Markov Decision Processes

with Applications

Ulrich Rieder

University of UIm

ulm university universität **UUUIM**

Markov Decision Processes with Applications

• Markov Decision Processes

Basic results, Computational aspects

• Partially Observable Markov Decision Processes

Hidden Markov models, Filtered MDPs

Bandit problems, Consumption-Investment problems

• Continuous-Time Markov Decision Processes

Piecewise deterministic MDPs

Parallel queueing model

Markov Decision Processes

 $(E, A, D_n, Q_n, r_n, g_N)$ with horizon N

- E state space
- \bullet A action space
- $D_n \subset E \times A$ admissible state-action pairs at time n
- $Q_n = Q_n (\cdot | x, a)$ transition law at time n
- $r_n: D_n \to \mathbb{R}$ reward function at time n
- $g_N: E \to \mathbb{R}$ terminal reward function at time N

decision rule at time $n \quad f_n : E \to A$ measurable and $f_n(x) \in D_n(x)$ for all $x \in E$ policy $\pi := (f_0, f_1, \dots, f_{N-1})$

For
$$n = 0, 1, ..., N$$
 define the value functions

$$V_{n\pi}(x) := E_x^{\pi} \left[\sum_{k=n}^{N-1} r_k (X_k, f_k(X_k)) + g_N(X_N) \right]$$

$$V_n(x) := \sup_{\pi} V_{n\pi}(x), \ x \in E$$

 π is called **optimal** if $V_{0\pi}(x) = V_0(x)$ for all $x \in E$.

Integrability Assumption (A_N) :

For
$$n = 0, 1, ..., N$$

$$\sup_{\pi} E_x^{\pi} \Big[\sum_{k=n}^{N-1} r_k^+ (X_k, f_k(X_k)) + g_N^+ (X_N) \Big] < \infty, \ x \in E$$

Bertsekas/Shreve (1978), Hernandez-Lerma/Lasserre (1996)... Puterman (1994), Feinberg/Schwartz (2002) ... Bäuerle/Rieder (2011)

Let
$$\mathbb{M}(E) := \{ v : E \to [-\infty, \infty) | v \text{ is measurable} \}$$
 and define the following operators for $v \in \mathbb{M}(E)$:

$$(L_n v)(x, a) := r_n(x, a) + \int v(x')Q_n(dx'|x, a), \ (x, a) \in D_n (T_{nf_n}v)(x) := (L_n v)(x, f_n(x)) (T_n v)(x) := \sup_{a \in D_n(x)} (L_n v)(x, a), \ x \in E$$
 Note: $T_n v \notin \mathbb{M}(E)$

A decision rule f_n is called a **maximizer** of v at time n if $T_{nf_n}v = T_nv$.

Reward Iteration: $V_{n\pi} = T_{nf_n}V_{n+1,\pi}$, $V_{N\pi} = g_N$. Bellman Equation: $V_n = T_nV_{n+1}$, $V_N = g_N$.

Verification Theorem: Let (v_n) ⊂ M(E) be a solution of the Bellman equation.
a) v_n ≥ V_n for n = 0, 1, ..., N.
b) If f^{*}_n is a maximizer of v_{n+1} for n = 0, 1, ..., N - 1, then v_n = V_n and the policy (f^{*}₀, f^{*}₁, ..., f^{*}_{N-1}) is optimal.

Structure Assumption (SA_N) : There exist sets $\mathbb{M}_n \subset \mathbb{M}(E)$ of measurable functions and sets Δ_n of decision rules such that for all $n = 0, 1, \dots, N - 1$:

(i)
$$g_N \in \mathbb{M}_N$$
.
(ii) If $v \in \mathbb{M}_{n+1}$ then $T_n v$ is well-defined and $T_n v \in \mathbb{M}_n$.
(iii) For all $v \in \mathbb{M}_{n+1}$ there exists a maximizer f_n of v with $f_n \in \Delta_n$.

Structure Theorem:

Assume (SA_N) . Then it holds:

a) $V_n \in \mathbb{M}_n$ and (V_n) is a solution of the Bellman equation.

b)
$$V_n = T_n T_{n+1} \dots T_{N-1} g_N.$$

c) For n = 0, 1, ..., N - 1 there exists a maximizer f_n of V_{n+1} with $f_n \in \Delta_n$, and every sequence of maximizers f_n^* of V_{n+1} defines an optimal policy $(f_0^*, f_1^*, ..., f_{N-1}^*)$ for the N-stage Markov Decision Problem. $b: E \to \mathbb{R}_+$ is called an **upper bounding function** if there exist $c_r, c_g, \alpha_b \in \mathbb{R}_+$ such that for all $n = 0, 1, \dots, N-1$

(i)
$$r_n^+(x, a) \leq c_r b(x)$$
.
(ii) $g_N^+(x) \leq c_g b(x)$.
(iii) $\int b(x')Q_n(dx'|x, a) \leq \alpha_b b(x)$.

$$\alpha_b := \sup_{\substack{(x,a) \in D}} \frac{\int b(x')Q(dx'|x,a)}{b(x)}. \text{ Define } \|v\|_b := \sup_{x \in E} \frac{|v(x)|}{b(x)}.$$
$$\mathbb{B}_b := \left\{ v \in \mathbb{M}(E) | \|v\|_b < \infty \right\}, \ \mathbb{B}_b^+ := \left\{ v \in \mathbb{M}(E) | \|v^+\|_b < \infty \right\}.$$

 $b: E \to \mathbb{R}_+$ is called a **bounding function** if there exist $c_r, c_g, \alpha_b \in \mathbb{R}_+$ such that for all $n = 0, 1, \dots, N - 1$

(i)
$$|r_n(x,a)| \le c_r b(x)$$
.
(ii) $|g_N(x)| \le c_g b(x)$.
(iii) $\int b(x')Q_n(dx'|x,a) \le \alpha_b b(x)$.

Theorem: Suppose the N-stage MDP has an upper bounding function b and for all n = 0, 1, ..., N - 1 it holds:

(i) $D_n(x)$ is compact and $x \to D_n(x)$ is upper semicontinuous (usc). (ii) $(x, a) \to \int v(x')Q_n(dx'|x, a)$ is usc for all usc $v \in \mathbb{B}_b^+$. (iii) $(x, a) \to r_n(x, a)$ is usc . (iv) $x \to g_N(x)$ is usc.

Then the sets $\mathbb{M}_n := \{v \in \mathbb{B}_b^+ | v \text{ is usc}\}$ and $\Delta_n := \{f_n \text{ decision rule at time } n\}$ satisfy the Structure Assumption (SA_N) , in particular: $V_n \in \mathbb{M}_n$ and there exists an optimal policy $(f_0^*, f_1^*, \dots, f_{N-1}^*)$ with $f_n^* \in \Delta_n$.

Markov Decision Processes with Infinite Time Horizon

We consider a stationary MDP with $\beta \in (0, 1]$ and $N = \infty$. $J_{\infty\pi}(x) := E_x^{\pi} \Big[\sum_{k=0}^{\infty} \beta^k r \big(X_k, f_k(X_k) \big) \Big]$ $J_{\infty}(x) := \sup_{\pi} J_{\infty\pi}(x), \ x \in E.$

Integrability Assumption (A):

$$\sup_{\pi} E_x^{\pi} \left[\sum_{k=0}^{\infty} \beta^k r^+ \left(X_k, f_k(X_k) \right) \right] < \infty, \ x \in E$$

Convergence Assumption (C):

$$\lim_{n \to \infty} \sup_{\pi} E_x^{\pi} \left[\sum_{k=n}^{\infty} \beta^k r^+ \left(X_k, f_k(X_k) \right) \right] = 0, \ x \in E$$

Then it holds: $J_{\infty\pi} = \lim_{n} J_{n\pi}$ limit value function $J := \lim_{n} J_n \ge J_{\infty}$. Note: $J \neq J_{\infty}$ and $J_{\infty} \notin \mathbb{M}(E)$! Verification Theorem: Assume (C). Let $v \in \mathbb{M}(E)$ be a fixed point of T such that $v \ge J_{\infty}$. If f^* is a maximizer of v, then $v = J_{\infty}$ and the stationary policy (f^*, f^*, \ldots) is optimal for the infinite-stage Markov Decision Problem.

Structure assumption (SA):

There exist a set $\mathbb{M} \subset \mathbb{M}(E)$ of measurable functions and a set \triangle of decision rules such that:

(i)
$$0 \in \mathbb{M}$$
.
(ii) If $v \in \mathbb{M}$ then Tv is well-defined and $Tv \in \mathbb{M}$.
(iii) For all $v \in \mathbb{M}$ there exists a maximizer f of v with $f \in \triangle$
(iv) $J \in \mathbb{M}$ and $J = TJ$.

Structure Theorem: Let (C) and (SA) be satisfied. Then it holds:

a) $J_{\infty} \in \mathbb{M}, \ J_{\infty} = TJ_{\infty} \text{ and } J_{\infty} = J.$

b) There exists a maximizer $f \in \Delta$ of J_{∞} , and every maximizer f^* of J_{∞} defines an optimal stationary policy (f^*, f^*, \ldots) .

Theorem: Suppose the stationary MDP has an upper bounding function b with $\beta \alpha_b < 1$ and it holds:

(i)
$$D(x)$$
 is compact and $x \to D(x)$ is usc.
(ii) $(x, a) \to \int v(x')Q(dx'|x, a)$ is usc for all usc $v \in \mathbb{B}_b^+$.
(iii) $(x, a) \to r(x, a)$ is usc.

Then it holds:

$$\alpha_b := \sup_{(x,a)\in D} \frac{\int b(x')Q(dx'|x,a)}{b(x)}$$

Contracting Markov Decision Processes

Structure Theorem: Let b be a bounding function and $\beta \alpha_b < 1$. If there exists a closed subset $\mathbb{M} \subset \mathbb{B}_b$ and a set Δ of decision rules such that:

(i) $0 \in \mathbb{M}$. (ii) $T : \mathbb{M} \to \mathbb{M}$. (iii) For all $v \in \mathbb{M}$ there exists a maximizer f of v with $f \in \Delta$.

Then it holds:

a)
$$J_{\infty} \in \mathbb{M}, J_{\infty} = TJ_{\infty}$$
 and $J_{\infty} = J$.

b) J_{∞} is the unique fixed point of T in \mathbb{M} .

c) There exists a maximizer $f \in \triangle$ of J_{∞} , and every maximizer f^* of J_{∞} defines an optimal stationary policy (f^*, f^*, \ldots) .

Howard's Policy Improvement Algorithm

Let J_f be the value function of the stationary policy (f, f, ...). Denote

$$D(x,f) := \left\{ a \in D(x) | \left(LJ_f \right)(x,a) > J_f(x) \right\}$$

Let the Markov decision process be contracting.

Then it holds:

a) If for some subset $E_0 \subset E$

$$g(x) \in D(x, f)$$
 for $x \in E_0$
 $g(x) = f(x)$ for $x \notin E_0$

then $J_g \ge J_f$ and $J_g(x) > J_f(x)$ for $x \in E_0$.

In this case the decision rule g is called an **improvement** of f. b) If $D(x, f) = \emptyset$ for all $x \in E$, then the stationary policy (f, f, ...) is optimal. Remark: (f, f, ...) is optimal $\iff f$ cannot be improved.

Partially Observable Markov Decision Processes

- $E_X \times E_Y$ state space x observable state, y unobservable state
- A action space
- $D \subset E_X \times A$ admissible state-action pairs, $D(x) \subset A$
- $Q(\cdot|x, y, a)$ transition law
- Q_0 initial distribution (prior distribution) of Y_0
- r(x, y, a) reward function
- g(x, y) terminal reward function
- $\beta \in (0, 1]$ discount factor

Examples : Hidden Markov Model (HMM), Bayesian Decision Model

decision rule at time n $f_n(x_0, a_0, x_1, \dots, x_n) = f_n(h_n)$ policy $\pi = (f_0, f_1, \dots, f_{N-1})$ finite horizon: $N < \infty$

Rieder (1975), Elliott et al. (1995), Bäuerle/Rieder (2011) ...

$$J_{N\pi}(x) := E_x^{\pi} \left[\sum_{n=0}^{N-1} \beta^n r \left(X_n, Y_n, f_n(H_n) \right) + \beta^N g \left(X_N, Y_N \right) \right]$$
$$J_N(x) := \sup_{\pi} J_{N\pi}(x), \ x \in E_X$$

For
$$n = 0, 1, ...$$
 and $C \subset E_Y$ define
 $\mu_n(C|X_0, A_0, X_1, ..., X_n) := P_x^{\pi}(Y_n \in C|X_0, A_0, X_1, ..., X_n)$
a posteriori-distribution at time n

Filter Equation

$$\mu_0 = Q_0 \text{ and } \mu_{n+1}(\cdot | H_n, A_n, X_{n+1}) = \Phi(X_n, \mu_n(\cdot | H_n), A_n, X_{n+1})$$

where

$$\Phi(x,\rho,a,x')(C) := \frac{\int\limits_C \left[\int q(x',y'|x,y,a)\rho(dy)\right]\nu(dy')}{\int\limits_{E_Y} \left[\int q(x',y'|x,y,a)\rho(dy)\right]\nu(dy')}, \ C \subset E_Y, \ \rho \in \mathbb{P}(E_Y)$$

Bayes-Operator

Filtered Markov Decision Process

• $E' := E_X \times \mathbb{P}(E_Y) \ni (x, \rho)$ enlarged state space

• A and
$$D(x,\rho) := D(x)$$

- $Q^X(B|x,\rho,a) := \int Q(B \times E_Y|x,y,a)\rho(dy), B \subset E_X$ $Q'(B \times C|x,\rho,a) := \int_B 1_C(\Phi(x,\rho,a,x'))Q^X(dx'|x,\rho,a), C \subset \mathbb{P}(E_Y)$ • $r'(x,\rho,a) := \int r(x,y,a)\rho(dy)$
- $g'(x,\rho) := \int g(x,y) \rho(dy)$

Theorem:

a) $J_{N\pi}(x) = J'_{N\pi}(x, Q_0)$ and $J_N(x) = J'_N(x, Q_0)$. b) Assume (SA_N) . Then the Bellman equation holds, i.e. $V'_N(x, \rho) := \beta^N g'(x, \rho)$ $V'_n(x, \rho) := \sup_{a \in D(x)} \{r'(x, \rho, a) + \int V'_{n+1}(x', \Phi(x, \rho, a, x'))Q^X(dx'|x, \rho, a)\}.$ Let f'_n be a maximizer of V'_{n+1} for $n = 0, \dots, N - 1$. Then the policy $\pi^* := (f^*_0, f^*_1, \dots, f^*_{N-1})$ is optimal for the *N*-stage POMDP, where $f^*_n(h_n) := f'_n(x_n, \mu_n(\cdot|h_n)), h_n = (x_0, a_0, x_1, \dots, x_n).$

Note that $V'_n(x,\rho) = \beta^n J'_{N-n}(x,\rho), \quad n = 0, \dots, N$

Computational aspects Kalman Filter

Sufficient Statistics

Bandit Problems

unknown success probabilities $\theta_1 \in [0, 1]$ and $\theta_2 \in [0, 1]$

 $Q_0 = \mathsf{product} \ \mathsf{of} \ \mathsf{two} \ \mathsf{Uniform}\mathsf{-distributions} \ \mathsf{of} \ \left(heta_1, heta_2
ight)$

Aim: maximize the expected number of successes in a finite or infinite number of trials

•
$$E' := \mathbb{N}_0^2 \times \mathbb{N}_0^2 \ni (m_1, n_1, m_2, n_2) = \rho$$

- $\bullet \ A = \big\{1, 2\big\}$
- Bayes-Operator $\Phi(\rho, a, \{ \text{success} \}) = \rho + e_{2a-1}$

•
$$r'(\rho, a) := \frac{m_a+1}{m_a+n_a+2}$$

• $\beta \in (0,1].$

 $N < \infty$: There exists an optimal policy.

monotonicity results: stay-on-a-winner property

stopping property if θ_2 is known.

$$N = \infty$$
 and $\beta \in (0, 1)$:

For $K \in \mathbb{R}$ let J(m, n; K) be the unique solution of $v(m, n) = \max\{K, \beta(p(m, n)v(m + 1, n) + (1 - p(m, n))v(m, n + 1))\}$ for $(m, n) \in \mathbb{N}_0^2$ and $p(m, n) := \frac{m+1}{m+n+2}$.

Define the **Gittins-Index**

$$I(m,n) := \min\{K|J(m,n;K) = K\}$$

Then it holds:

The stationary Index-policy (f^*, f^*, \ldots) is optimal for the infinite-stage Bandit problem where

$$f^*(m_1, n_1, m_2, n_2) = \begin{cases} 1 \text{ if } I(m_1, n_1) \ge I(m_2, n_2) \\ 2 \text{ if } I(m_1, n_1) < I(m_2, n_2). \end{cases}$$

Gittins (1989), Whittle (1980), (1988)

Cox-Ross-Rubinstein Model

• Bond
$$B_n = (1+i)^n$$

• Stock $S_n = S_0 \cdot \prod_{k=1}^n Y_k$ (Y_k) independent and identically distributed
 $P(Y_k = \boldsymbol{u}) = \theta = 1 - P(Y_k = \boldsymbol{d})$ unknown up-probability θ

 $Q_0 = \mathsf{Uniform}\operatorname{-distribution} \, \mathrm{of} \; \theta$

(NA) : d < 1 + i < u

 $\pi_n = \text{amount of money invested in the stock at time } n$

Then it holds for the wealth process:

$$X_{n+1}^{\pi} = X_n^{\pi} (1+i) + \pi_n (Y_{n+1} - 1 - i), \ X_0^{\pi} = x > 0$$

Utility function $U: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, strictly increasing and concave

$$(P) \begin{cases} E_x \Big[U \big(X_N^{\pi} \big) \Big] \longrightarrow \max \\ X_N^{\pi} \ge 0 \\ \pi = \big(\pi_n \big) \text{ portfolio-strategy} \end{cases}$$

•
$$E' := \mathbb{R}_+ \times \mathbb{N}_0^2 \ni (x, (m, n)) = (x, \rho)$$

• $A = \mathbb{R}, \quad D(x) = \{a \in \mathbb{R} | (1+i)x + a(Y-i-1) \ge 0 \text{ a.s.} \}$
• Bayes-Operator $\Phi(\rho, \boldsymbol{u}) = (m+1, n)$
• $r' \equiv 0, \ g'(x, \rho) := U(x)$

 $b(x, \rho) := 1 + x$ is a bounding function for the filtered MDP.

Then it holds:

a) $J_N(x) = J'_N(x, Q_0)$ is strictly increasing and concave in x. b) There exists an optimal policy $(f_0^*, f_1^*, \dots, f_{N-1}^*)$ for (P).

Application:
$$U(x) = \frac{1}{\gamma} x^{\gamma}$$
 (power utility) $\gamma < 1, \gamma \neq 0$
(i) $J_N(x, \rho) = J_N(x, m, n) = \frac{1}{\gamma} x^{\gamma} \cdot d_N(m, n).$
(ii) $f_k^*(x, \rho) = f_k^*(x, m, n) = x \cdot \alpha_k(m, n).$
monotonicity results: $(m, n) \leq (m', n') : \iff m \leq m', n \geq n'$
(iii) $0 < \gamma < 1$: $\alpha_k(m, n) \geq \alpha_k(\bar{p})$ with $\bar{p} := \frac{m+1}{m+n+2}$

 $\gamma < 0$: $\alpha_k(m,n) \leq \alpha_k(\bar{p})$

Piecewise Deterministic Markov Decision Processes

- E state space, $E \subset \mathbb{R}^d$
- $\bullet \ensuremath{\mathbb{U}}$ $\ \ \mbox{control space}$

 $A := \big\{ \alpha : \mathbb{R}_+ \longrightarrow \mathbb{U} \ \text{ measurable} \big\}, \text{ we write: } \alpha(t) = \alpha_t$

 $\bullet \ \mu(x,u) \qquad {\rm drift\ between\ jumps}$

 $\phi_t^{\alpha}(x)$ (unique) solution of : $dx_t = \mu(x_t, \alpha_t)dt, x_0 = x$

deterministic flow between jumps

• $\lambda > 0$ jump rate (here: λ is independent of (x, u))

 $0 := T_0 < T_1 < T_2 < \ldots$ jump time points of a Poisson process with rate λ

- $Q(\cdot|x, u)$ distribution of jump goals
- $\bullet r(x,u)$ reward rate
- $\bullet \ \beta \geq 0 \qquad \qquad {\rm discount \ rate}$

 $\pi = (\pi_t)$ is called a **Markovian policy** (or piecewise open loop policy) if there exists a sequence of measurable functions $f_n : E \longrightarrow A$ such that

$$\pi_t = f_n(Z_n)(t - T_n) \text{ for } T_n < t \leqslant T_{n+1}.$$

We write: $\pi = (\pi_t) = (f_n).$

piecewise deterministic Markov process

$$X_t = \phi_{t-T_n}^{\pi} (Z_n) \text{ for } T_n \leqslant t < T_{n+1}, \quad Z_n = X_{T_n}$$

$$V_{\pi}(x) := E_x^{\pi} \left[\int_0^\infty e^{-\beta t} r\left(X_t, \pi_t\right) dt \right]$$
$$V_{\infty}(x) := \sup_{\pi} V_{\pi}(x), \ x \in E$$

- Continuous-time stochastic control: Hamilton-Jacobi-Bellman equation
- Solution via discrete-time MDP

Yuskevich (1987), Davis (1993), Schäl et al. (2004)... Jacobsen (2006), Guo/Hernandez-Lerma (2009): CTMDP

Discrete-time MDP

- *E* state space (embedded Markov process)
- $\bullet A$ action space

•
$$Q'(B|x,\alpha) := \lambda \int_{0}^{\infty} e^{-(\beta+\lambda)t} Q(B|\phi_t^{\alpha}(x),\alpha_t) dt, \ B \subset E$$

• $r'(x,\alpha) := \int_{0}^{\infty} e^{-(\beta+\lambda)t} r(\phi_t^{\alpha}(x),\alpha_t) dt$
• $\beta' = 1$

Note: A is a function space, Q' is substochastic.

$$(Tv)(x) = \sup_{\alpha \in A} \left\{ \int_{0}^{\infty} e^{-(\beta+\lambda)t} \left[r(\phi_{t}^{\alpha}(x), \alpha_{t}) + \lambda \int v(z) Q(dz | \phi_{t}^{\alpha}(x), \alpha_{t}) \right] dt \right\}$$

Theorem:

$$V_{\pi}(x) = E_x^{\pi} \Big[\sum_{n=0}^{\infty} r' \big(Z'_n, f_n \big(Z'_n \big) \big) \Big] =: J_{\infty \pi}(x)$$
$$V_{\infty}(x) = \sup_{\pi} J_{\infty \pi}(x) = J_{\infty}(x), \ x \in E$$

For a proof of the following result we use the set $\mathcal{R} := \{ \alpha : \mathbb{R}_+ \longrightarrow \mathbb{P}(\mathbb{U}) \text{ measurable} \}$ of **relaxed controls** (with the Young topology). Since $\mathcal{R} \supset A$, we have to extend the domain of the data Q' and r'. Then it holds:

$$J_{\infty}^{\mathsf{rel}}(x) \ge J_{\infty}(x) = V_{\infty}(x), \ x \in E.$$

 $b: E \longrightarrow \mathbb{R}_+$ is called an **upper bounding** function for the Piecewise Deterministic Markov Model, if there exist $c_r, c_Q, c_\phi \in \mathbb{R}_+$ such that

(i)
$$r^+(x, u) \leq c_r b(x)$$
.
(ii) $\int b(x')Q(dx'|x, u) \leq c_Q b(x)$.
(iii) $\lambda \int_0^\infty e^{-(\lambda+\beta)t} b(\phi_t^\alpha(x)) dt \leq c_\phi b(x)$.

If r is bounded from above, then $b \equiv 1$ is an upper bounding function and $c_Q = 1$ and $c_{\phi} = \frac{\lambda}{\lambda + \beta}$.

If b is an upper bounding function, then b is an upper bounding function for the MDP' (with and without relaxed controls) and $\alpha_b \leq c_Q c_{\phi}$. **Theorem:** Suppose the Piecewise Deterministic Markov Model has a continuous upper bounding function b with $\alpha_b < 1$ and it holds:

(i) U is compact.
(ii)
$$(t, x, \alpha) \longrightarrow \phi_t^{\alpha}(x)$$
 is continuous.
(iii) $(x, u) \longrightarrow \int v(z)Q(dz|x, u)$ is usc for all usc $v \in \mathbb{B}_b^+$
(iv) $(x, u) \longrightarrow r(x, u)$ is usc.

Then it holds:

a) J_∞^{rel} is upper semi-continuous and J_∞^{rel} = TJ_∞^{rel}.
b) There exists an optimal relaxed policy π^{*} = (π_t^{*}), i.e. π_t^{*} takes values in P(U).
c) If φ_t^α(x) is independent of α or if U is convex, μ(x, u) is linear in u and u → [r(x, u) + λ ∫ J_∞^{rel}(z)Q(dz|x, u)] is concave on U, then there exists an optimal nonrelaxed policy π^{*} = (π_t^{*}) such that

 $\pi_t^* = f(X_{T_n}^{\pi^*})(t - T_n), \ T_n < t \leq T_{n+1} \text{ for a decision rule } f : E \to A.$

In particular, π_t^* takes values in \mathbb{U} and $J_{\infty}^{\mathsf{rel}} = J_{\infty} = V_{\infty}$.

Continuous-Time Markov Decision Processes

CTMDP (X_t) with contable state space E_X and intensities q_{ij}(u) uniformized CTMDP : λ ≥ ∑_{j≠i} q_{ij}(u) = -q_{ii}(u), i ∈ E_X, u ∈ U
 Partially Observable CTMDP:

intensities depend on CTMC (Y_t) with finite state space E_Y , i.e. $q_{ij}(y, u)$ if $Y_t = y \in E_Y$, y unobservable state

 Q_0 initial distribution of Y_0

$$\lambda \ge \sum_{j \ne i} q_{ij}(y, u) = -q_{ii}(y, u), \ i \in E_X, \ y \in E_Y, \ u \in \mathbb{U}$$
$$V_{\pi}(i) := E_i^{\pi} \Big[\int_0^\infty e^{-\beta t} r \left(X_t^{\pi}, Y_t, \pi_t \right) dt \Big]$$
$$V_{\infty}(i) := \sup_{\pi} V_{\pi}(i), \ i \in E_X$$

Filter Equation $\mu_t := P_i^{\pi} (Y_t = \cdot | \mathcal{F}_t^X) \in \mathbb{P}(E_Y)$

$$d\mu_t = b(X_t, \mu_t, \pi_t)dt + H(X_{t-}, \mu_{t-}, X_t, \pi_{t-}), \ \mu_0 = Q_0$$

Reformulation as filtered PDMDP:

 (X_t, μ_t) piecewise deterministic MDP with state space $E_X \times \mathbb{P}(E_Y)$.

Theorem.

a)
$$V_{\pi}(i) = J_{\infty\pi}(i, Q_0)$$
 and $V_{\infty}(i) = J_{\infty}(i, Q_0), i \in E_X$.

b) Assumptions! Then the Bellman equation holds, i.e.

$$\begin{split} J_{\infty}(i,\rho) &= \sup_{\alpha \in A} \left\{ \int_{0}^{\infty} e^{-(\beta+\lambda)t} \left(L J_{\infty} \right) \left(i, \phi_{t}^{\alpha}(i,\rho), \alpha_{t} \right) dt \right\} \end{split}$$
 where

$$(LJ_{\infty})(i,\rho,u) := r(i,\rho,u) + \sum_{j \neq i} (J_{\infty}(j,\rho + H(i,\rho,j,u)) - J_{\infty}(i,\rho)) q_{ij}(\rho,u) + \lambda J_{\infty}(i,\rho)$$

Application: Parallel Queueing Model

two parallel queues and one server

Aim: minimize the expected number of waiting customers

- complete information: μc -rule is optimal
- partial information: $Y_t \equiv Y \in \{\mu_1, \nu_1\} \times \{\mu_2, \nu_2\}$
 - e.g. two types of customers are in the system and the server can not differ which group is waiting in which queue.

There exists an optimal nonrelaxed policy $f^*(i, \rho) \in \{1, 2\}$. **symmetric case:** $Y \in \{(\mu_1, \mu_2), (\mu_2, \mu_1)\}, \mu_1 < \mu_2$ $\mu_t = P_i^{\pi} (Y = (\mu_1, \mu_2) | \mathcal{F}_t^X) \Longrightarrow d\mu_t = (\mu_2 - \mu_1)(2\pi_t - 1)\mu_t(1 - \mu_t)dt + \Delta \mu_t$ $\Delta \mu_t = \begin{cases} H_1(\mu_{t-}) & \text{if } X_t^1 = X_{t-}^1 - 1 \\ H_2(\mu_{t-}) & \text{if } X_t^2 = X_{t-}^2 - 1 \end{cases}$ where $H_1(\rho) := \frac{\mu_1 \rho}{\mu_1 \rho + \mu_2 (1-\rho)} - \rho, \ H_2(\rho) := \frac{\mu_2 \rho}{\mu_2 \rho + \mu_1 (1-\rho)} - \rho, \ \rho \in [0,1]$ It holds: $H_1(\rho) \le 0, \ H_2(\rho) \ge 0.$ The stationary policy (f^*, f^*, \ldots) is optimal with $f^*(i_1, i_2, \rho) = \begin{cases} 1 & i_2 = 0 \\ 2 & i_1 = 0 \\ 1 & \rho \le \frac{1}{2}, \ (i_1, i_2) \in \mathbb{N} \times \mathbb{N} \\ 2 & \rho > \frac{1}{2}, \ (i_1, i_2) \in \mathbb{N} \times \mathbb{N} \end{cases}$ $\bar{\mu}_1 := \mu_1 \rho + \mu_2 (1 - \rho), \ \bar{\mu}_2 := \mu_2 \rho + \mu_1 (1 - \rho)$ $\bar{\mu}_1 \geqslant \bar{\mu}_2 \iff \rho \leq \frac{1}{2}$

certainty equivalence principle for the μc -rule holds (if $c_1 = c_2$)!

Rieder/Winter (2009), Bäuerle/Rieder (2009)

References

Bäuerle/Rieder (2011) : Markov decision processes with applications to finance. Bertsekas/Shreve (1978): Stochastic optimal control.

Feinberg/Schwartz (2002): Handbook of Markov decision processes.

Hernandez-Lerma/Lasserre (1996): Discrete-time Markov control processes.

Hinderer(1970): Foundations of non-stationary dynamic programming.

Puterman (1994): Markov decision processes.

Davis (1993): Markov models and optimization.

Elliott/Aggoun/Moore (1995): Hidden Markov models.

Gittins (1989): Bandit processes and dynamic allocation processes.

Guo/Hernandez-Lerma (2009): Continuous-time Markov decision processes.

Jacobsen (2006): Point process theory and applications.

Jeanblanc/Yor/Chesney (2009): Mathematical methods for financial markets.

Rieder/Winter (2009): Optimal control of Markovian jump processes with partial information and applications to a parallel queueing model. Math. Meth. Operat. Res.70, 567-596.

Bäuerle/Rieder (2009): MDP algorithms for portfolio optimization problems in pure jump markets. Finance Stoch. 13, 591-611.