cars waiting at flow 1

vFC1 (a, 4).
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4.6. An example
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Best slot a given t and q =
(4, 2, 2, 1)?

 1  2  3  4  5  6  7  8  9  10  11  12

re
la

tiv
e 

va
lu

e

slot number

G G G Y Y R R R R R R R
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Sum when (4,2,2,1) cars waiting
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f=1v
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f (a, qf).
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5. Simulation results

Compare some cyclic policies:

RV : one-step policy improvement over FC

MDP : optimal cyclic policy

FC : �xed cycle

XC : switch when qf = 0

XC-2 : switch when qf ≤ 2
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5.1. A simple `polling' example

At most 1 out of 3 has green:
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At medium and high arrival intensities

Overall average waiting time per car in seconds.

load Medium High
RV 10.7 20.3
MDP 10.6 18.2
FC 16.0 33.8
XC 14.0 27.8
XC-2 10.7 18.4
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5.2. A more complex infrastructure
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• Dilemma:

� A or C → ≤ 4 dep/slot

� B or D → ≤ 2 dep/slot

• De�nition of XC?
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A more complex infrastructure

Overall average waiting time per car in seconds.
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load High % above RV
RV 41.8
FC 51.2 +22%
XC 90.0 +115%
XC-2 53.6 +28%
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Tail distributions

Rule EW overall EW C1, C3 EW C2, C4

RV1 41.8 37.4 50.6
FC 50.5 +21% 50.5 50.4
XC 89.8 +115% 88.5 92.4
XC-1 70.1 +68% 68.9 72.4
XC-2 53.3 +28% 52.1 55.8
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5.3. Evaluation

• RV improves FC:

� 50-65% waiting time reduction for `simple' cases,

� 22% at complex intersection.

• RV and XC-2 are nearly optimal for `simple' cases,

• RV is superior for complex intersection.
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6. Conclusions and remarks

• Optimal control of tra�c lights is complicated,

• Approximation by One-step policy improvement

� improves FC,

� is fast even for very large intersections,

� is often better than other dynamic control rules.
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Not in this talk

1. Modi�ed RV rules

- Acyclic control,

- "2-step" policy improvement rule.

2. Information on near-future arrival,

3. Arterials and Networks.
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Extension � Arrival information

State =
(
t, qf , a

f
1 , a

f
2 , a

f
3 , a

f
4 , a

f
5

)

t = ”Y2” af
1 = 0qf = 2 af

2 = 0 af
3 = 1 af

4 = 0 af
5 =?

BC D

3 slots

A

After one slot:

After two slots:

B

t = all-red af
1 = 0qf = 1 af

2 = 1 af
3 = 0 af

4 =? af
5 =?

C D

2 slots

af
1 = 1qf = 2 af

2 = 0 af
3 = 0 af

4 = 1 af
5 = 0

AB C D

1 slot

4 slots

t = ”Y1”
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Extension � Arrival information

Relative values of states:

lim
N→∞

F∑
f=1

1

D

D−1∑
d=0

[
VN+d

(
t, qf , a

f
)
− (n + d) · g(f)

]
(1)

where g(f) and VN+d (t, qf , a
f) by value iteration algorithm.

V f
n+1

(
t, qf , a

f
1 , a

f
2 , a

f
3 , a

f
4 , a

f
5

)
= qf+

+(1− λf) · V f
n

(
t, (qf + af1 −∆f

t )
+, af2 , a

f
3 , a

f
4 , a

f
5 , 0
)

+λf · V f
n

(
t, (qf + af1 −∆f

t )
+, af2 , a

f
3 , a

f
4 , a

f
5 , 1
)

or discrete simulation over m slots +
∑N

f=1R
FC
f (t′, q′f) as terminal cost.
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Results � F12C4 with 5 slots arrival info

Mean waiting times (in sec.) for partly-asymmetric F12C4
(Identical arrival rates: 0.1, 0.15, and 0.2)

Rule ρ = 0.4 ρ = 0.6 ρ = 0.8
Cyclic policies:
RV1 13.9 20 44
RV1(5) 13.1 -6% 19 -5% 43 -3%
FC 15.5 +12% 24 +24% 53 +21%
XC 20.0 +44% 35 +76% 96 +118%
XC-2 13.9 0% 21 +2% 58 +32%
FC cycle length 32 40 88
FC departure times (6, 6, 6, 6) (8, 8, 8, 8) (20, 20, 20, 20)
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Extension � Network of intersections (I3x3F4C2)
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Results � Network of 9 intersections (I3x3F4C2)

Mean waiting times (in sec.) for skew I3x3F4C2, ρi = 0.8:

(λi1 = 0.32, λi2 = λi3 = 0.16 and λi4 = 0.48)

Policy No cars turn right 17% turns right 34% turns right
RV1(5)a 8.9 9.6 10.0
RV1a 12.9 +44% 12.7 +33% 12.6 +27%
FC, coordinated 8.8b -0.9% 12.3c +29% 14.4d +44%
XC-2 11.6 +30% 11.6 +21% 11.6 +16%
aBased on FC with Di = 44, di,1 = 16 and di,2 = 24 seconds.
bFC with Di = 42, ψ = 42, di,1 = 16 and di,2 = 22 seconds.
cFC with Di = 44, ψ = 42, di,1 = 16 and di,2 = 24 seconds.
dFC with Di = 48, ψ = 40, di,1 = 18 and di,2 = 26 seconds.
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