One-step policy improvements to reduce the waiting time at traffic lights

René Haijema and Jan van der Wal

workshop on Optimal Control in Stochastic Systems EURANDOM, Eindhoven, November 27, 2010

Outline

- 1. One-step policy improvement examples
- 2. Control of traffic lights
- 3. Markov Decision Problem
- 4. One-step policy improvement over FC
 - FC decomposition,
 - FC relative values.
- 5. Results

6. Conclusions

1. One-step policy improvement

To approximately solve an MDP:

- 1. Choose initial policy π
- 2. Value determination step

$$\forall x : v^{\pi}(x) + g^{\pi} = C(x, \pi(x)) + \sum_{y} P_{xy}(\pi(x))v^{\pi}(y).$$

relative values $v^{\pi}(x)$ and gain g^{π}

3. Policy improvement step

$$\forall x: \pi'(x) = \arg\min_{a} \left[C(x,a) + \sum_{y} P_{xy}(a) v^{\pi}(y) \right]$$

Complication

• the number of states can be too large to determine v^{π}

$$\forall x : v^{\pi}(x) + g^{\pi} = C(x, \pi(x)) + \sum_{y} P_{xy}(\pi(x))v^{\pi}(y).$$

• even when v^{π} is approximate iteratively e.g. by successive approximations (SA)

$$\forall x : v_n^{\pi}(x) = C(x, \pi(x)) + \sum_y P_{xy}(\pi(x))v_{n-1}^{\pi}(y).$$

• especially true when x is multi-dimensional

Break down the big MC into sub MCs

by decomposition of the state space (Norman, 1972)

- 1. Slightly modify the problem assumptions to relax the dependencies and/or
- 2. Choose a well structured initial policy that allows decomposition

Examples – Decomposition and One-step policy improvement

Routing telephone calls in a network or call center

Krishnan and Ott (1987), Sassen, Tijms and Nobel (1997), Bhulai (2008)

Producing multiple items on a single machine

• Wijngaard (1979), De Bruin and Van der Wal (2010)

Traffic lights

• Haijema and Van der Wal (2008)

Outline

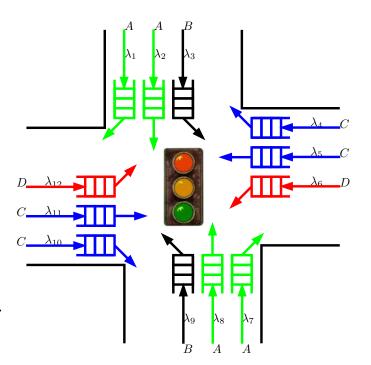
- 1. One-step policy improvement examples
- 2. Control of traffic lights
- 3. Markov Decision Problem
- 4. One-step policy improvement over FC
 - FC decomposition,
 - FC relative values.
- 5. Results

6. Conclusions

2. Problem of interest

Minimize the overall mean waiting time per car!

- F streams in C (disjoint) combinations,
- Green to ≤ 1 combination,
- Grouping and sequencing is given,
- Lights: green \rightarrow yellow \rightarrow red \rightarrow green.

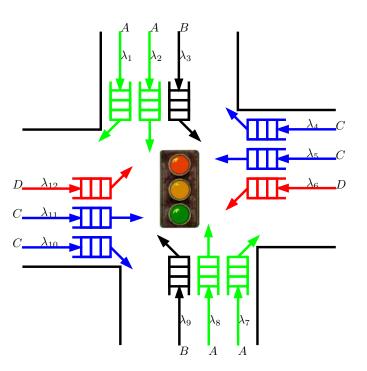


Clean problem

- Cars only,
- Known # cars at queue f,
- Under-saturated cases only,
- Identical clearance times.

 $Generalization \ possible !!$

When to switch?

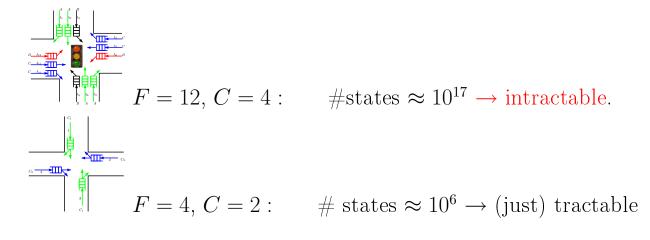


- 3. Markov Decision Problem (MDP)
- 3.1. Discrete time
 - 1 slot = 2 sec.
 - Switching to another combination takes 3 slots:
 - -2 slots yellow
 - -1 slot all red
 - Events within 1 slot:
 - observe state,
 - change lights,
 - $-0 \text{ or } 1 \text{ arrival/queue } (1 \text{ w.p. } p_f),$
 - ≤ 1 departure per "G-or-Y" queue.

3.2. MDP complexity

- $egin{aligned} ext{ate} &= (q_1, \dots, q_F; l), \ q_f &= \# ext{ cars at queue } f < Q \end{aligned} egin{aligned} \bullet ext{ Total } \# ext{ states} &= \ Q^F \cdot [1 + C(1+2)] \end{aligned}$ • State = $(q_1, \ldots, q_F; l)$, l = state of light

• Examples $-q_f \leq 20$ cars



3.3. Heuristics for more complex cases

MDP: curse of dimensionality

Heuristics:

- Exhaustive control (XC)
- Fixed cycle (FC)

4. One-step policy improvement

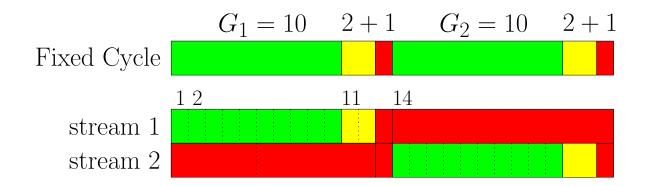
- 4.1. Initial policy Fixed Cycle (FC)
 - Fixed cyclic order
 - Fixed green periods: G_1, \ldots, G_C \rightarrow Fixed cycle length = D slots
 - $G_1 2+1 G_2$

Fixed Cycle

4.2. FC – Decomposition

Example

•
$$G_1 = G_2 = 10 \rightarrow D = 26$$
 slots, labeled 1, 2, ..., 26



- Remaining green time depends on slot number only
- Decomposition \rightarrow evaluate each stream in isolation.

4.3. FC – Value determination step

• Relative value of state
$$(t, q_1, \ldots, q_F) = \sum_{f=1}^F v_f^{FC}(t, q_f).$$

• where under FC for stream f:

 $v_f^{FC}(t, q_f)$ = relative value (bias term) of state (t, q_f)

$$v_f^{FC}(t, q_f) = \lim_{n \to \infty} \frac{1}{D} \sum_{j=n}^{n+D-1} \left(v_j^f(t, q_f) - v_j^f(t, 0) \right)$$

• and

 $v_n^f(t, q_f) =$ total expected costs at stream f over a planning horizon of n slots when starting in state (t, q_f) .

$$v_{n+1}^{f}(t, q_{f}) = q_{f} + p_{f} \cdot v_{n}^{f}(t+1, q_{f}+1) + (1-p_{f}) \cdot v_{n}^{f}(t+1, q_{f})$$
, if t implies red to f

$$v_{n+1}^{f}(t,q_f) = q_f + p_f \cdot v_n^{f}(t+1,q_f) + (1-p_f) \cdot v_n^{f}(t+1,q_f-1)$$

, if t implies green/yellow to f.

4.4. Policy improvement step – break FC

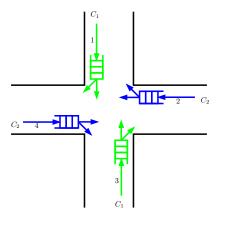
Every decision epoch:

- 1. observe (t, q_1, \ldots, q_F)
- 2. adjust state of traffic light

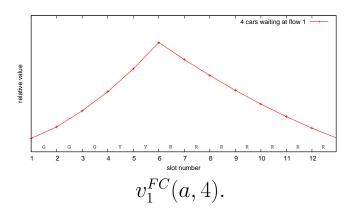
Lengthen or shorten green periods

Choose a best 'time-jump' from slot t to slot a: relative values

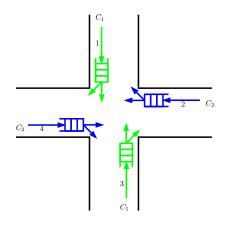
4.5. An example



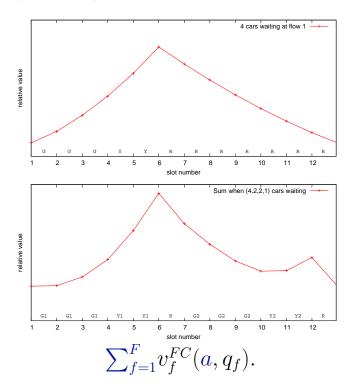
4 identical streams in 2 combinations $G_1 = G_2 = 3 \rightarrow D = 12$ Best slot a given t and $\mathbf{q} = (4, 2, 2, 1)$?



4.6. An example



4 identical streams in 2 combinations $G_1 = G_2 = 3 \rightarrow D = 12$ Best slot a given t and $\mathbf{q} = (4, 2, 2, 1)$?



WAGENINGEN UNIVERSITY WAGENINGEN UR

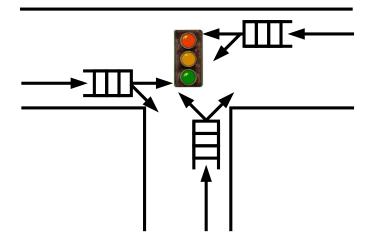
5. Simulation results

Compare some cyclic policies:

- RV : one-step policy improvement over FC
- MDP : optimal cyclic policy
- FC : fixed cycle
- XC : switch when $q_f = 0$
- XC-2 : switch when $q_f \leq 2$

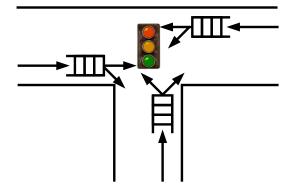
5.1. A simple 'polling' example

At most 1 out of 3 has green:



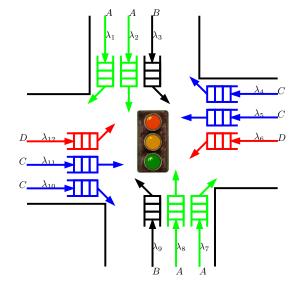
At medium and high arrival intensities

Overall average waiting time per car in seconds.



load	Medium	High
RV	10.7	20.3
MDP	10.6	18.2
FC	16.0	33.8
XC	14.0	27.8
XC-2	10.7	18.4

5.2. A more complex infrastructure

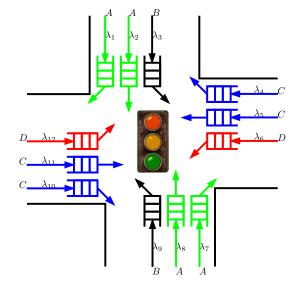


- Dilemma:
 - $-A \text{ or } C \rightarrow \leq 4 \text{ dep/slot}$ $-B \text{ or } D \rightarrow \leq 2 \text{ dep/slot}$

• Definition of XC?

A more complex infrastructure

Overall average waiting time per car in seconds.



load	High	% above RV
RV	41.8	
FC	51.2	+22%
XC	90.0	+115%
XC-2	53.6	+28%

Tail distributions

Rule	EW	overall	$EW C_1, C_3$	$EW C_2, C_4$
RV1	41.8		37.4	50.6
FC	50.5	+21%	50.5	50.4
XC	89.8	+115%	88.5	92.4
XC-1	70.1	+68%	68.9	72.4
XC-2	53.3	+28%	52.1	55.8

5.3. Evaluation

- RV improves FC:
 - 50-65% waiting time reduction for 'simple' cases,
 - $-\,22\%$ at complex intersection.
- RV and XC-2 are nearly optimal for 'simple' cases,
- RV is superior for complex intersection.

6. Conclusions and remarks

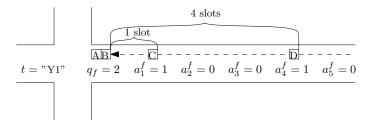
- Optimal control of traffic lights is complicated,
- Approximation by One-step policy improvement
 - improves FC,
 - is fast even for very large intersections,
 - is often better than other dynamic control rules.

Not in this talk

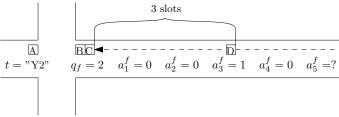
- 1. Modified RV rules
 - Acyclic control,
 - "2-step" policy improvement rule.
- 2. Information on near-future arrival,
- 3. Arterials and Networks.

Extension – Arrival information

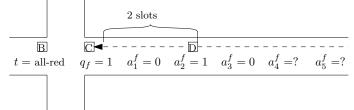
$$ext{State} = \left(t, q_f, a_1^f, a_2^f, a_3^f, a_4^f, a_5^f
ight)$$



After one slot:



After two slots:



Extension – Arrival information

Relative values of states:

$$\lim_{N \to \infty} \sum_{f=1}^{F} \frac{1}{D} \sum_{d=0}^{D-1} \left[V_{N+d} \left(t, q_f, \mathbf{a}^f \right) - (n+d) \cdot g^{(f)} \right]$$
(1)

where $g^{(f)}$ and $V_{N+d}(t, q_f, \mathbf{a}^f)$ by value iteration algorithm. $V_{n+1}^f(t, q_f, a_1^f, a_2^f, a_3^f, a_4^f, a_5^f) = q_f +$

$$+(1-\lambda_{f})\cdot V_{n}^{f}\left(t,(q_{f}+a_{1}^{f}-\Delta_{t}^{f})^{+},a_{2}^{f},a_{3}^{f},a_{4}^{f},a_{5}^{f},0\right)$$
$$+\lambda_{f}\cdot V_{n}^{f}\left(t,(q_{f}+a_{1}^{f}-\Delta_{t}^{f})^{+},a_{2}^{f},a_{3}^{f},a_{4}^{f},a_{5}^{f},1\right)$$

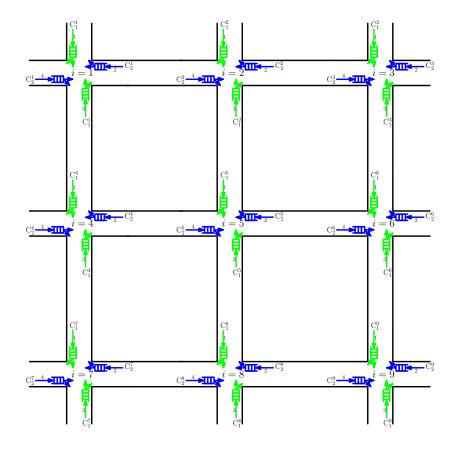
or discrete simulation over m slots $+\sum_{f=1}^{N} R_f^{FC}(t', q'_f)$ as terminal cost.

Results – F12C4 with 5 slots arrival info

Mean waiting times (in sec.) for partly-asymmetric F12C4 (Identical arrival rates: 0.1, 0.15, and 0.2)

Rule	$\rho = 0.4$	$\rho = 0.6$	$\rho = 0.8$		
Cyclic policies:					
RV1	13.9	20	44		
RV1(5)	13.1 -6%	19 -5%	43 -3%		
FC	15.5 + 12%	24 + 24%	53 + 21%		
XC	20.0 +44%	35 + 76%	96 + 118%		
XC-2	13.9 0%	21 + 2%	58 + 32%		
FC cycle length	32	40	88		
FC departure times	(6, 6, 6, 6)	(8,8,8,8)	(20, 20, 20, 20)		

Extension – Network of intersections (I3x3F4C2)



Results – Network of 9 intersections (I3x3F4C2)

Mean waiting times (in sec.) for skew I3x3F4C2, $\rho^i = 0.8$:

$$(\lambda_1^i = 0.32, \lambda_2^i = \lambda_3^i = 0.16 \text{ and } \lambda_4^i = 0.48)$$

Policy	No cars t	urn right	17% tı	ırns right	34% ti	urns right
$\mathrm{RV1}(5)^{\mathbf{a}}$	8.9		9.6		10.0	
RV1 ^a	12.9	+44%	12.7	+33%	12.6	+27%
FC, coordinated	8.8 ^b	-0.9%	12.3 ^c	+29%	14.4 ^d	+44%
XC-2	11.6	+30%	11.6	+21%	11.6	+16%

^aBased on FC with $D_i = 44$, $d_{i,1} = 16$ and $d_{i,2} = 24$ seconds. ^bFC with $D_i = 42$, $\psi = 42$, $d_{i,1} = 16$ and $d_{i,2} = 22$ seconds. ^cFC with $D_i = 44$, $\psi = 42$, $d_{i,1} = 16$ and $d_{i,2} = 24$ seconds. ^dFC with $D_i = 48$, $\psi = 40$, $d_{i,1} = 18$ and $d_{i,2} = 26$ seconds.

