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Markov Decision Processes

(
E, A,Dn, Qn, rn, gN

)
with horizon N

• E state space

• A action space

• Dn ⊂ E × A admissible state-action pairs at time n

• Qn Qn

(·|x, a
)

transition law at time n

• rn : Dn → R reward function at time n

• gN : E → R terminal reward function at time N

decision rule at time n fn : E → A measurable and fn(x) ∈ Dn(x) for all x ∈ E

policy π :=
(
f0, f1, . . . , fN−1

)



For n = 0, 1, . . . , N define the value functions

Vnπ(x) := Eπ
x

[N−1∑
k=n

rk

(
Xk, fk(Xk)

)
+gN(XN)

]

Vn(x) := sup
π

Vnπ(x), x ∈ E

π is called optimal if V0π(x) = V0(x) for all x ∈ E.

Integrability Assumption (AN) :

For n = 0, 1, . . . , N

sup
π

Eπ
x

[N−1∑
k=n

r+
k

(
Xk, fk(Xk)

)
+ g+

N(XN)
]

< ∞, x ∈ E

Bertsekas/Shreve (1978), Hernandez-Lerma/Lasserre (1996). . .

Puterman (1994), Feinberg/Schwartz (2002) . . .

Bäuerle/Rieder (2011)



Let M(E) :=
{
v : E → [−∞,∞)|v is measurable

}
and

define the following operators for v ∈M(E) :

(
Lnv

)
(x, a) := rn(x, a) +

∫
v(x′)Qn

(
dx′|x, a

)
, (x, a

) ∈ Dn(
Tnfnv

)
(x) :=

(
Lnv

)(
x, fn(x)

)
(
Tnv

)
(x) := sup

a∈Dn(x)

(
Lnv

)
(x, a), x ∈ E Note: Tnv /∈M(E)!

A decision rule fn is called a maximizer of v at time n if Tnfnv = Tnv.

Reward Iteration: Vnπ = TnfnVn+1,π , VNπ = gN .

Bellman Equation: Vn = TnVn+1 , VN = gN .

Verification Theorem: Let (vn) ⊂M(E) be a solution of the Bellman equation.

a) vn > Vn for n = 0, 1, . . . , N.

b) If f ∗n is a maximizer of vn+1 for n = 0, 1, . . . , N − 1, then vn = Vn and the policy
(
f ∗0 , f ∗1 , . . . , f ∗N−1

)
is optimal.



Structure Assumption
(
SAN

)
: There exist sets Mn ⊂M(E) of measurable

functions and sets 4n of decision rules such that for all n = 0, 1, . . . , N − 1 :

(i) gN ∈MN .

(ii) If v ∈Mn+1 then Tnv is well-defined and Tnv ∈Mn.

(iii) For all v ∈Mn+1 there exists a maximizer fn of v with fn ∈ 4n.

Structure Theorem:

Assume
(
SAN

)
. Then it holds:

a) Vn ∈Mn and (Vn) is a solution of the Bellman equation.

b) Vn = TnTn+1 . . . TN−1 gN .

c) For n = 0, 1, . . . , N − 1 there exists a maximizer fn of Vn+1 with fn ∈ 4n, and

every sequence of maximizers f ∗n of Vn+1 defines an optimal policy
(
f ∗0 , f ∗1 , . . . f ∗N−1

)

for the N -stage Markov Decision Problem.



b : E → R+ is called an upper bounding function if there exist cr, cg, αb ∈ R+

such that for all n = 0, 1, . . . , N − 1

(i) r+
n (x, a) ≤ crb(x).

(ii) g+
N(x) ≤ cgb(x).

(iii)
∫

b(x′)Qn

(
dx′|x, a

) ≤ αbb(x).

αb := sup
(x,a)∈D

∫
b(x′)Q(dx′|x,a)

b(x) . Define ‖v‖b := sup
x∈E

|v(x)|
b(x) .

Bb :=
{
v ∈M(E)| ‖v‖b< ∞}

, B+
b :=

{
v ∈M(E)| ‖v+‖b< ∞}

.

b : E → R+ is called a bounding function if there exist cr, cg, αb ∈ R+

such that for all n = 0, 1, . . . , N − 1

(i) |rn(x, a)| ≤ crb(x).

(ii) |gN(x)| ≤ cgb(x).

(iii)
∫

b(x′)Qn

(
dx′|x, a

) ≤ αbb(x).



Theorem: Suppose the N-stage MDP has an upper bounding function b and

for all n = 0, 1, . . . , N − 1 it holds:

(i) Dn(x) is compact and x → Dn(x) is upper semicontinuous (usc).

(ii) (x, a) → ∫
v(x′)Qn

(
dx′|x, a

)
is usc for all usc v ∈ B+

b .

(iii) (x, a) → rn(x, a) is usc .

(iv) x → gN(x) is usc.

Then the sets Mn :=
{
v ∈ B+

b |v is usc
}

and 4n :=
{
fn decision rule at time n

}

satisfy the Structure Assumption
(
SAN

)
, in particular: Vn ∈Mn and

there exists an optimal policy
(
f ∗0 , f ∗1 , . . . , f ∗N−1

)
with f ∗n ∈ 4n.



Markov Decision Processes with Infinite Time Horizon

We consider a stationary MDP with β ∈ (
0, 1

]
and N = ∞.

J∞π(x) := Eπ
x

[ ∞∑
k=0

βk r
(
Xk, fk(Xk)

)]

J∞(x) := sup
π

J∞π(x), x ∈ E.

Integrability Assumption (A):

sup
π

Eπ
x

[ ∞∑
k=0

βk r+
(
Xk, fk(Xk)

)]
< ∞, x ∈ E

Convergence Assumption (C):

lim
n→∞

sup
π

Eπ
x

[ ∞∑
k=n

βk r+
(
Xk, fk(Xk)

)]
= 0, x ∈ E

Then it holds: J∞π = lim
n

Jnπ

limit value function J := lim
n

Jn > J∞. Note: J 6= J∞ and J∞ /∈M(E)!



Verification Theorem: Assume (C). Let v ∈ M(E) be a fixed point of T such

that v > J∞. If f ∗ is a maximizer of v, then v = J∞ and the stationary policy
(
f ∗, f ∗, . . .

)
is optimal for the infinite-stage Markov Decision Problem.

Structure assumption (SA):

There exist a set M ⊂ M(E) of measurable functions and a set 4 of decision rules

such that:

(i) 0 ∈M.

(ii) If v ∈M then Tv is well-defined and Tv ∈M.

(iii) For all v ∈M there exists a maximizer f of v with f ∈ 4.

(iv) J ∈M and J = TJ.

Structure Theorem: Let (C) and (SA) be satisfied. Then it holds:

a) J∞ ∈M, J∞ = TJ∞ and J∞ = J.

b) There exists a maximizer f ∈ 4 of J∞, and every maximizer f ∗ of J∞ defines an

optimal stationary policy
(
f ∗, f ∗, . . .

)
.



Theorem: Suppose the stationary MDP has an upper bounding function b

with βαb < 1 and it holds:

(i) D(x) is compact and x → D(x) is usc.

(ii) (x, a) → ∫
v(x′)Q

(
dx′|x, a

)
is usc for all usc v ∈ B+

b .

(iii) (x, a) → r(x, a) is usc.

Then it holds:

(a) J∞ ∈ B+
b , J∞ = TJ∞ and J∞ = J (value iteration).

(b) b is usc =⇒ J∞ is usc.

(c) ∅ 6= LsD∗
n(x) ⊂ D∗

∞(x) for all x ∈ E (policy iteration).

(d) There exists a decision rule f ∗ with f ∗(x) ∈ LsD∗
n(x) for all x ∈ E, and the

stationary policy
(
f ∗, f ∗, . . .

)
is optimal.

αb := sup
(x,a)∈D

∫
b(x′)Q(dx′|x,a)

b(x)



Contracting Markov Decision Processes

Structure Theorem: Let b be a bounding function and βαb < 1. If there exists a

closed subset M ⊂ Bb and a set 4 of decision rules such that:

(i) 0 ∈M.

(ii) T : M→M.

(iii) For all v ∈M there exists a maximizer f of v with f ∈ 4.

Then it holds:

a) J∞ ∈M, J∞ = TJ∞ and J∞ = J.

b) J∞ is the unique fixed point of T in M.

c) There exists a maximizer f ∈ 4 of J∞, and every maximizer f ∗ of J∞ defines an

optimal stationary policy
(
f ∗, f ∗, . . .

)
.



Howard’s Policy Improvement Algorithm

Let Jf be the value function of the stationary policy
(
f, f, . . .

)
.

Denote
D(x, f ) :=

{
a ∈ D(x)|(LJf

)
(x, a) > Jf(x)

}

Let the Markov decision process be contracting.

Then it holds:

a) If for some subset E0 ⊂ E

g(x) ∈ D(x, f ) for x ∈ E0

g(x) = f (x) for x 6∈ E0

then Jg > Jf and Jg(x) > Jf(x) for x ∈ E0.

In this case the decision rule g is called an improvement of f .

b) If D(x, f ) = ∅ for all x ∈ E, then the stationary policy
(
f, f, . . .

)
is optimal.

Remark:
(
f, f, . . .

)
is optimal ⇐⇒ f cannot be improved.



Partially Observable Markov Decision Processes

• EX × EY state space x observable state, y unobservable state

• A action space

• D ⊂ EX × A admissible state-action pairs, D(x) ⊂ A

• Q
(·|x, y, a

)
transition law

• Q0 initial distribution (prior distribution) of Y0

• r
(
x, y, a

)
reward function

• g
(
x, y

)
terminal reward function

• β ∈ (
0, 1

]
discount factor

Examples : Hidden Markov Model (HMM), Bayesian Decision Model

decision rule at time n fn

(
x0, a0, x1, . . . , xn

)
= fn

(
hn

)

policy π =
(
f0, f1, . . . , fN−1

)
finite horizon: N < ∞

Rieder (1975), Elliott et al. (1995), Bäuerle/Rieder (2011) . . .



JNπ(x) := Eπ
x

[N−1∑
n=0

βnr
(
Xn, Yn, fn(Hn)

)
+ βNg

(
XN , YN

)]

JN(x) := sup
π

JNπ(x), x ∈ EX

For n = 0, 1, . . . and C ⊂ EY define

µn

(
C|X0, A0, X1, . . . , Xn

)
:= P π

x

(
Yn ∈ C|X0, A0, X1, . . . , Xn

)

a posteriori-distribution at time n

Filter Equation

µ0 = Q0 and µn+1

(·|Hn, An, Xn+1

)
= Φ

(
Xn, µn

(·|Hn

)
, An, Xn+1

)

where

Φ(x, ρ, a, x′)(C) :=

∫
C

[∫
q(x′,y′|x,y,a)ρ(dy)

]
ν(dy′)

∫
EY

[∫
q(x′,y′|x,y,a)ρ(dy)

]
ν(dy′)

, C ⊂ EY , ρ ∈ P(
EY

)

Bayes-Operator



Filtered Markov Decision Process

• E ′ := EX × P
(
EY

) 3 (
x, ρ

)
enlarged state space

• A and D
(
x, ρ

)
:= D

(
x
)

• QX
(
B|x, ρ, a

)
:=

∫
Q

(
B × EY |x, y, a

)
ρ(dy), B ⊂ EX

Q′(B × C|x, ρ, a
)

:=
∫
B

1C

(
Φ(x, ρ, a, x′)

)
QX

(
dx′|x, ρ, a

)
, C ⊂ P(

EY

)

• r′(x, ρ, a) :=
∫

r
(
x, y, a

)
ρ
(
dy

)

• g′(x, ρ) :=
∫

g
(
x, y

)
ρ
(
dy

)



Theorem:

a) JNπ

(
x
)

= J ′Nπ

(
x,Q0

)
and JN

(
x
)

= J ′N
(
x,Q0

)
.

b) Assume
(
SAN

)
. Then the Bellman equation holds, i.e.

V ′
N(x, ρ) := βNg′(x, ρ)

V ′
n

(
x, ρ

)
:= sup

a∈D(x)

{
r′

(
x, ρ, a

)
+

∫
V ′

n+1

(
x′, Φ(x, ρ, a, x′)

)
QX

(
dx′|x, ρ, a

)}
.

Let f ′n be a maximizer of V ′
n+1 for n = 0, . . . , N − 1. Then the policy

π∗ :=
(
f ∗0 , f ∗1 , . . . , f ∗N−1

)
is optimal for the N -stage POMDP, where

f ∗n
(
hn

)
:= f ′n

(
xn, µn(·|hn)

)
, hn =

(
x0, a0, x1, . . . , xn

)
.

Note that V ′
n(x, ρ) = βnJ ′N−n(x, ρ), n = 0, . . . , N

Computational aspects Kalman Filter

Sufficient Statistics



Bandit Problems

unknown success probabilities θ1 ∈ [0, 1] and θ2 ∈ [0, 1]

Q0 = product of two Uniform-distributions of
(
θ1, θ2

)

Aim: maximize the expected number of successes in a finite or infinite number of

trials

• E ′ := N2
0 × N2

0 3
(
m1, n1,m2, n2

)
= ρ

• A =
{
1, 2

}

• Bayes-Operator Φ
(
ρ, a,

{
success

})
= ρ + e2a−1

• r′
(
ρ, a

)
:= ma+1

ma+na+2

• β ∈ (
0, 1

]
.

N < ∞ : There exists an optimal policy.

monotonicity results: stay-on-a-winner property

stopping property if θ2 is known.



N = ∞ and β ∈ (
0, 1

)
:

For K ∈ R let J(m,n; K) be the unique solution of

v(m,n) = max
{
K, β

(
p(m,n)v(m + 1, n) +

(
1− p(m,n)

)
v(m,n + 1)

)}

for (m,n) ∈ N2
0 and p(m,n) := m+1

m+n+2.

Define the Gittins-Index

I(m,n) := min
{
K|J(m,n; K) = K

}

Then it holds:

The stationary Index-policy
(
f ∗, f ∗, . . .

)
is optimal for the infinite-stage Bandit

problem where

f ∗
(
m1, n1,m2, n2

)
=





1 if I
(
m1, n1

)
> I

(
m2, n2

)

2 if I
(
m1, n1

)
< I

(
m2, n2

)
.

Gittins (1989), Whittle (1980), (1988)



Cox-Ross-Rubinstein Model

• Bond Bn =
(
1 + i

)n

• Stock Sn = S0 ·
n∏

k=1

Yk

(
Yk

)
independent and identically distributed

P
(
Yk = uuu

)
= θ = 1− P

(
Yk = ddd

)
unknown up-probability θ

Q0 =Uniform-distribution of θ

(NA) : ddd < 1 + i < uuu

πn = amount of money invested in the stock at time n

Then it holds for the wealth process:

Xπ
n+1 = Xπ

n

(
1 + i

)
+ πn

(
Yn+1 − 1− i

)
, Xπ

0 = x > 0

Utility function U : R+ −→ R+, strictly increasing and concave

(P )





Ex

[
U

(
Xπ

N

)] −→ max

Xπ
N > 0

π =
(
πn

)
portfolio-strategy



• E ′ := R+ × N2
0 3

(
x, (m,n)

)
= (x, ρ)

• A = R, D(x) =
{
a ∈ R|(1 + i

)
x + a

(
Y − i− 1

)
> 0 a.s.

}

• Bayes-Operator Φ
(
ρ,uuu

)
=

(
m + 1, n

)

• r′ ≡ 0, g′
(
x, ρ

)
:= U

(
x
)

b
(
x, ρ

)
:= 1 + x is a bounding function for the filtered MDP.

Then it holds:

a) JN(x) = J ′N
(
x,Q0

)
is strictly increasing and concave in x.

b) There exists an optimal policy
(
f ∗0 , f ∗1 , . . . , f ∗N−1

)
for (P ).

Application: U(x) = 1
γx

γ (power utility) γ < 1, γ 6= 0

(i) JN(x, ρ) = JN(x,m, n) = 1
γx

γ · dN(m,n).

(ii) f ∗k (x, ρ) = f ∗k (x,m, n) = x · αk(m,n).

monotonicity results: (m,n) 6 (m′, n′) :⇐⇒ m 6 m′, n > n′

(iii) 0 < γ < 1 : αk(m,n) > αk(p̄) with p̄ := m+1
m+n+2

γ < 0 : αk(m,n) 6 αk(p̄)



Piecewise Deterministic Markov Decision Processes

• E state space, E ⊂ Rd

• U control space

A :=
{
α : R+ −→ U measurable

}
, we write: α(t) = αt

• µ(x, u) drift between jumps

φα
t (x) (unique) solution of : dxt = µ

(
xt, αt

)
dt, x0 = x

deterministic flow between jumps

• λ > 0 jump rate (here: λ is independent of (x, u))

0 := T0 < T1 < T2 < . . . jump time points of a Poisson process with rate λ

• Q
(·|x, u

)
distribution of jump goals

• r(x, u) reward rate

• β ≥ 0 discount rate



π =
(
πt

)
is called a Markovian policy (or piecewise open loop policy) if there exists

a sequence of measurable functions fn : E −→ A such that

πt = fn

(
Zn

)(
t− Tn

)
for Tn < t 6 Tn+1.

We write: π =
(
πt

)
=

(
fn

)
.

piecewise deterministic Markov process

Xt = φπ
t−Tn

(
Zn

)
for Tn 6 t < Tn+1, Zn = XTn

Vπ(x) := Eπ
x

[∞∫
0

e−βtr
(
Xt, πt

)
dt

]

V∞(x) := sup
π

Vπ(x), x ∈ E

• Continuous-time stochastic control: Hamilton-Jacobi-Bellman equation

• Solution via discrete-time MDP

Yuskevich (1987), Davis (1993), Schäl et al. (2004). . .

Jacobsen (2006), Guo/Hernandez-Lerma (2009): CTMDP



Discrete-time MDP

• E state space (embedded Markov process)

• A action space

• Q′(B|x, α
)

:= λ
∞∫
0

e−(β+λ)tQ
(
B|φα

t (x), αt

)
dt, B ⊂ E

• r′(x, α) :=
∞∫
0

e−(β+λ)tr
(
φα

t (x), αt

)
dt

• β′ = 1

Note: A is a function space, Q′ is substochastic.

(
Tv

)
(x) = sup

α∈A

{∞∫
0

e−(β+λ)t
[
r
(
φα

t (x), αt

)
+ λ

∫
v(z)Q

(
dz|φα

t (x), αt

)]
dt

}

Theorem:

Vπ(x) = Eπ
x

[ ∞∑
n=0

r′
(
Z ′

n, fn

(
Z ′

n

))]
=: J∞π(x)

V∞(x) = sup
π

J∞π(x) = J∞(x), x ∈ E



For a proof of the following result we use the setR :=
{
α : R+ −→ P(U) measurable

}

of relaxed controls (with the Young topology). Since R ⊃ A, we have to extend

the domain of the data Q′ and r′. Then it holds:

J rel
∞ (x) > J∞(x) = V∞(x), x ∈ E.

b : E −→ R+ is called an upper bounding function for the Piecewise Deterministic

Markov Model, if there exist cr, cQ, cφ ∈ R+ such that

(i) r+(x, u) 6 crb(x).

(ii)
∫

b(x′)Q(dx′|x, u) 6 cQb(x).

(iii) λ
∫∞

0 e−(λ+β)tb
(
φα

t (x)
)
dt 6 cφb(x).

If r is bounded from above, then b ≡ 1 is an upper bounding function and

cQ = 1 and cφ = λ
λ+β .

If b is an upper bounding function, then b is an upper bounding function for the MDP’

(with and without relaxed controls) and αb 6 cQcφ.



Theorem: Suppose the Piecewise Deterministic Markov Model has a continuous up-

per bounding function b with αb < 1 and it holds:

(i) U is compact.

(ii) (t, x, α) −→ φα
t (x) is continuous.

(iii) (x, u) −→ ∫
v(z)Q

(
dz|x, u

)
is usc for all usc v ∈ B+

b

(iv) (x, u) −→ r(x, u) is usc.

Then it holds:

a) J rel
∞ is upper semi-continuous and J rel

∞ = TJ rel
∞ .

b) There exists an optimal relaxed policy π∗ =
(
π∗t

)
, i.e. π∗t takes values in P(U).

c) If φα
t (x) is independent of α or if U is convex, µ(x, u) is linear in u and

u −→ [
r(x, u) + λ

∫
J rel
∞ (z)Q

(
dz|x, u

)]
is concave on U, then there exists an

optimal nonrelaxed policy π∗ =
(
π∗t

)
such that

π∗t = f
(
Xπ∗

Tn

)(
t− Tn

)
, Tn < t 6 Tn+1 for a decision rule f : E → A.

In particular, π∗t takes values in U and J rel
∞ = J∞ = V∞.



Continuous-Time Markov Decision Processes

• CTMDP
(
Xt

)
with contable state space EX and intensities qij(u)

uniformized CTMDP : λ >
∑
j 6=i

qij(u) = −qii(u), i ∈ EX, u ∈ U
• Partially Observable CTMDP:

intensities depend on CTMC
(
Yt

)
with finite state space EY , i.e.

qij(y, u) if Yt = y ∈ EY , y unobservable state

Q0 initial distribution of Y0

λ >
∑
j 6=i

qij(y, u) = −qii(y, u), i ∈ EX, y ∈ EY , u ∈ U

Vπ(i) := Eπ
i

[∞∫
0

e−βtr
(
Xπ

t , Yt, πt

)
dt

]

V∞(i) := sup
π

Vπ(i), i ∈ EX



Filter Equation µt := P π
i

(
Yt = ·|FX

t

) ∈ P(
EY

)

dµt = b
(
Xt, µt, πt

)
dt + H

(
Xt−, µt−, Xt, πt−

)
, µ0 = Q0

Reformulation as filtered PDMDP:
(
Xt, µt

)
piecewise deterministic MDP with state space EX × P

(
EY

)
.

Theorem.

a) Vπ(i) = J∞π

(
i, Q0

)
and V∞(i) = J∞(i, Q0

)
, i ∈ EX.

b) Assumptions! Then the Bellman equation holds, i.e.

J∞(i, ρ) = sup
α∈A

{∫∞
0 e−(β+λ)t

(
LJ∞

)(
i, φα

t (i, ρ), αt

)
dt

}

where

(
LJ∞

)
(i, ρ, u) := r(i, ρ, u) +

∑
j 6=i

(
J∞(j, ρ + H(i, ρ, j, u))− J∞(i, ρ)

)
qij(ρ, u) + λJ∞(i, ρ)



Application: Parallel Queueing Model

two parallel queues and one server

Aim: minimize the expected number of waiting customers

• complete information: µc-rule is optimal

• partial information: Yt ≡ Y ∈ {
µ1, ν1

}× {
µ2, ν2

}

e.g. two types of customers are in the system and the server can not differ which

group is waiting in which queue.

There exists an optimal nonrelaxed policy f ∗(i, ρ) ∈ {
1, 2

}
.

symmetric case: Y ∈ {
(µ1, µ2), (µ2, µ1)

}
, µ1 < µ2

µt = P π
i

(
Y = (µ1, µ2)|FX

t

)
=⇒ dµt = (µ2 − µ1)(2πt − 1)µt(1− µt)dt +4µt

4µt =





H1(µt−) if X1
t = X1

t− − 1

H2(µt−) if X2
t = X2

t− − 1

where



H1(ρ) := µ1ρ
µ1ρ+µ2(1−ρ) − ρ, H2(ρ) := µ2ρ

µ2ρ+µ1(1−ρ) − ρ, ρ ∈ [
0, 1

]

It holds: H1(ρ) ≤ 0, H2(ρ) ≥ 0.

The stationary policy
(
f ∗, f ∗, . . .

)
is optimal with

f ∗(i1, i2, ρ) =





1 i2 = 0

2 i1 = 0

1 ρ ≤ 1
2, (i1, i2) ∈ N× N

2 ρ > 1
2, (i1, i2) ∈ N× N

µ̄1 := µ1ρ + µ2(1− ρ), µ̄2 := µ2ρ + µ1(1− ρ)

µ̄1 > µ̄2 ⇐⇒ ρ ≤ 1
2

certainty equivalence principle for the µc-rule holds (if c1 = c2)!

Rieder/Winter (2009), Bäuerle/Rieder (2009)
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