PRODUCTION SYSTEMS ENGINEERING:

Optimality through Improvability

Semyon M. Meerkov

EECS Department University of Michigan Ann Arbor, MI 48109-2122, USA

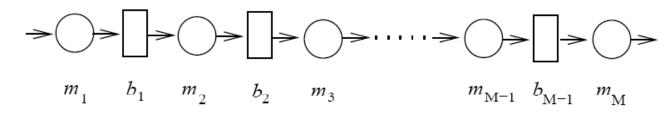
YEQT-IV (Young European Queueing Theorists Workshop) "Optimal Control in Stochastic Systems" Technical University of Eindhoven November 25-27, 2010

PSE – AN OVERVIEW

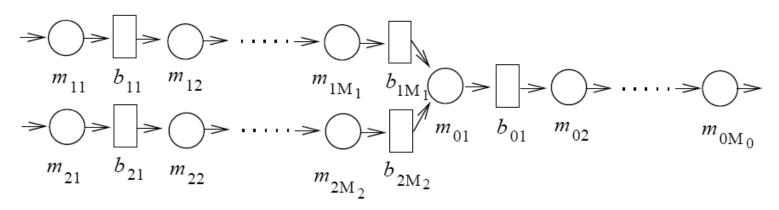
- *Production Systems Engineering* (PSE) is a emerging
 branch of Engineering intended to investigate
 fundamental laws that govern production systems and
 utilize them for the purposes of analysis, continuous
 improvement, and design.
- Every problem addressed in PSE has its origin on the factory floor.
- Practically every solution obtained in PSE has been implemented on the factory floor.
- The goals of this lecture:
 - provide a brief description of PSE;
 - discuss the issue of optimality vs. improvability.

Systems addressed in PSE

Open serial lines

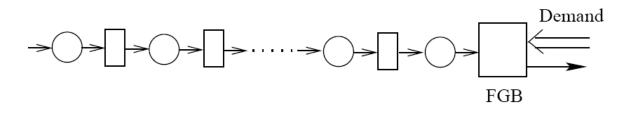


Assembly systems

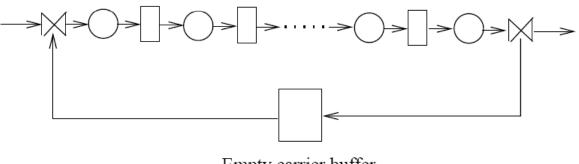


Systems addressed (cont)

Serial lines with finished goods buffers (FGB)

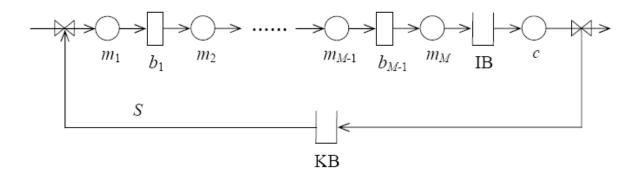


Closed (palletized) serial lines



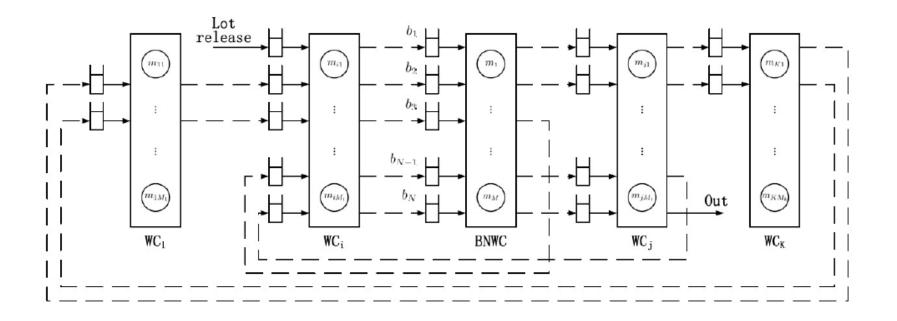
Empty carrier buffer

Production lines with feedback-controlled release (e.g., kanban)



1.1 Structural Models (cont)

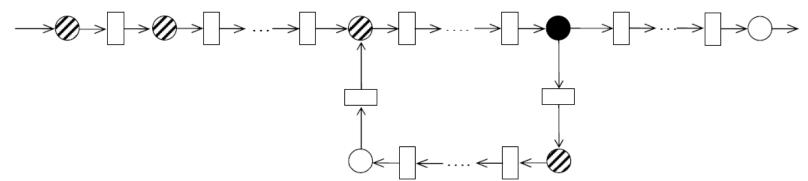
Re-entrant lines



Systems addressed (cont)

Serial lines with non-perfect quality and inspection machines

Serial lines with rework



 Practically every production line in large volume manufacturing can be reduced to one of the above (with a sufficient level of fidelity)

Machine reliability models considered

The machines are described by the following reliability models:

- Bernoulli model: the status of the machine is an i.i.d. sequence of Bernoulli random variables;
- Geometric model (constant breakdown and repair probabilities): the state of the machine is described by a Markov chain;
- Exponential model (constant breakdown and repair rates): the state of the machine is described by a continuous time, discrete space Markov process;
- Non-Markovian models (time-dependent breakdown and repair rates): Weibull, Rayleigh, gamma, log-normal pdf's;
- General model: the state of the machine is described by a random process of an unknown nature.
- In this formalization, a production system is a set of random processes interacting in a nonlinear manner. Their analysis using system-theoretic tools is the approach of PSE.

Problems addressed in PSE

- Mathematical modeling: Provides methods for constructing mathematical models of production systems at hand with acceptable fidelity.
- Performance analysis: Offers analytical tools for calculating the steady state throughput, work-in-process, probabilities of machine blockages and starvations, the level of customer demand satisfaction, etc.
- **Constrained improvability:** Develops methods for re-allocating limited resources (such as buffer capacity or workforce or cycle time) so that the throughput is increased.

Problems addressed (cont)

- Unconstrained improvability: Provides methods for identifying bottleneck machines and bottleneck buffers, i.e., machines and buffers, which affect the production rate in the strongest manner.
- Lean buffer design: Offers analytical tools for calculating the smallest buffer capacity, which is necessary and sufficient to obtain the desired throughput of a production system.
- Customer demand satisfaction: Develops formulas for calculating the Due Time Performance, i.e., the probability to ship to the customer the desired number of parts during a fixed time interval.
- **Product quality:** Presents methods for analysis and improvement of production systems with non-perfect quality of parts produced.

Problems addressed (cont)

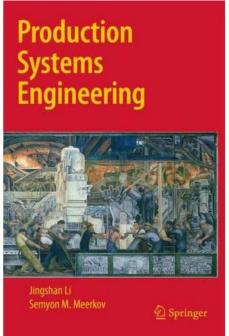
- System-theoretic properties: Investigates fundamental structural properties of production systems, such as reversibility, monotonicity, and the effects of up- and downtime
- **Transient analysis:** Studies temporal properties of reaching steady states in production systems.
- Preventive maintenance: For machines with maintenancereliability coupling, determines PM's feasibility and, if so, optimal PM rate.
- **PSE Toolbox:** Provides a user-friendly set of C++ programs that implement the methods and algorithms developed in PSE.
- **Case studies:** Describes numerous applications of PSE in various production systems.

Solution paradigm

- *Theorems* for problems that can be solved analytically.
- Numerical Facts for problems that are investigated numerically.
- Improvability Indicators and Continuous Improvement Procedures – for practical implementation of the results obtained.

The textbook

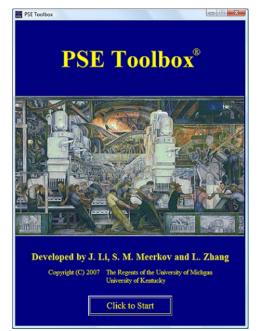
 The main results of PSE are summarized in a textbook:
 J. Li and S.M. Meerkov, *Production Systems Engineering*, Springer, 2009



The toolbox

• A demo of the **PSE Toolbox** is available at :

www.ProductionSystemsEngineering.com



The remainder of this lecture addresses the issues of optimality vs. improvability of production systems

Problems addressed in this talk

- 1. Constrained improvability
- 2. Unconstrained improvability
- 3. Leanness
- 4. Transients
- 5. PSE Toolbox
- 6. Summary

1. CONSTRAINED IMPROVABILITY 1.1 Improvability of Open Serial Lines

- Constrains:
 - Buffer capacity (BC) constraint: $\sum_{i=1}^{M-1} N_i = N^*$.
 - Work force (WF) constraint: $\prod_{i=1}^{M} p_i = p^*$.
 - Cycle time (CT) constraint: $\sum_{i=1}^{M} \tau_i = \tau^*$, where $\tau_i = 1/c_i$ is the cycle time of the *i*-th machine.
- Optimality question: How should the resources be allocated, so that the throughput is maximized?
- Improvability question: Can the resources be re-allocated, so that the throughput is increased?
- Clearly, the unimprovable system is optimal.
- Which approach is more conducive in applications?

Definition 5 A serial line is:

• BC-improvable if there exists a sequence N'_1, \ldots, N'_{M-1} such that $\sum_{i=1}^{M-1} N'_i = N^*$ and

$$PR(p_1,\ldots,p_M,N'_1,\ldots,N'_{M-1}) > PR(p_1,\ldots,p_M,N_1,\ldots,N_{M-1})$$

• WF-improvable if there exists a sequence p'_1, \ldots, p'_M such that $\prod_{i=1}^M p'_i = p*$ and

$$PR(p'_1,\ldots,p'_M,N_1,\ldots,N_{M-1}) > PR(p_1,\ldots,p_M,N_1,\ldots,N_{M-1})$$

• CT-improvable if there exists a sequence τ'_1, \ldots, τ'_M such that $\sum_{i=1}^M \tau'_i = \tau^*$ and

$$TP(\tau'_1,\ldots,\tau'_M) > TP(\tau_1,\ldots,\tau_M),$$
(22)

where TP is the throughput of the system.

• Recursive aggregation procedure (Bernoulli lines):

$$p_{i}^{b}(s+1) = p_{i}[1 - Q(p_{i+1}^{b}(s+1), p_{i}^{f}(s), N_{i})], \quad i = 1, \dots, M-1,$$

$$p_{i}^{f}(s+1) = p_{i}[1 - Q(p_{i-1}^{f}(s+1), p_{i}^{b}(s+1), N_{i-1})], \quad i = 2, \dots, M, \quad (1)$$

$$s = 0, 1, 2, \dots,$$

with initial conditions

$$p_i^f(0) = p_i, \quad i = 1, \dots, M,$$
(2)

and boundary conditions

$$p_1^f(s) = p_1, \quad p_M^b(s) = p_M, \quad s = 0, 1, 2, \dots,$$
 (3)

where

$$Q(x, y, N) = \begin{cases} \frac{(1-x)(1-\alpha)}{1-\frac{x}{y}\alpha^{N}}, & \text{if } x \neq y, \\ \frac{1-x}{N+1-x}, & \text{if } x = y, \end{cases}$$
(4)

$$\alpha = \frac{x(1-y)}{y(1-x)}.$$
(5) 18

Theorem 1 Aggregation procedure (1)-(5) has the following properties:

(i) The sequences, $p_2^f(s), \ldots, p_M^f(s)$ and $p_1^b(s), \ldots, p_{M-1}^b(s), s = 1, 2, \ldots$, are convergent, i.e., the following limits exist:

$$p_i^b := \lim_{s \to \infty} p_i^b(s), \quad p_i^f := \lim_{s \to \infty} p_i^f(s).$$
(6)

 (ii) These limits are unique solutions of the steady state equations corresponding to (1), i.e., of

$$p_{i}^{f} = p_{i}[1 - Q(p_{i-1}^{f}, p_{i}^{b}, N_{i-1})], \quad 2 \leq i \leq M,$$

$$p_{i}^{b} = p_{i}[1 - Q(p_{i+1}^{b}, p_{i}^{f}, N_{i})], \quad 1 \leq i \leq M - 1,$$

$$p_{1}^{f} = p_{1}, \quad p_{M}^{b} = p_{M}.$$
(7)

(iii) In addition, these limits satisfy the relationships:

$$p_{M}^{f} = p_{1}^{b}$$

$$= p_{i+1}^{b} [1 - Q(p_{i}^{f}, p_{i+1}^{b}, N_{i})] \qquad (8)$$

$$= p_{i}^{f} [1 - Q(p_{i+1}^{b}, p_{i}^{f}, N_{i})], \quad i = 1, \dots, M - 1.$$

$$19$$

Using the steady state of this recursive procedure, the performance measures of a Bernoulli line are estimated as follows:

$$\widehat{PR} = p_i^f [1 - Q(p_{i+1}^b, p_i^f, N_i)] \\
= p_{i+1}^b [1 - Q(p_i^f, p_{i+1}^b, N_i)],$$
(9)
$$\widehat{WIP}_i = \begin{cases} \frac{p_i^f}{p_{i+1}^b - p_i^f \alpha^{N_i}(p_i^f, p_{i+1}^b)} \left[\frac{1 - \alpha^{N_i}(p_i^f, p_{i+1}^b)}{1 - \alpha(p_i^f, p_{i+1}^b)} \right] \\
-N_i \alpha^{N_i}(p_i^f, p_{i+1}^b) \right], \quad \text{if } p_i^f \neq p_{i+1}^b,$$
(10)
$$\frac{N_i(N_i+1)}{2(N_i+1-p_i^f)}, \quad \text{if } p_i^f = p_{i+1}^b,$$

$$i = 1, \dots, M - 1,$$

$$\widehat{WIP} = \sum_{i=1}^{M-1} \widehat{WIP}_i, \tag{11}$$

$$\widehat{BL}_{i} = p_{i}Q(p_{i+1}^{b}, p_{i}^{f}, N_{i}), \quad i = 1, \dots, M - 1,$$
(12)

$$\widehat{ST}_{i+1} = p_i^b Q(p_{i-1}^f, p_i^b, N_{i-1}), \quad i = 2, \dots, M.$$
(13)

• The accuracy of \widehat{PR} is within 1%; lower for other performance measures.

Theorem 5 A Bernoulli line is unimprovable with respect to WF if and only if

$$p_i^f = p_{i+1}^b, \quad i = 1, \dots, M - 1.$$
 (23)

- Implementation:
 - Direct (optimality): Optimal WF allocation:

$$p_{1}^{*} = \left(\frac{N_{1}+1}{N_{1}+\widehat{PR}^{*}}\right)\widehat{PR}^{*},$$

$$p_{i}^{*} = \left(\frac{N_{i-1}+1}{N_{i-1}+\widehat{PR}^{*}}\right)\left(\frac{N_{i}+1}{N_{i}+\widehat{PR}^{*}}\right)\widehat{PR}^{*}, i = 2, \dots, M-1$$

$$p_{M}^{*} = \left(\frac{N_{M-1}+1}{N_{M-1}+\widehat{PR}^{*}}\right)\widehat{PR}^{*}.$$

$$\widehat{PR}^{*}$$

where PR is the limit of the following recursive procedure:

$$x(n+1) = (p^*)^{\frac{1}{M}} \prod_{i=1}^{M-1} \left(\frac{N_i + x(n)}{N_i + 1}\right)^{\frac{2}{M}}, \quad x(0) \in (0,1)$$

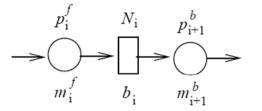
• Disadvantage: All systems parameters must be known..

- Implementation (cont):
 - Indirect (improvability): In a WF unimprovable system,

$$\widehat{WIP}_i = \frac{N_i(N_i+1)}{2(N_i+1-p_i^f)}, \quad i = 1, \dots, M-1$$

• In other words,

$$\frac{N_i}{2} < \widehat{WIP}_i < \frac{N_i + 1}{2}, \quad i = 1, \dots, M - 1$$



- Advantage: Only *WIP* must be monitored.
- **WF Improvability Indicator**: The system is practically WF-unimprovable if each buffer is close to being half-full.
- This indicator holds for CT-improvability as well (in Markovian and non-Markovian systems).

WF Continuous Improvement Procedure:

- By calculations off-line (using the aggregation procedure (4.30) and formula (4.37)) or by measurements on the factory floor, evaluate the average buffer occupancy, WIP_i, i = 1, ..., M - 1.
- (2) Determine the buffer for which $|WIP_i (N_i + 1)/2|$ is the largest. Assume this is buffer k.
- (3) If WIP_k (N_k + 1)/2 is positive, re-allocate a sufficiently small amount of work, εp_k, from m_k to m_{k+1}; if WIP_k (N_k + 1)/2 is negative, re-allocate εp_{k+1} from m_{k+1} to m_k (observing, of course, the constraint p_kp_{k+1} = const).
- (4) Return to step (1).
- (5) Continue this process until $\max_i |WIP_i (N_i + 1)/2|$ is sufficiently small.

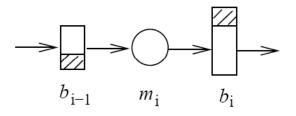
Theorem: A Bernoulli line is unimprovable w.r.t. BC if and only if $\min_{i=1,...,M} p_i \left(\min \left\{ \frac{p_i^f}{p_i^b}, \frac{p_i^b}{p_i^f} \right\} \right)$

is maximized over all sequences N'_1, \ldots, N'_{M-1} such that $\sum_{i=1}^{M-1} N'_i = N^*$.

• Numerical Fact: A production line with any model of machine reliability is practically BC-umimprovable if

$$\max_{i=2,...,M-1} |WIP_{i-1} - (N_i - WIP_i)|$$

is minimized over all sequences N'_1, \ldots, N'_{M-1} .

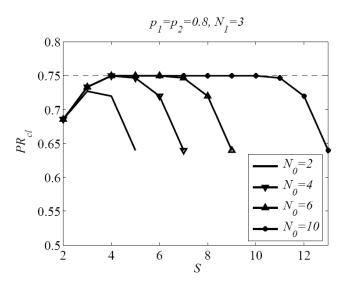


BC Continuous Improvement Procedure:

- By calculations off-line (using (4.30) and (4.37)) or by measurements on the factory floor, evaluate the average occupancy of each buffer, WIP_i, i = 1, ..., M − 1.
- (2) Determine the buffer for which $|WIP_i (N_{i+1} WIP_{i+1})|$, i = 1, ..., M-2, is the largest. Assume this is buffer k.
- (3) If WIP_k (N_{k+1} WIP_{k+1}) is positive, transfer a unit of capacity from b_k to b_{k+1}; if WIP_k - (N_{k+1} - WIP_{k+1}) is negative, re-allocate a unit of capacity from b_{k+1} to b_k.
- (4) Return to step (1).
- (5) Continue this process until arriving at a limit cycle and choose the buffer capacity allocation on the limit cycle, which maximizes PR.

- **Example:** M = 11; $p_i = 0.8$, $i \neq 6$; $p_6 = 0.6$. Total buffer capacity 24.
 - BC-Continuous Improvement Procedure leads to $N_1 = 1, N_2 = N_3 = N_4 = 2, N_5 = 5,$ $N_6 = 4, N_7 = N_8 = N_9 = N_{10} = 2.$ Resulting throughput $\widehat{PR} = 0.5843.$
 - Goldratt ("The Goal") allocation $N_i = 1, i \neq 5,$ $N_5 = 17.$ Resulting throughput $\widehat{PR} = 0.426$ (27% less).

• Closed line performance as a function of S and N_0 .



- **Definition:** A closed line is:
 - *S*⁺-improvable if *PR* can be increased by adding a carrier;
 - *S*⁻-improvable if *PR* can be increased by removing a carrier.

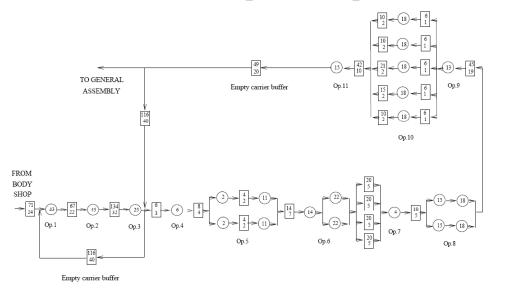
- Numerical Fact: A closed line is
 - *S*⁺-improvable if

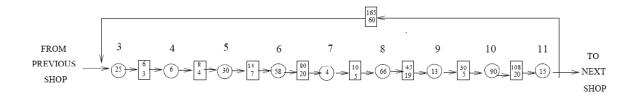
$$I = \sum_{i=1}^{M} ST_i - \sum_{i=1}^{M} BL_i > 0,$$

■ *S*--improvable if

$$I = \sum_{i=1}^{M} ST_i - \sum_{i=1}^{M} BL_i < 0,$$

• **Case study:** Automotive paint shop





Model validation

	Month 1	Month 2	Month 3	Month 4	Month 5
Est. TP	52.59	51.54	52.77	51.92	52.64
Actual TP	53.50	43.81	51.27	54.28	55.89
Error	-1.70%	17.64%	2.93%	-4.35%	-5.81%

Step #	S	Ι	TP
0	8	1.3534	52.59
1	9	0.7217	57.00
2	10	0.5216	58.36
3	11	0.4297	58.93
4	12	0.3926	59.16
5	13	0.3780	59.24
6	14	0.3735	59.27
7	15	0.3711	59.28
8	16	0.3707	59.29

• Continuous improvement with respect to *S*

Implemented on the factory floor

2 UNCONSTRAINED IMPROVABILITY 2.1 Definitions

Definition:

m_i, *i* ∈ {1,..., *M*}, is the bottleneck machine (BN-m) in a Bernoulli line if

$$\frac{\partial PR}{\partial p_i} > \frac{\partial PR}{\partial p_j}, \quad \forall j \neq i.$$

• $m_i, i \in \{1, ..., M\}$, is the bottleneck (BN-m) in a serial

line with continuous time model of machine reliability if

$$\frac{\partial TP}{\partial c_i} > \frac{\partial TP}{\partial c_i}, \qquad \forall j \neq i.$$

• **Definition:** b_i , $i \in \{1, ..., M - 1\}$, is the bottleneck buffer (BN-b) if

$$PR(p_1, \dots, p_M, N_1, \dots, N_i + 1, \dots, N_{M-1}) > PR(p_1, \dots, p_M, N_1, \dots, N_j + 1, \dots, N_{M-1}), \quad \forall j \neq i.$$
32

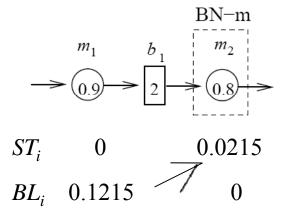
2.2 Two-machine Lines

■ **Theorem:** ∂*PR*

$$\frac{\partial PR}{\partial p_1} > \frac{\partial PR}{\partial p_2}$$
 if and only if $BL_1 < ST_2$;

$$\frac{\partial PR}{\partial p_2} > \frac{\partial PR}{\partial p_1}$$
 if and only if $BL_1 > ST_2$;

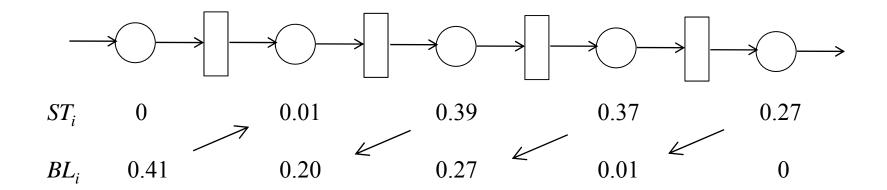
• Graphical representation:



2.3 *M*-machine Lines

Arrow assignment rule:

 $BL_i > ST_{i+1} \rightarrow \text{arrow from } m_i \text{ to } m_{i+1}$ $BL_i < ST_{i+1} \rightarrow \text{arrow from } m_{i+1} \text{ to } m_i$



2.3 *M*-machine Lines (cont)

Bottleneck Indicator:

- A single machine with no emanating arrows is the BN-m.
- If there are multiple machines with no emanating arrows, the one with the largest severity is the BN-m:

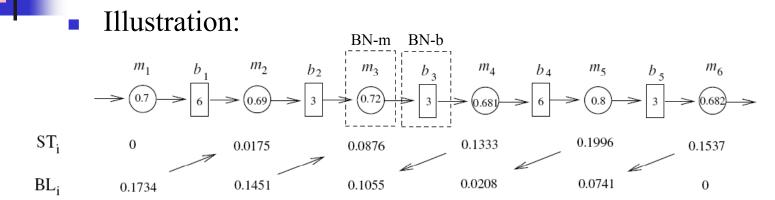
$$S_{i} = |ST_{i+1} - BL_{i}| + |BL_{i-1} - ST_{i}|, i = 2, ..., M - 1,$$

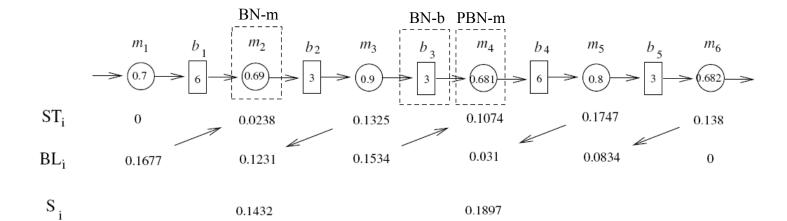
$$S_{1} = |ST_{2} - BL_{1}|,$$

$$S_{M} = |BL_{M-1} - ST_{M}|.$$

BN-b is one of the buffers surrounding the BN-m.

2.3 M-machine Lines (cont)

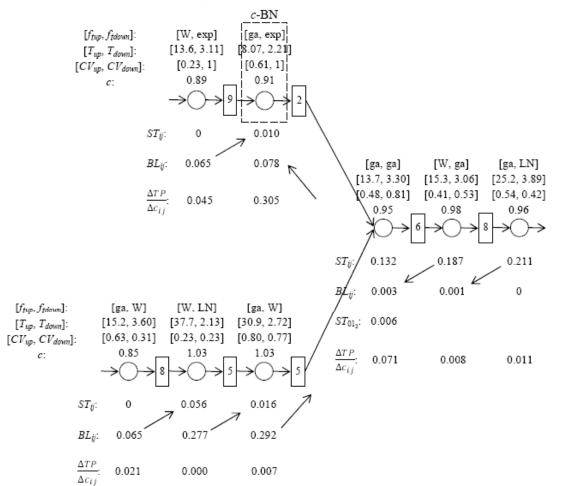




36

2.3 M-machine Lines (cont)

Illustration: Assembly system



2.3 M-machine Lines (cont)

Justification:

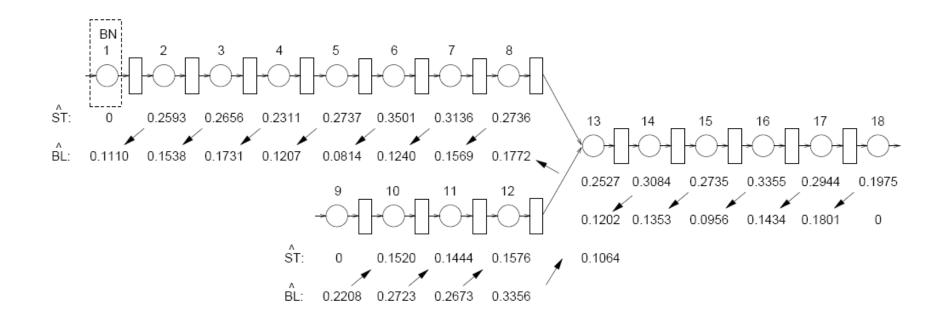
Hypothesis:

 $BL_{j-1} > ST_j \text{ implies } \epsilon_{j1} := P_{j-1}(0) \approx Q(p_{j-1}^f, p_j^b, N_{j-1}) \ll 1,$ $BL_j < ST_{j+1} \text{ implies } \epsilon_{j2} := (1 - p_{j+1}^b)P_j(N_j) \approx Q(p_{j+1}^b, p_j^f, N_j) \ll 1.$

• Lemma: For any $0 < \epsilon_0 \ll 1$, there exists N^* , such that if $N_j > N^*$, then $\epsilon = \max(\epsilon_{j1}, \epsilon_{j2}) < \epsilon_0$.

• **Theorem:** Under the Hypothesis, BN-m is downstream of m_j if $\widehat{BL}_j > \widehat{ST}_{j+1}$ and upstream of m_j if $\widehat{BL}_{j-1} > \widehat{ST}_j$.

2.4 Application: Ignition Assembly System



2.4 Application: Ignition Assembly System (cont)

Analysis of buffering potency:

Month	May	June	July	Aug.	Sept.	Oct.
Bottleneck	Op.1	Op.13	Op.13	Op.13	Op.13	Op.1
Machines with						
the smallest	Op.4	Op.4	Op.4	Op.11	Op.4	Op.14
isolation PR						

- Conclusion: Buffering is not potent.
- Recommendations:
 - Increasing the capacity of buffer conveyor from 19 to 40 carriers leading to 9% throughput improvement;
 - Eliminating starvations of first and blockages of last operations leading to 7-17% throughput improvement.
- Both recommendations have been implemented on the factory floor.

3. LEANNESS3.1. Parametrization

• Assume that

$$T_{up,i} =: T_{up}, \quad T_{down,i} =: T_{down}, \text{ i.e., } e = \frac{T_{up}}{T_{up} + T_{down}}; \quad N_i =: N$$

- Normalizations:
 - *Level of buffering* capacity of the buffer in units of downtime:

$$k := \frac{N}{T_{down}}$$

• *Line efficiency*:

$$E := \frac{PR}{PR_{\infty}}.$$

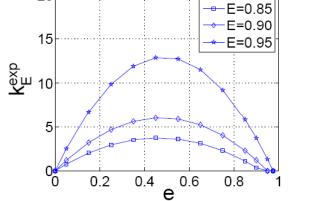
• **Definition:** Lean level of buffering (k_E) – the minimum level of buffering necessary and sufficient to ensure *E*.

3.2 Lean Buffering in Two- and Three-machine Lines

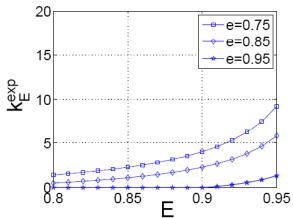
Theorem:

$$\kappa_E^{exp}(M=2) = \begin{cases} \frac{2e(E-e)}{1-E}, & \text{if } e < E, \\ 0, & \text{otherwise.} \end{cases}$$

$$k_E^{exp}(M=3) = \begin{cases} \frac{e(1+\sqrt{E})(e+e\sqrt{E}-2)}{2(1-\sqrt{E})} \ln\left(\frac{1-e\sqrt{E}}{(1-e)(1+\sqrt{E})}\right), & \text{if } e < \sqrt{E}, \\ 0, & \text{otherwise.} \end{cases}$$



ļ



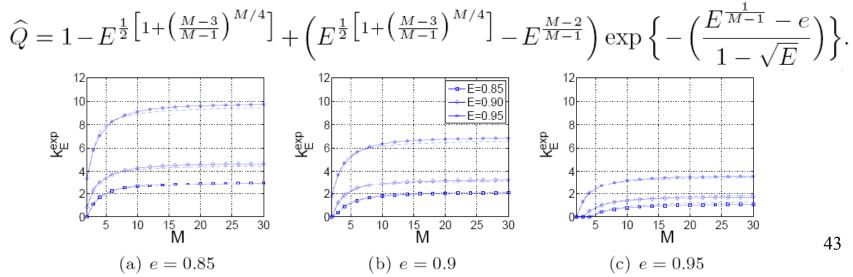
42

3.2 Lean Buffering in *M***-machine Lines**

Theorem: $k_{E}^{exp}(M > 3) = \begin{cases} \frac{e(2-Q)(2e-eQ-2)}{2Q} \ln\left(\frac{E-eE+eEQ-1+e-2eQ+eQ^{2}+Q}{(1-e-Q+eQ)(E-1)}\right), & \text{if } e < E^{\frac{1}{M-1}}, \\ 0, & \text{otherwise}, \end{cases}$

where
$$Q = Q(\lambda_{M-2}^{f}, \mu_{M-2}^{f}, \lambda_{M-1}^{b}, \mu_{M-1}^{b}, N_{E})$$

• Approximation of *Q*:



3.2 Lean Buffering in *M***-machine Lines (cont)**

• **Rule-of-thumb**: For exponential lines with $M \ge 10$, LLB can be selected as follows:

e	E = 0.85	E = 0.90	E = 0.95
0.85	3.4	5	9.8
0.90	2.7	3.9	7.2
0.95	1.6	2.4	4.3

- Q: Is a buffer of capacity N = 1000 lean or not?
- A: It depends: If $T_{down} = 1000$, the buffer is too lean (since k = 1). If $T_{down} = 10$, the buffer is very much not lean (since k = 100).

4 TRANSIENTS 4.1 Formulation

- Two-machine Bernoulli line with identical machines:
 x(n): the probability that the buffer contains x parts in slot n
 y[n] = [PR(n), WIP(n)]^T
- The dynamics are described by:

$$x(n+1) = Ax(n), \quad ||x(n)||_1 = 1,$$
(25)

$$y(n) = Cx(n) = \begin{bmatrix} 0 & 1 & p & \cdots & p \\ 0 & 1 & 2 & \cdots & N \end{bmatrix} x(n).$$
(26)

4.1 Formulation (cont)

• Let λ_i , $i = 1, \ldots, n$. be the eigenvalue of matrix A, $1 = \lambda_0 > \lambda_1 > |\lambda_2| \ge \ldots \ge |\lambda_N|.$

Then, the transients of x(n) are characterized by λ_1 .

$$PR(n) = PR_{ss} \Big[1 + \frac{\tilde{C}_{11}}{\tilde{C}_{10}} \tilde{x}_1(0) \lambda_1(n) + \ldots + \frac{\tilde{C}_{1N}}{\tilde{C}_{10}} \tilde{x}_N(0) \lambda_N(n) \Big], \quad (27)$$

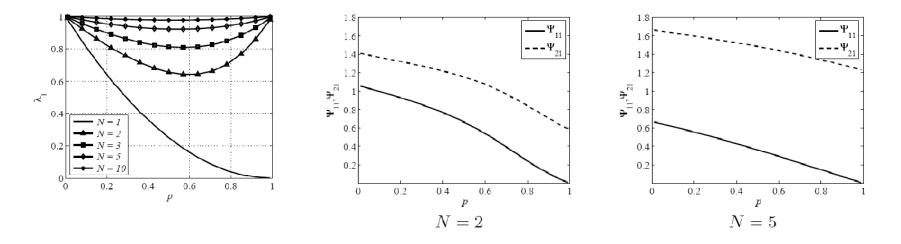
$$WIP(n) = WIP_{ss} \Big[1 + \frac{\tilde{C}_{21}}{\tilde{C}_{20}} \tilde{x}_1(0) \lambda_1(n) + \ldots + \frac{\tilde{C}_{2N}}{\tilde{C}_{20}} \tilde{x}_N(0) \lambda_N(n) \Big], \quad (28)$$

$$\Psi_{11} = \Big| \frac{\tilde{C}_{11}}{\tilde{C}_{10}} \Big|, \quad \Psi_{21} = \Big| \frac{\tilde{C}_{21}}{\tilde{C}_{20}} \Big|, \quad (29)$$

Thus, the dynamics of *PR* and *WIP* are characterized by both λ_1 and Ψ_{11} , Ψ_{21} .

4.2 Results

Numerical Fact 5 For two-machine Bernoulli line with identical machines, the behavior of λ_1 and Ψ_{11} and Ψ_{21} as functions of p and N is shown in Figures 12 and 13, respectively.



• Thus, for efficient machines, the transients of x_i and WIP are slow, while the transients of PR are fast.

5 PSE TOOLBOX 5.1 Functions

Functions	Tools				
 Modeling Performance Analysis Continuus Improvement Bottleneck Identification Lean Buffer Design Product Quality Customer Demand Satisfaction Simulation 	BN-m and BN-b in Serial Lines with Exponential Machines BN-m and BN-b in Serial Lines with General Models of Machine Reliability BN-m and BN-b in Closed Lines with Bernoulli Machines BN-m and BN-b in Closed Lines with Exponential Machines BN-m and BN-b in Closed Lines with General Models of Machines BN-m and BN-b in Closed Lines with Exponential Machines BN-m and BN-b in Closed Lines with General Models of Machines BN-m and BN-b in Closed Lines with General Models of Machine Reliability BN-m and BN-b in Closed Lines with General Models of Machines BN-m and BN-b in Closed Lines with General Models of Machines BN-m and BN-b in Assembly Systems with Bernoulli Machines BN-m and BN-b in Assembly Systems with Exponential Machines BN-m and BN-b in Assembly Systems with General Models of Machine Reliability				
Run Settings					

5.2 Example of tools

Systems parameters							
Input ma	mually	C Ing	ut from file	Load			
M: 5	0.92 0.8	5 0.9 0.85 0.9		N	2332	1	Identify
			ch machine and eac úcally for systems w				
		p	BN-m BN-b		BN-m		
	_	092 - I		.90 3		-(090)	
	2	\sim -10			$\simeq \Box$	\sim	
	р	0.9200	0.8500 0.	9000	0.8500	0.9000	
	ST	0.0000 💉	.01580.	0492 🤿	0.0322	. 0.1062	
	BL	0.1262	0.0412 6 0.	0603	0.0249	0.0000	
	5	(1.1185	-	0.1094		
	₩7₽	1.70	1.87	2.05	1.18		
			PR =	0.7938			
		10.	w Results	Clos			

6 SUMMARY

- PSE provides first-principle-based methods for solving most production management problems arising on the factory floor.
- To apply these methods, one has to make measurements.
- Optimality may not be as conducive for applications as improvability.
- The main results of PSE are due to the following circumstances:
 - Markovian systems can be investigated analytically.
 - Non-Markovian systems, due to the filtering properties afforded by buffering, can be investigated using the Markovian results.
 - The sensitivity of throughput to machine parameters can be translated into blockages and starvations.

This leads to a conclusion that, paraphrasing A. Einstein,
 Production systems are complex... but not evil. 50

Acknowledgements

• The PSE research, applications, and *PSE Toolbox* design have been carried out jointly with my Ph.D. students:

J.-T.Lim, F. Top, D. Jacobs, C.-T. Kuo, S.-Y. Chiang, J. Li, E. Enginarlar and L. Zhang

• To all of them, as well as to NSF that supported this work for over 25 years and to numerous industrial partners, our deepest gratitude and thanks.