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• Stochastic Leadtimes: Delivery time is random

• Yield Uncertainty: Supply quantity is random

• Disruptions: Supply processes are interrupted

� Reasons: natural disasters, labor strikes, terrorist attacks, etc.

Supply Uncertainty
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• Example: Hurricane Mitch (November, 1998)

� 10% of the worldwide crop was destroyed

� Dole: Lost 70% of its capacity in the region, struggled to �nd
alternative sources of supply and su�ered revenue declines

� Chiquita: Maintained a steady supply by purchasing and in-
creasing its production in other regions, reported revenue increase
in 1998

Supply Disruptions
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• Mitigation Strategies (Tomlin (2006)):

� Passive acceptance

� Inventory mitigation

� Sourcing mitigation

� Contingent rerouting

� Demand management

� Mixed strategies

• Snyder and Shen (2006): demand uncertainty models do not ap-
ply to supply disruption problems

• Literature Review: Snyder et al. (2010), Atan and Snyder (2010)

Supply Disruptions
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Literature:

• Distribution Systems: Schmitt et al. (2008b)

• Assembly Systems: DeCroix (2010)

Contribution:

• Show the optimality of base-stock policies for serial systems subject to
supply disruptions (Atan, Rong and Snyder (2010))

• Solve for the base-stock levels of OWMR systems subject to supply
disruptions (Atan and Snyder (2010))

Multi-Echelon Supply Chains
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• Discrete-time, in�nite-horizon discounted cost problem

• Demands across periods are iid
• h: unit holding cost
• b: unit backorder cost
• α: discount factor

Disruptions:

• Order may not arrive at any period with probability 1− p
• If order does not arrive, it disappears

Single-stage inventory system
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The sequence of events:

1. Observe the current on-hand inventory level, x(t)

2. Decide on the order quantity, q(t)

3. Delivery (if any) arrives. On hand inventory now equals{
x(t) + q(t), w.p. p

x(t), w.p. 1− p

4. Demand D(t) is realized

5. Holding and shortage costs are incurred

Single-stage inventory system
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• System dynamics:

x(t + 1) = x(t) + Uq(t)− d(t)

where U has Bernoulli distribution with success probability p

• The total expected cost for any ordering policy π ∈ Π:

V (x|π) = ED

[
T∑

t=0

EUα
T−t

(
h(x(t) + Uq(t)− d(t))+ + b(x(t) + Uq(t)− d(t))−

)]

• Plan:
1. Solve the problem assuming �nite-horizon with length T

2. Extend the results to in�nite-horizon

Single-stage inventory system
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• C̄n(x, q): the single period expected cost.

• C∗n(x): the optimal cost for n periods remaining in the horizon:

C∗n(x) = min
q≥0

{
C̄n(x, q) + αEUED(C∗n−1(x + Uq − d))

}
• Equivalently with a single argument:

Jn(x, q) = C̄n(x, q) + αEUED(C∗n−1(x + Uq − d))

Jn(x, q) = EU [J̄n(x + Uq)]

where J̄n(y) is

J̄n(y) = C̄+
n (y) + αED[C∗n−1(y − d)]

C̄+
n (y) = ED[h(y − dn)+ + b(y − dn)−]

• J̄n(y) is convex in y ⇒ Base-stock policy is optimal.

Finite Horizon
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•We show:

1. The limn→∞C
∗
n exists.

2. The limit is C∗ = limn→∞C
∗
n.

• Theorem:If {fm(x)} is a sequence of convex functions that converges
pointwise to a function f (x) for each x, then f is also convex.

• Result: Base-stock policy is optimal.

In�nite Horizon
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• Consider the classical Clark-Scarf model

1 2
DL1 L2

H1 H2 , b

• Introduce supply disruptions at the supply processes

� φi= the state of the supply process of location i

� φi = 0⇒ the link is not disrupted and order attempts are successful

� φi = j ⇒ the link is disrupted for jth consecutive period

Two-Echelon Serial Systems
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• w1=local inventory at the warehouse

• w2=local inventory at the retailer

• x1=echelon inventory at the warehouse

• x2=echelon inventory at the retailer

• y= size of the shipment from the outside supplier to the warehouse

• z=size of the shipment from the warehouse to the retailer

• ỹ = (y1, . . . , yL1), z̃ = (z1, . . . , zL2)

Inventory Balance Equations:

x1(n−1) = x1n + yL1
n − dn

x2(n−1) = x2n + zn − dn
ỹn−1 = (yn, y

1
n, . . . , y

L1−1)

De�nitions
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• System wide inventory at the end of a period:

yL1 + w1 +

L2−1∑
k=1

zk + [w2 + zL2 − d]+

= x1 + yL1 +
{
−(w2 + zL2) + [w2 + zL2 − d]+

}
• One Period Expected Inventory Cost at Echelon 1

H1E
[
x1 + yL1 +

{
−αL2(x2 + z − dL2) + αL2[x2 + z − dL2+1]+

}]
• One Period Expected Cost at Echelon 2

αL2
{
H2E[x2 + z − dL2+1]+ + bE[dL2+1 − x2 − z]+

}

One Period Expected Cost
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• De�ne

C1(a) = H1E[a]

C2(a) = −αL2
{
E[a− dL2] + (H1 + H2)E[a− dL2+1]+ + bE[dL2+1 − a]+

}
• Overall Problem

Gn(ỹ, x1, x2, φ
1
n, φ

2
n) = min

y,z

{
C1(x1 + yL1) + C2(x2 + z)

+ α
∑
j1,j2

Pj1|φ1
n,j2|φ2

n
E[Gn−1(ỹn−1, x1 + yL1 − d, x2 + z − d, φ1

n−1, φ
2
n−1)|φ1

n, φ
2
n]

}

• Claim:

Gn(ỹ, x1, x2, φ
1
n, φ

2
n) = G1

n(ỹ, x1, φ
1
n, φ

2
n) + G2

n(x2, φ
2
n)

• Proof by induction.

DP Algorithm
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• The problem for the retailer:

G2
n(x2, φ

2
n) = min

z

{
C2(x2 + z) + α

∑
j2

Pj2|φ2
n
E[G2

n−1(x2 + z − d|φ2
n]

}

• Result: State dependent base-stock policy is optimal for the retailer.

• The problem for the warehouse:

G1
n(ỹ, x1, φ

1
n, φ

2
n) = min

y

{
C1(x1 + yL1) + Pn(x1 + y)

+ α
∑
j1,j2

Pj1|φ1
n,j2|φ2

n
E[G1

n−1(ỹn−1, x1 + yL1 − d, φ2
n−1)|φ1

n, φ
2
n]

}

• Result: State dependent base-stock policy is optimal for the ware-
house.

Optimization
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Warehouse Base-Stock Retailer Base-Stock

Disruptions at the warehouse X -

Disruptions at the retailer X X

State-dependent Policies
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1. Disruptions at the warehouse

2. Disruptions at the retailers

3. Disruptions at both the warehouse and the retailers
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• Disruptions are modeled using a discrete-time Markov Chain

• State variable: # of consecutive disrupted periods

OWMR Systems



18/28

Zümbül Atan, YEQT-IV 2010

0

1

2

N

i n v 0 i n v 1i n v 2
i n v N

• During the disruption:
� the warehouse cannot receive units from the outside supplier

� the warehouse satis�es the demands of the retailers as long as it has
enough inventory

• At the end of the disruption:

� the inventory levels of both the warehouse and the retailers are
increased to their base-stock levels

Warehouse-Assumptions
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Identical Retailers: Exact Solution

• Closed-form expressions

• Location with smaller holding cost holds the extra inventory

Non-identical Retailers: Heuristic

• C(s0, s̄r) is convex in each sr, r ∈ {1, 2, ..N}
• s∗r(s0) has closed-form expression

• Approximated C(s0, s̄
∗
r(s0)) to make it convex in s0

• ε̄=0.420%, σε= 1.982%

• In 92.71% of the 1080 randomly generated instances ε = 0

Warehouse-Solutions
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• retailers cannot receive the items send by the warehouse

• warehouse keeps track of the demands of the retailers

Exact Solution (Identical and Non-identical Retailers):

s∗0 s∗r∑N
r=1 dr dr

(
(F r)−1

(
br

br+br

)
+ 1
)

Retailers
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THEOREM:
For �xed s0, the cost function C(s0, sr) is convex in sr.

Both Locations
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Identical Retailers: Heuristic

• For h0 ≥ hr, s
∗
0 = Ndr

• For hr ≥ h0: approximate closed-form expressions

• Performance:
� 0% error in numerical experiments

� Conjecture: Heuristic always generates the exact solution

Both Locations
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Non-identical Retailers: Heuristic

• Decompose to serial systems
• Use the heuristic proposed for identical-retailer case to solve for serial
systems

• Aggregate using backorder matching
• 1080 randomly generated cases: ε̄=6.45%, σε= 4.92%

Both Locations
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OWMR with Identical Retailers
Warehouse Exact Solution
Retailers Exact Solution

Warehouse and Retailers Heuristic with 0% mean cost error

OWMR with Non-Identical Retailers
Warehouse Heuristic with 0.42% mean cost error
Retailers Exact Solution

Warehouse and Retailers Heuristic with 6.45% mean cost error

Summary of the Results
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• Expected Cost vs. Disruption/Recovery Probabilities
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• Firms should focus more on reducing the duration of disruptions than
on reducing their probability of occurrence

E�ects of System Parameters
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• Optimal warehouse/retailer base-stock levels vs. Disruption/Recovery
Probabilities
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E�ects of System Parameters
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• Ignoring supply disruptions close to customers is more costly than ig-
noring disruptions elsewhere
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• Serial Systems:
� If disruptions are independent of any other historical event, station-
ary echelon order-up-to policies are optimal

� For more general disruption processes, state-dependent order-up-to
policies are optimal

� The state dependent base-stock levels are monotonically increasing
in the number of disrupted periods

• Distribution Systems:

� Disruptions a�ect the optimal inventory decisions of all locations

� Companies should concentrate more on reducing the duration of
disruptions which happen close to the customers

Conclusions
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