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Introduction : mean field interacting objects

The term “mean field” applies for system of interacting objects :

communication networks, computing clusters.

epidemic models, gossip.

chemical reactions

Objectives

Analyze and improve the
performance of the system :

Characterize the dynamics of
the system

Find good (or optimal) policies
to control the system.

Problem

Systems composed by N
interacting objects.

N is large.

Number of states needed to
represent the model explodes.

→ Study the system when N grows.
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Mean field approximation on a simple example
Example : static priority.

N = number of tasks 1 at t = 0

Tasks of type 1 have full priority
on the tasks of type 2.

λ1 = 1

λ2 = 1 µ = 3

1. Objects are exchangeable :
The important quantity is the
empirical measure MN(t) (i.e. MN

i (t)
is the number of objects in state i).

Prop. tasks of type 1

Prop. tasks os type 2

MN(t)

sample of one trajectory
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2. Drift : average difference of
MN(t) between t and t + dt. :

(+1, 0) at rate 1 (arrival 1)
(0,+1) at rate 1 (arrival 2)
(−1, 0) at rate 3 (departure 1)

Drift : f (MN(t)) = (−2,+1).
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2. Drift : average difference of
MN(t) between t and t + dt. :

(+1, 0) at rate 1 (arrival 1)
(0,+1) at rate 1 (arrival 2)
(−1, 0) at rate 3 (departure 1)

Drift : f (MN(t)) = (−2,+1).

The mean field approximation m(t)
(or ”fluid limit”) is the solution of
the ODE dm

dt = f (m).

Goal : study the link
between MN(t) and m(t) ?



Mean field for performance evaluation.
Since Kurtz (70), lots of work study the approximation of MN(t) by N.

Looking for convergence results.

Generic models (Kurtz 70, Le Boudec, Benäım 08)
If f is lipschitz-continuous, then MN(t) converges to the ODE, m(t).
Steady state behavior.

Propagation du chaos (Snitzman 91, Graham 00) :
Objects are asymptotically independent.

Applications in many areas. For example :

Chemical reactions (Gillespie 77).
Load balancing (Mitzenmacher 98).
TCP RED (Baccelli et al. 02).
802.11 (Bianchi 00, Bordenave et al. 05)

In this talk :
extensions to controlled system.

Optimal control problems.

Non-smooth dynamics.
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Outline

1. Introduction

2. Optimal control of mean field models
I How to define the limiting deterministic optimization problem?
I Convergence results.

3. Application to a brokering problem and speed of convergence.
I When the approximation becomes valid?
I What is the quality of the approximation?

4. Going further: non-smooth dynamics
I if the drift f is not continuous: can we define an ODE dm

dt = f (m)?
I What is the limit of MN?

5. Conclusion
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High dimension stochastic optimization problem

At time t, a controller chooses an action at ∈ A.

Goal of the controller : find a policy π : X → A that
minimizes the response time.

?

?

?

Resources
allocation

Computing units

Jobs

Figure: Example of optimal control

Problem :

Many resources and applications.

→ State space of the system is huge.
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A markov decision problem
The theoretical framework is well-known (MDP).

Contrôleur central
a0 a1 aT−1

[X (0)] [X (1)] [X (T )]

ra
n
d
(a

0
)

ra
n
d
(a

1
)

ra
n
d
(a

T
−

1
)

State of the system at time t is X (t)

1 A centralized controller modifies the dynamics of the system.

2 At state t is associated a cost cost(X (t)).

Goal of the controller : find the best policy π∗ : X → A to minimize the
average cost (over a finite horizon of time).

VN
∗ (X (0)) = inf

π
E

[
T∑
t=1

cost(Xπ(t))

]

Introduction Optimal mean field Application to brokering problem Non-smooth dynamics Conclusion 7/24



A markov decision problem
The theoretical framework is well-known (MDP).

Contrôleur central
a0 a1 aT−1

[X (0)] [X (1)] [X (T )]

ra
n
d
(a

0
)

ra
n
d
(a

1
)

ra
n
d
(a

T
−

1
)

Cost(X) Cost(X)+ . . . +

State of the system at time t is X (t)

1 A centralized controller modifies the dynamics of the system.

2 At state t is associated a cost cost(X (t)).

Goal of the controller : find the best policy π∗ : X → A to minimize the
average cost (over a finite horizon of time).

VN
∗ (X (0)) = inf

π
E

[

Introduction Optimal mean field Application to brokering problem Non-smooth dynamics Conclusion 7/24



A markov decision problem
The theoretical framework is well-known (MDP).

Contrôleur central
a0 a1 aT−1

[X (0)] [X (1)] [X (T )]

ra
n
d
(a

0
)

ra
n
d
(a

1
)

ra
n
d
(a

T
−

1
)

Cost(X) Cost(X)+ . . . +

State of the system at time t is X (t)

1 A centralized controller modifies the dynamics of the system.

2 At state t is associated a cost cost(X (t)).

Goal of the controller : find the best policy π∗ : X → A to minimize the
average cost (over a finite horizon of time).

T∑
t=1

cost(Xπ(t))

Introduction Optimal mean field Application to brokering problem Non-smooth dynamics Conclusion 7/24



A markov decision problem
The theoretical framework is well-known (MDP).

Contrôleur central
a0 a1 aT−1

[X (0)] [X (1)] [X (T )]

ra
n
d
(a

0
)

ra
n
d
(a

1
)

ra
n
d
(a

T
−

1
)

Cost(X) Cost(X)+ . . . +

State of the system at time t is X (t)

1 A centralized controller modifies the dynamics of the system.

2 At state t is associated a cost cost(X (t)).

Goal of the controller : find the best policy π∗ : X → A to minimize the
average cost (over a finite horizon of time).

E

[
T∑
t=1

cost(Xπ(t))

]
Introduction Optimal mean field Application to brokering problem Non-smooth dynamics Conclusion 7/24



A markov decision problem
The theoretical framework is well-known (MDP).

Contrôleur central
a0 a1 aT−1

[X (0)] [X (1)] [X (T )]

ra
n
d
(a

0
)

ra
n
d
(a

1
)

ra
n
d
(a

T
−

1
)

Cost(X) Cost(X)+ . . . +

State of the system at time t is X (t)

1 A centralized controller modifies the dynamics of the system.

2 At state t is associated a cost cost(X (t)).

Goal of the controller : find the best policy π∗ : X → A to minimize the
average cost (over a finite horizon of time).

VN
∗ (X (0)) = inf

π
E

[
T∑
t=1

cost(Xπ(t))

]
Introduction Optimal mean field Application to brokering problem Non-smooth dynamics Conclusion 7/24



Mean field controlled system

A mean field controlled system is described by :

Symmetric system with N objects.

Intensity IN and drift f (a, ·)

+ A controller : chooses an action a ∈ A.

Cost function : cost(m).

If MN(t) denotes the proportion of objects in each state when applying a
sequence of action A. We know that :

MN
A (t)→∞ma(t)

where m is a deterministic system :

in discrete time if IN = O(1).

in continuous time if IN = o(1).
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The limiting deterministic optimal control
When IN = o(1), the limit is in continuous time. If the sequence of action
choosen is a(t), we have :

IN = O(1) IN = o(1)

State ma(t)
dma
dt = f (ma(t), a(t))
ma(0) = m0.

ma(t + 1) = f (ma(t), a(t + 1))
ma(0) = m0.

Cost va(m0)
∫ T
0 cost(ma(t))dt.

∑T
0 cost(ma(t))dt.

The optimal cost is v∗(m0) = inf
{a|a piecewize lipschitz}

va(m0).

Question : what is the relation between the stochastic optimal
control VN

∗ and the deterministic optimal control v∗ ?

Convergence of value functions ?

Convergence of optimal policies ?
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Convergence results
For both discrete IN = O(1) and continuous IN = o(1) cases, we have :

Theorem

+ The optimal cost for the stochastic system converges to the
optimal cost of its deterministic limit :

VN
∗

N→∞−−−−→v∗.

+ The optimal policy for the deterministic system α∗ is
asymptotically optimal :∣∣∣VN

∗ − VN
a∗

∣∣∣ N→∞−−−−→0.

Convergence holds in probability with explicit bounds.

Second order results (CLT-like) for the discrete case.

However : − πN∗ might not converge.

− Deterministic limit might be hard.
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Idea of the proof – IN = 1
N

Proof based on stochastic approximation methods.

1. First auxiliary system : for a policy π, we build a (random)
sequence of actions AN

π corresponding to π :

AN
π (t)

def
= πt(M

N
π (t))

By definition of the drift, MN
π (t + 1

N ) can be written :

MN
π (t +

1

N
) = MN

π (t) +
1

N

(
f (AN

π (t),MN
π (t))︸ ︷︷ ︸

Drift (deterministic)

+ noise︸ ︷︷ ︸
Random, E[.]=0

)
.

At time t = k 1
N , MN(t) is equal to :

MN
π (t) = MN

0 +
k−1∑
i=0

1

N
f (AN

π (t),MN
π (

i

N
))︸ ︷︷ ︸

Euler discretization

+
1

N

k∑
i=0

noise︸ ︷︷ ︸
Converges to 0

.
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Idea of the proof – IN = 1
N

Thus,
∥∥∥MN

π −mAN
π

∥∥∥ converges to 0 “uniformly in AN
π ” :

P

(
sup
t≤T

∥∥∥MN
π (t)−mAN

π
(t)
∥∥∥ ≥ AT

N
+ ε

)
≤ BT

Nε2
. (1)

where mAN
π

satisfies

{
dm

ANπ
dt = f (mAN

π
(t),AN

π (t))

mAN
π

(0) = m0.
(deterministic ODE

with random parameter).

2. Second auxiliary system : for an action function α, we build a
policy : πt(m) = α(t).

P

(
sup
t≤T

∥∥∥MN
α (t)−mα(t)

∥∥∥ ≥ CT

N
(α) + ε

)
≤ DT

Nε2
. (2)

Combining (1) and (2), one has :∣∣∣VN
α∗ − vα∗

∣∣∣→ 0. and

∣∣∣∣sup
π

VN
π − sup

α
vα

∣∣∣∣→ 0.
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How to apply this in practice ?
Stochastic system, N

objects
Mean field limit

Optimal mean field
Optimal stochastic

system

N →∞

Deterministic Optimization

Asymptotically
optimal

The complexity of the method depends on the complexity of the
deterministic problem :

1 If we can solve the deterministic limit :

Compute a∗.
Works well for the stochastic system.

2 Design an approximation algorithm for the deterministic system :

also an approximation (asymptotically) for stochastic problem.

3 Use brute force computation :

Compared to the random case, there is no expectation to compute.
Problem simpler but still hard (HJB, dynamic programming)
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Outline

1. Introduction

2. Optimal control of mean field models
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?
?

?

Resources
allocation

Computing units

Jobs A simple bro-
kering problem

Model

A applications : an application sends a tasks at time t with proba. λt .

N processors grouped in C clusters : each processor of cluster c

completes one task per unit of time with probability µc
t .

Goal : allocate tasks to clusters minimizing the average response time.

Stochastic policy impossible to compute.
When A→∞ and N →∞, The problem becomes :

Find y1
1 . . . y

d
T ∈ R to minimize

T∑
t=1

d∑
i=1

e it such that

e i
t+1 = (e i

t + y i
t − x i

t )
+ and∑

i y i
t = yt .

Optimal policy can be computed by a greedy algorithm (best effort).
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Comparison of the performance of π∗ against JSQ

Two optimal policies for the deterministic system : π∗ and a∗.

VN
a∗ – average response time for open-loop policy a∗.

Action chosen at time t is a∗(t).

VN
π∗ – average response time for the closed-loop policy π∗.

Action chosen at time t is π∗(t,MN(t)).
A

ve
ra

ge
re

sp
on

se
ti

m
e

 0

 100

 200

 300

 400

 500

 10  100  1000  10000

Cout limite
Politique a*
Politique π*

JSQ

Size of the system : A + N
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π∗ competitive for small N



Outline

1. Introduction

2. Optimal control of mean field models
I How to define the limiting deterministic optimization problem?
I Convergence results.

3. Application to a brokering problem and speed of convergence.
I When the approximation becomes valid?
I What is the quality of the approximation?

4. Going further: non-smooth dynamics
I if the drift f is not continuous: can we define an ODE dm

dt = f (m)?
I What is the limit of MN?

5. Conclusion

Introduction Optimal mean field Application to brokering problem Non-smooth dynamics Conclusion 17/24



Non-smooth dynamics are common

Boundary conditions (ex : queuing systems)

When applying a policy to control the system (threshold effects).

Example : Static priority

Tasks of type 1 have priority.

λ1 = 1

λ2 = 1 µ = 3

Prop. tasks of type 1

Prop. tasks of type 2

MN(t)
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When the number of tasks of
type 1 reaches 0 :

Drift not continuous :

(−2,+1) if x > 0
(+1,−2) if x = 0

No trajectory m(t)
satisfying dm

dt = f (m).



Idea : build a differential inclusion using convex
closure.

Let F be the “convex closure” of f :

F (m)
def
=
⋂
ε>0

conv ({f (z) : ‖z −m‖ ≤ ε}) .

The original ODE is replaced by :

dm

dt
∈ F (m) p.p.

x = 0

becomes

x = 0

Drift f Convex closure F
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General convergence result

Let D(m0)
def
= be the set of solutions of

dm

dt
∈ F (m) with m(0) = m0.

Then, without any condition on f :

Theorem

∀T > 0, inf
m∈D(m0)

sup
0≤t≤T

∥∥∥MN(t)−m(t)
∥∥∥
∞

P−→ 0.

In particular,

Corollary

If
dm

dt
∈ F (m) has a unique solution m : sup

0≤t≤T

∥∥∥MN(t)−m(t)
∥∥∥
∞

P−→ 0.
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Application on the static priority example.

Clients 1

Clients 2 The drift is easy to compute.

The ODE has no solution.

Computation of convex
closure.

The DI has a unique
solution.

The differential inclusion approach :

Allows one to apply mean field methods to non-smooth dynamics
(boundary conditions, controlled systems).

In particular, if π is a policy, then :

The controlled system MN
π converges to the deterministic controlled

dynamic mπ.
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Outline

1. Introduction

2. Optimal control of mean field models
I How to define the limiting deterministic optimization problem?
I Convergence results.

3. Application to a brokering problem and speed of convergence.
I When the approximation becomes valid?
I What is the quality of the approximation?

4. Going further: non-smooth dynamics
I if the drift f is not continuous: can we define an ODE dm

dt = f (m)?
I What is the limit of MN?

5. Conclusion
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Conclusion and Perspectives

Mean field approximation for optimization problem :

Two new heuristics for the stochastic problem : a∗ and π∗.

Asymptotically optimal as N grows but also efficient for small N.

Differential inclusions allows to consider non-smooth dynamics.

Prove that the deterministic optimization problem is an approximation of
the stochastic optimization problem.

Applications and perspectives

Use this results to prove optimality of certain class of policies.

Optimization of SDE v.s. MDP.

Study infinite horizon results (average cost).
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