Mean field limit of controlled system: Optimal control and non-smooth dynamics

Nicolas Gast

EPFL LIG and INRIA

November, 25

Introduction : mean field interacting objects

The term "mean field" applies for system of interacting objects :

- communication networks, computing clusters.
- epidemic models, gossip.
- chemical reactions

Introduction : mean field interacting objects

The term "mean field" applies for system of interacting objects :

- communication networks, computing clusters.
- epidemic models, gossip.
- chemical reactions

Objectives

Analyze and improve the performance of the system :

- Characterize the dynamics of the system
- Find good (or optimal) policies to control the system.

Problem

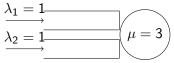
- Systems composed by N interacting objects.
- N is large.

Number of states needed to represent the model explodes.

\rightarrow Study the system when N grows.

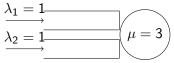
Example : static priority.

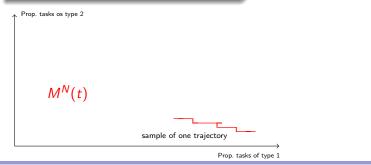
- N = number of tasks 1 at t = 0
- Tasks of type 1 have full priority on the tasks of type 2.



Example : static priority.

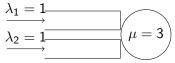
- N = number of tasks 1 at t = 0
- Tasks of type 1 have full priority on the tasks of type 2.

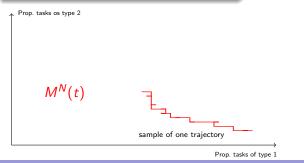




Example : static priority.

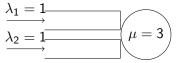
- N = number of tasks 1 at t = 0
- Tasks of type 1 have full priority on the tasks of type 2.

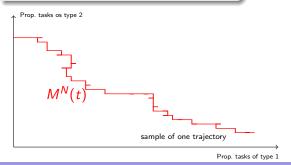




Example : static priority.

- N = number of tasks 1 at t = 0
- Tasks of type 1 have full priority on the tasks of type 2.

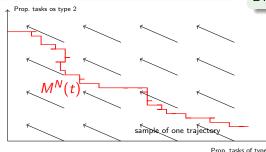


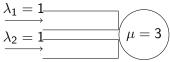


Example : static priority.

- N = number of tasks 1 at t = 0
- Tasks of type 1 have full priority on the tasks of type 2.

1. Objects are exchangeable : The important quantity is the empirical measure $M^{N}(t)$ (*i.e.* $M_{i}^{N}(t)$ is the number of objects in state i).





2. Drift : average difference of $M^{N}(t)$ between t and t + dt. (+1,0) at rate 1 (arrival 1)
 (0,+1) at rate 1 (arrival 2)
 (-1,0) at rate 3 (departure 1) Drift : $f(M^{N}(t)) = (-2, +1)$.

Prop. tasks of type 1

Example : static priority.

Prop. tasks os type 2

- N = number of tasks 1 at t = 0
- Tasks of type 1 have full priority on the tasks of type 2.

1. Objects are exchangeable : The important quantity is the empirical measure $M^N(t)$ (*i.e.* $M_i^N(t)$ is the number of objects in state *i*).

2. Drift : average difference of $M^N(t)$ between t and t + dt. : • (+1,0) at rate 1 (arrival 1) • (0,+1) at rate 1 (arrival 2) • (-1,0) at rate 3 (departure 1) Drift : $f(M^N(t)) = (-2,+1)$.

The mean field approximation m(t)(or "fluid limit") is the solution of the ODE $\frac{dm}{dt} = f(m)$. **Goal** : study the link between $M^N(t)$ and m(t)?

Prop. tasks of type 1

Mean field for performance evaluation.

Since Kurtz (70), lots of work study the approximation of $M^{N}(t)$ by N.

Looking for convergence results.

- Generic models (Kurtz 70, Le Boudec, Benaïm 08)
 - If f is lipschitz-continuous, then $M^{N}(t)$ converges to the ODE, m(t).
 - Steady state behavior.
- Propagation du chaos (Snitzman 91, Graham 00) :
 - Objects are asymptotically independent.

Applications in many areas. For example :

- Chemical reactions (Gillespie 77).
- Load balancing (Mitzenmacher 98).
- TCP RED (Baccelli et al. 02).
- 802.11 (Bianchi 00, Bordenave et al. 05)

Mean field for performance evaluation.

Since Kurtz (70), lots of work study the approximation of $M^{N}(t)$ by N.

Looking for convergence results.

• Generic models (Kurtz 70, Le Boudec, Benaïm 08)

- If f is lipschitz-continuous, then $M^{N}(t)$ converges to the ODE, m(t).
- Steady state behavior.
- Propagation du chaos (Snitzman 91, Graham 00) :
 - Objects are asymptotically independent.

Applications in many areas. For example :

- Chemical reactions (Gillespie 77).
- Load balancing (Mitzenmacher 98).
- TCP RED (Baccelli et al. 02).
- 802.11 (Bianchi 00, Bordenave et al. 05)

In this talk : extensions to controlled system.

- Optimal control problems.
- Non-smooth dynamics.

Outline

1. Introduction

2. Optimal control of mean field models

- How to define the limiting deterministic optimization problem?
- Convergence results.

3. Application to a brokering problem and speed of convergence.

- When the approximation becomes valid?
- What is the quality of the approximation?
- **4.** Going further: non-smooth dynamics
 - if the drift f is not continuous: can we define an ODE $\frac{dm}{dt} = f(m)$?
 - What is the limit of M^N?

5. Conclusion

Outline

1. Introduction

2. Optimal control of mean field models

- How to define the limiting deterministic optimization problem?
- Convergence results.

3. Application to a brokering problem and speed of convergence.

- When the approximation becomes valid?
- What is the quality of the approximation?

4. Going further: non-smooth dynamics

- if the drift f is not continuous: can we define an ODE $\frac{dm}{dt} = f(m)$?
- What is the limit of M^N?

5. Conclusion

High dimension stochastic optimization problem

- At time *t*, a controller chooses an action $a_t \in A$.
- Goal of the controller : find a policy $\pi : X \to A$ that minimizes the response time.

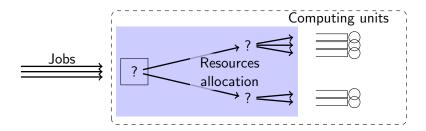
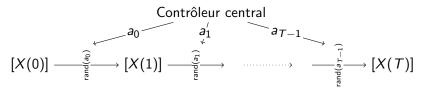


Figure: Example of optimal control

Problem :

- Many resources and applications.
- ullet ightarrow State space of the system is huge.

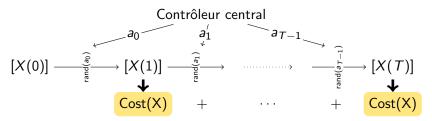
The theoretical framework is well-known (MDP).



State of the system at time t is X(t)

A centralized controller modifies the dynamics of the system.

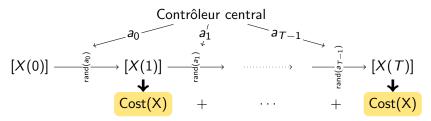
The theoretical framework is well-known (MDP).



State of the system at time t is X(t)

- A centralized controller modifies the dynamics of the system.
- 2 At state t is associated a cost cost(X(t)).

The theoretical framework is well-known (MDP).

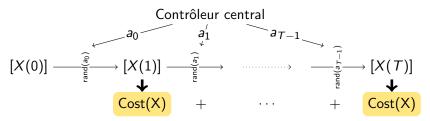


State of the system at time t is X(t)

- A centralized controller modifies the dynamics of the system.
- 2 At state t is associated a cost cost(X(t)).

Goal of the controller : find the best policy $\pi^* : X \to A$ to minimize the average cost (over a finite horizon of time).

The theoretical framework is well-known (MDP).



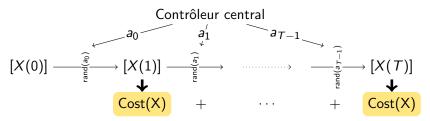
State of the system at time t is X(t)

- A centralized controller modifies the dynamics of the system.
- 2 At state t is associated a cost cost(X(t)).

Goal of the controller : find the best policy $\pi^* : X \to A$ to minimize the average cost (over a finite horizon of time).

$$\mathbb{E}\left[\sum_{t=1}^{T} \operatorname{cost}(X_{\pi}(t))\right]$$

The theoretical framework is well-known (MDP).



State of the system at time t is X(t)

- A centralized controller modifies the dynamics of the system.
- 2 At state t is associated a cost cost(X(t)).

Goal of the controller : find the best policy $\pi^* : X \to A$ to minimize the average cost (over a finite horizon of time).

$$V^N_*(X(0)) = \inf_{\pi} \mathbb{E}\left[\sum_{t=1}^T \operatorname{cost}(X_{\pi}(t))
ight]$$

Mean field controlled system

A mean field controlled system is described by :

- Symmetric system with N objects.
- Intensity I_N and drift $f(a, \cdot)$

• A controller : chooses an action $a \in A$.

• Cost function : cost(m).

If $M^{N}(t)$ denotes the proportion of objects in each state when applying a sequence of action A. We know that :

$$M_A^N(t) o \infty m_a(t)$$

where m is a deterministic system :

- in discrete time if $I_N = O(1)$.
- in continuous time if $I_N = o(1)$.

The limiting deterministic optimal control

When $I_N = o(1)$, the limit is in continuous time. If the sequence of action choosen is a(t), we have :

$$\begin{array}{c|c} I_N = O(1) & I_N = o(1) \\ \hline State \ m_a(t) & \frac{dm_a}{dt} = f(m_a(t), a(t)) & m_a(t+1) = f(m_a(t), a(t+1)) \\ m_a(0) = m_0. & m_a(0) = m_0. \\ \hline Cost \ v_a(m_0) & \int_0^T \cos(m_a(t)) dt. & \sum_0^T \cos(m_a(t)) dt. \end{array}$$

The optimal cost is $v_*(m_0) = \inf_{\{a \mid a \text{ piecewize lipschitz}\}} v_a(m_0).$

Question : what is the relation between the stochastic optimal control V_*^N and the deterministic optimal control v_* ?

- Convergence of value functions?
- Convergence of optimal policies?

Convergence results

For both discrete $I_N = O(1)$ and continuous $I_N = o(1)$ cases, we have :

Theorem

+ The optimal cost for the stochastic system converges to the optimal cost of its deterministic limit :

$$V_*^N \xrightarrow{N \to \infty} v_*.$$

+ The optimal policy for the deterministic system α_* is asymptotically optimal :

$$\left|V_{*}^{N}-V_{a^{*}}^{N}\right|\xrightarrow{N
ightarrow\infty}$$
0.

- Convergence holds in probability with explicit bounds.
- Second order results (CLT-like) for the discrete case.

However :

-
$$\pi_*^N$$
 might not converge.

- Deterministic limit might be hard.

Idea of the proof – $I_N = \frac{1}{N}$

Proof based on stochastic approximation methods.

1. First auxiliary system : for a policy π , we build a (random) sequence of actions A_{π}^{N} corresponding to π :

 $A^N_\pi(t) \stackrel{\mathrm{def}}{=} \pi_t(M^N_\pi(t))$

Idea of the proof – $I_N = \frac{1}{N}$

Proof based on stochastic approximation methods.

1. First auxiliary system : for a policy π , we build a (random) sequence of actions A_{π}^{N} corresponding to π :

$$A_{\pi}^{N}(t) \stackrel{\mathrm{def}}{=} \pi_{t}(M_{\pi}^{N}(t))$$

By definition of the drift, $M^N_\pi(t+rac{1}{N})$ can be written :

$$M_{\pi}^{N}(t+\frac{1}{N}) = M_{\pi}^{N}(t) + \frac{1}{N} \left(\underbrace{f(A_{\pi}^{N}(t), M_{\pi}^{N}(t))}_{\text{Drift (deterministic)}} + \underbrace{\text{noise}}_{\text{Random, } \mathbb{E}[.]=0} \right).$$

At time $t = k \frac{1}{N}$, $M^N(t)$ is equal to :

$$\underbrace{\mathcal{M}_{\pi}^{N}(t) = \mathcal{M}_{0}^{N} + \sum_{i=0}^{k-1} \frac{1}{N} f(\mathcal{A}_{\pi}^{N}(t), \mathcal{M}_{\pi}^{N}(\frac{i}{N}))}_{\text{Euler discretization}} + \underbrace{\frac{1}{N} \sum_{i=0}^{k} \text{noise}}_{\text{Converges to } 0}.$$

 $\begin{aligned} & \text{Idea of the proof} - I_{N} = \frac{1}{N} \\ & \text{Thus, } \left\| M_{\pi}^{N} - m_{A_{\pi}^{N}} \right\| \text{ converges to 0 "uniformly in } A_{\pi}^{N"} : \\ & \mathcal{P} \left(\sup_{t \leq T} \left\| M_{\pi}^{N}(t) - m_{A_{\pi}^{N}}(t) \right\| \geq \frac{A_{T}}{N} + \epsilon \right) \leq \frac{B_{T}}{N\epsilon^{2}}. \end{aligned}$ (1) where $m_{A_{\pi}^{N}} \text{ satisfies } \begin{cases} \frac{dm_{A_{\pi}^{N}}}{dt} = f(m_{A_{\pi}^{N}}(t), A_{\pi}^{N}(t)) \\ m_{A_{\pi}^{N}}(0) = m_{0}. \end{cases}$ $\begin{aligned} & \text{Idea of the proof} - I_{N} = \frac{1}{N} \\ & \text{Thus, } \left\| M_{\pi}^{N} - m_{A_{\pi}^{N}} \right\| \text{ converges to 0 "uniformly in } A_{\pi}^{N"} : \\ & \mathcal{P} \left(\sup_{t \leq T} \left\| M_{\pi}^{N}(t) - m_{A_{\pi}^{N}}(t) \right\| \geq \frac{A_{T}}{N} + \epsilon \right) \leq \frac{B_{T}}{N\epsilon^{2}}. \end{aligned}$ (1) where $m_{A_{\pi}^{N}}$ satisfies $\begin{cases} \frac{dm_{A_{\pi}^{N}}}{dt} = f(m_{A_{\pi}^{N}}(t), A_{\pi}^{N}(t)) \\ m_{A_{\pi}^{N}}(0) = m_{0}. \end{cases}$

2. Second auxiliary system : for an action function α , we build a policy : $\pi_t(m) = \alpha(t)$.

$$\mathcal{P}\left(\sup_{t\leq T}\left\|M_{\alpha}^{N}(t)-m_{\alpha}(t)\right\|\geq \frac{C_{T}}{N}(\alpha)+\epsilon\right)\leq \frac{D_{T}}{N\epsilon^{2}}.$$
 (2)

 $\begin{aligned} & \text{Idea of the proof} - I_{N} = \frac{1}{N} \\ & \text{Thus, } \left\| M_{\pi}^{N} - m_{A_{\pi}^{N}} \right\| \text{ converges to 0 "uniformly in } A_{\pi}^{N}" : \\ & \mathcal{P} \left(\sup_{t \leq T} \left\| M_{\pi}^{N}(t) - m_{A_{\pi}^{N}}(t) \right\| \geq \frac{A_{T}}{N} + \epsilon \right) \leq \frac{B_{T}}{N\epsilon^{2}}. \end{aligned}$ (1) where $m_{A_{\pi}^{N}}$ satisfies $\begin{cases} \frac{dm_{A_{\pi}^{N}}}{dt} = f(m_{A_{\pi}^{N}}(t), A_{\pi}^{N}(t)) \\ m_{A_{\pi}^{N}}(0) = m_{0}. \end{cases}$

2. Second auxiliary system : for an action function α , we build a policy : $\pi_t(m) = \alpha(t)$.

$$\mathcal{P}\left(\sup_{t\leq T}\left\|M_{\alpha}^{N}(t)-m_{\alpha}(t)\right\|\geq \frac{C_{T}}{N}(\alpha)+\epsilon\right)\leq \frac{D_{T}}{N\epsilon^{2}}.$$
(2)

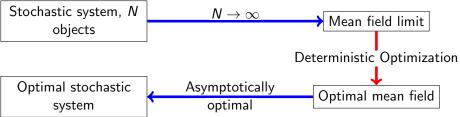
Combining (1) and (2), one has : $\begin{vmatrix} V_{\alpha_*}^N - v_{\alpha_*} \end{vmatrix} \rightarrow 0.$ and $\begin{vmatrix} \sup_{\pi} V_{\pi}^N - \sup_{\alpha} v_{\alpha} \end{vmatrix} \rightarrow 0.$

Introduction

Optimal mean field

Application to brokering problem

How to apply this in practice?



The complexity of the method depends on the complexity of the deterministic problem :

- If we can solve the deterministic limit :
 - Compute *a**.
 - Works well for the stochastic system.

2 Design an approximation algorithm for the deterministic system :

- also an approximation (asymptotically) for stochastic problem.
- **③** Use brute force computation :
 - Compared to the random case, there is no expectation to compute.
 - Problem simpler but still hard (HJB, dynamic programming)

Outline

1. Introduction

Optimal control of mean field models

- How to define the limiting deterministic optimization problem?
- Convergence results.

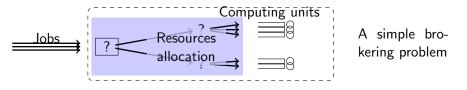
3. Application to a brokering problem and speed of convergence.

- When the approximation becomes valid?
- What is the quality of the approximation?

4. Going further: non-smooth dynamics

- if the drift f is not continuous: can we define an ODE $\frac{dm}{dt} = f(m)$?
- What is the limit of M^N?

5. Conclusion



Model

- A applications : an application sends a tasks at time t with proba. λ_t .
- N processors grouped in C clusters : each processor of cluster c completes one task per unit of time with probability μ^c_t.
- Goal : allocate tasks to clusters minimizing the average response time.
- Stochastic policy impossible to compute.
- When $A \to \infty$ and $N \to \infty$, The problem becomes :
 - Find $y_1^1 \dots y_T^d \in \mathbb{R}$ to minimize $\sum_{t=1}^r \sum_{i=1}^d e_t^i$ such that

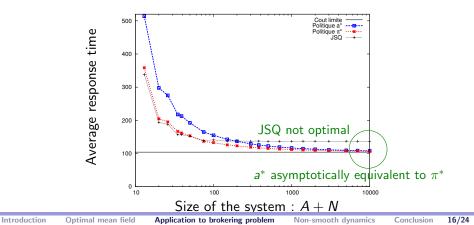
•
$$e_{t+1}^{i} = (e_{t}^{i} + y_{t}^{i} - x_{t}^{i})^{+}$$
 and
• $\sum v_{t}^{i} = v_{t}$.

• Optimal policy can be computed by a greedy algorithm (best effort).

Comparison of the performance of π^* against JSQ

Two optimal policies for the deterministic system : π^* and a^* .

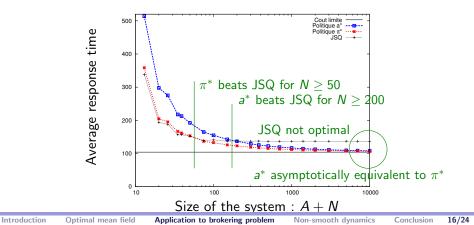
- $V_{a^*}^N$ average response time for open-loop policy a^* .
 - Action chosen at time t is $a^*(t)$.
- $V_{\pi^*}^N$ average response time for the closed-loop policy π^* .
 - Action chosen at time t is $\pi^*(t, M^N(t))$.



Comparison of the performance of π^* against JSQ

Two optimal policies for the deterministic system : π^* and a^* .

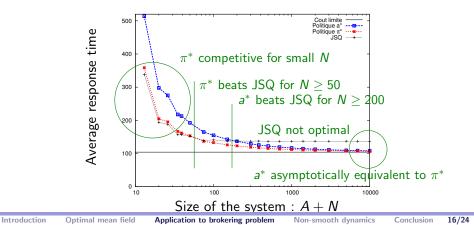
- $V_{a^*}^N$ average response time for open-loop policy a^* .
 - Action chosen at time t is $a^*(t)$.
- $V_{\pi^*}^N$ average response time for the closed-loop policy π^* .
 - Action chosen at time t is $\pi^*(t, M^N(t))$.



Comparison of the performance of π^* against JSQ

Two optimal policies for the deterministic system : π^* and a^* .

- $V_{a^*}^N$ average response time for open-loop policy a^* .
 - Action chosen at time t is $a^*(t)$.
- $V_{\pi^*}^N$ average response time for the closed-loop policy π^* .
 - Action chosen at time t is $\pi^*(t, M^N(t))$.



Outline

1. Introduction

2. Optimal control of mean field models

- How to define the limiting deterministic optimization problem?
- Convergence results.

3. Application to a brokering problem and speed of convergence.

- When the approximation becomes valid?
- What is the quality of the approximation?

4. Going further: non-smooth dynamics

- if the drift f is not continuous: can we define an ODE $\frac{dm}{dt} = f(m)$?
- ▶ What is the limit of *M^N*?

5. Conclusion

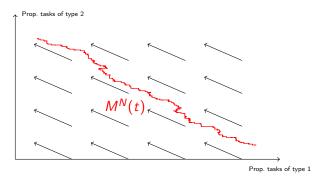
Non-smooth dynamics are common

- Boundary conditions (ex : queuing systems)
- When applying a policy to control the system (threshold effects).

Example : Static priority

• Tasks of type 1 have priority.





Non-smooth dynamics are common

• Boundary conditions (ex : queuing systems)

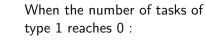
m(t)

• When applying a policy to control the system (threshold effects).

Example : Static priority

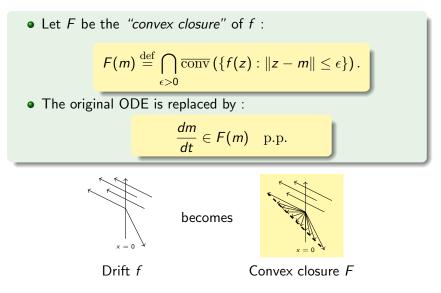
Prop. tasks of type 2

• Tasks of type 1 have priority.



- Drift not continuous :
 - (-2,+1) if x > 0(+1,-2) if x = 0
- No trajectory m(t)satisfying $\frac{dm}{dt} = f(m)$.

Idea : build a differential inclusion using convex closure.



General convergence result

Let $D(m_0) \stackrel{\text{def}}{=}$ be the set of solutions of $\frac{dm}{dt} \in F(m)$ with $m(0) = m_0$.

Then, without any condition on f:

Theorem

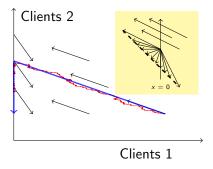
$$\forall T > 0, \inf_{m \in D(m_0)} \sup_{0 \le t \le T} \left\| M^N(t) - m(t) \right\|_{\infty} \xrightarrow{\mathcal{P}} 0.$$

In particular,

Corollary

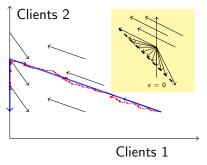
If
$$\frac{dm}{dt} \in F(m)$$
 has a unique solution $m : \sup_{0 \le t \le T} \left\| M^N(t) - m(t) \right\|_{\infty} \xrightarrow{\mathcal{P}} 0.$

Application on the static priority example.



- The drift is easy to compute.
- The ODE has no solution.
- Computation of convex closure.
- The DI has a unique solution.

Application on the static priority example.



- The drift is easy to compute.
- The ODE has no solution.
- Computation of convex closure.
- The DI has a unique solution.

The differential inclusion approach :

• Allows one to apply mean field methods to non-smooth dynamics (boundary conditions, controlled systems).

In particular, if π is a policy, then :

• The controlled system M_{π}^N converges to the deterministic controlled dynamic m_{π} .

Outline

1. Introduction

Optimal control of mean field models

- How to define the limiting deterministic optimization problem?
- Convergence results.

3. Application to a brokering problem and speed of convergence.

- When the approximation becomes valid?
- What is the quality of the approximation?

4. Going further: non-smooth dynamics

- if the drift f is not continuous: can we define an ODE $\frac{dm}{dt} = f(m)$?
- What is the limit of M^N?

5. Conclusion

Conclusion and Perspectives

Mean field approximation for optimization problem :

- Two new heuristics for the stochastic problem : a^* and π^* .
- Asymptotically optimal as N grows but also efficient for small N.
- Differential inclusions allows to consider non-smooth dynamics.

Prove that the deterministic optimization problem is an approximation of the stochastic optimization problem.

Applications and perspectives

- Use this results to prove optimality of certain class of policies.
- Optimization of SDE v.s. MDP.
- Study infinite horizon results (average cost).

References corresponding to this work :

• Optimization and mean field, discrete time limit :

- N. Gast, B. Gaujal A Mean Field Approach for Optimization in Particles Systems and Applications – ValueTools 2009
- N. Gast, B. Gaujal A Mean Field Approach for Optimization in Discrete Time – to appear in DEDS

• Optimization and mean field, continuous time limit :

• N. Gast, B. Gaujal, J.-Y. Le Boudec – *Mean field for Markov Decision Processes : from Discrete to Continuous Optimization* – Inria RR 7239

Non-smooth mean field :

- N. Gast, B. Gaujal Mean field Limit of Non-Smooth Systems and Differential Inclusions – MAMA 2010
- N. Gast, B. Gaujal Mean field limit of non-smooth systems : a differential inclusion limit. – Inria RR 7315