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Call Centers with Overflow

Source of complexity: dependence



Motivating Example 1

CY(Ny) = capacity cost function for station O.

W(t) = virtual waiting time at time 7. (Similarly, W;(¢) and Wy (1))

W(t) = Wi(t)1{X;(r) < Nr + K;} + Wo(t) 1{X;(t) = N; + K}
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Motivating Example 2
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s.t. well

@ Optimal policy may benefit from state information on in-house
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Basic Model

@ A(t) - number of arrivals to station / by time 7: \ m
A(r) is a Poisson process with rate .
@ Ap(t) - number of overflowed calls by time ¢.
@ As(t) = A(r) — Ap(1) - arrivals entering station /.
@ X;(t),Xo(r) - total number in respective system at . ° @
o K; - threshold in station I (K; > 0). w o |
v '

o In isolation: station O is an GI/M /N + M queue.



A sequence of overflow networks in a many-server heavy-traffic regime

© Functional Central Limit Theorem (FCLT) for Overflow Process

© Pointwise Stationarity and Asymptotic Independence



Asymptotic (Heavy Traffic) Analysis

We consider a sequence of networks indexed by arrival rate A\, with A\ — oc.

A
Main Assumption: m
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1 — v interpreted as rough estimate for the (steady-state) blocking probability
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We consider a sequence of networks indexed by arrival rate A\, with A\ — oc.

A
Main Assumption: m

@ Non-negligible overflow:

N} + 0K}
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@ Sufficient capacity in station O: ° @
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1 — v interpreted as rough estimate for the (steady-state) blocking probability
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If D}(0) = 0, then (D},A) = (0,0B), wo.c., where B is a standard

Brownian motion and % = 1 + v.
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Outline of the proof: 13? =0

Dp(t) := Ni' + Ki' = Xp(1)
@ When close to threshold: 1 rate ~ jyN;* + 0K;', | rate = \.
e Slowing D;(r) down gives an M/M /1 with

N} + 0K} A
arrival rate = % ~ v < 1 and service rate = N 1
@ Let Qp(t) be M/M /1 with arrival rate v and service rate 1. Then,

[DNe) 1€ [0,7)} = {Qs(0) : 1 € [0,AT)}.
o From extreme-value theory for M /M /1: sup,. 7 D}(t) = O(log(A\T))



Outline of the proof: Kg = oB

t
o 43(0) = [ 1{D}5) = 0}aa’(5)
o D} completes O()\) cycles over any time interval [s, 7]

o Functional limits for the cumulative processes

/IH{D}(S) — 0}ds = (1 — v)r

0
VA </Ot 1{D}(s) = 0}ds — (1 — V)t> = GB(1)

e Functional limit for Xg follows from that for fot 1{D}(s) = 0}ds



Outline of the proof: Kg = oB

t
o 43(0) = [ 1{D}5) = 0}aa’(5)
o D} completes O()\) cycles over any time interval [s, 7]

o Functional limits for the cumulative processes

/IH{D}(S) — 0}ds = (1 — v)r

0
VA </Ot 1{D}(s) = 0}ds — (1 — V)t> = GB(1)

e Functional limit for Xg follows from that for fot 1{D}(s) = 0}ds

An Averaging Principle (AP):

A\g is “driven” by a process that moves at a different time scale



Implications

@ Approximating (complicated) overflow process with a simple process:
AN(1) = (X — N — 0Kt + VAo B(1),
with the approximation being asymptotically exact.

° Ag(t) is close to a renewal process with mean “inter-arrival” time

(A — N} — 6;K7)~" and squared coefficient of variation (SCV)
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with the approximation being asymptotically exact.

° Ag(t) is close to a renewal process with mean “inter-arrival” time

(A — N} — 6;K7)~" and squared coefficient of variation (SCV)

o2 o?
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Simpler than the original overflow renewal process.



Implications Cont.

e In isolation, station O is a GI/M /N + M queue.
e Using overflow convergence and known results for GI/M /N + M,
(D7, X5) = (0,X0)

o Asymptotic independence in a trivialized sense



Implications Cont.

e In isolation, station O is a GI/M /N + M queue.

e Using overflow convergence and known results for GI/M /N + M,
(D7, X5) = (0,Xo)

o Asymptotic independence in a trivialized sense

What does this limit imply for joint distributions? ... not much...

E[WA(r)] = E[W} () 1{X}\(r) < N} + K}'}]

+E[Wp()1{X}\(1) = N} + K7'}].



Independence of the Limits

Independence of limits does not “carry over” to the pre-limits.

Example:
o 1/vVA, wp.1/2 o 1, ifY*>0
0, w.p. 1/2 0, otherwise
1 wp.1/2
(YA, X*) = (0,X), where X = p-1/
0 wp.1/2

Trivially, the limits O and X are independent. However,
1/2 =P{x* > 0,Y* > 0} # P{X* > 0}P{¥Y* > 0} = 1/4,

for all A\, no matter how large.



Asymptotic Independence

“Natural scale” of station I = constant

“Natural scale” of station O = ﬁ

Theorem (asymptotic independence)

Df‘ is asymptotically independent of X), ie, forallt >0,

P{D} ) > % X3(1) 2 v} =P{DN) 2 x} P{R(1) = v} +o(1)




Asymptotic Independence

“Natural scale” of station I = constant

“Natural scale” of station O = ﬁ

Theorem (asymptotic independence)

Df‘ is asymptotically independent of X), ie, forallt >0,

P{D} ) > % X3(1) 2 v} =P{DN) 2 x} P{R(1) = v} +o(1)

Note that )?()5 is scaled, but DIA is not (requires refined analysis).



Main Idea of the Proof

Showing asymptotic independence of the sequence in n via asymptotic

independence of the process in ¢
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Main Idea of the Proof

Showing asymptotic independence of the sequence in n via asymptotic
independence of the process in ¢
(*) Recall that {D)(s) : 1 <5 <t+e}a {Op(s): 1 <5 <1+ e} for A
large, with Qp, denoting a M /M/1.
(**) Op(t+ Xe) = Qp(c0) as A — oo forall € > 0.
Steady state Qj(o0) is independent of Qy(t).

)?3 has a continuous limit hence hardly changes within e,

X1+ ) ~ X0,



Pointwise Stationarity

The following pointwise stationarity “follows” from (*) and (**):

Theorem (pointwise stationarity)

D} (t) = Qp(00) inRas X\ — <.




Pointwise Stationarity

The following pointwise stationarity “follows” from (*) and (**):

Theorem (pointwise stationarity)

D} (t) = Qp(00) inRas X\ — <.

Pointwise stationarity and asymptotic independence allow us to obtain

performance metrics by treating

o Station / as a stationary M /M /N /K + M queue
o Station O as a GI/M /N + M queue (that is independent of station /)

P{D}1) > d,X5(1) > q} = P{D}(00) > d}P{X5(1) > g}

e Overflow approximation simplifies analysis of station O



Waiting Times and Asymptotic ASTA

A )\ )\ LR . th . . .
Wi Wi Wo i - Waiting time of k™ arrival to respective station.

f is a continuous and bounded function or of the form f(x) := 1{x > 7}.

Theorem (asymptotic finite-horizon ASTA)

Forallt > 0,

where Wy is the diffusion limit of the virtual waiting-time process in the

GI/M /N + M queue and W; = K.




Generalizing to multiple classes

min ), E| fo s))ds]

s.t. well

@ Theorem: “Benefit from in-house state information is marginal.”



Summary

@ Motivated by an outsourcing problem, we considered an overflow
system: from M /M /N;/K; +M to G/M/No + M.
@ Under a resource pooling condition our heavy traffic analysis:
e provides a simple approximation for the overflow renewal process, which
is asymptotically correct.

e proves that in-house is asymptotically independent of outsourcer.
@ Proofs build on a separation of time scales and a resulting AP and
pointwise stationarity.
@ Results are applied to waiting times and virtual waiting times.

@ Generalized to more complicated systems (if queues are C-tight).



Questions?



