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Call Centers with Overflow
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Source of complexity: dependence



Motivating Example 1

CO
s (NO) = capacity cost function for station O.

W(t) = virtual waiting time at time t. (Similarly, WI(t) and WO(t))

W(t) = WI(t)1{XI(t) < NI + KI}+ WO(t)1{XI(t) = NI + KI}

minNO CO
s (NO)

s.t. E [f (WO(t))1{XI(t) = NI + KI}] ≤ α

NO ∈ Z+,
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The constraint depends on the joint distribution



Motivating Example 2

min
∑

i E[
∫ T

0 Ci(Qπ
i (s))ds]

s.t. π ∈ Π.
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Optimal policy may benefit from state information on in-house
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Basic Model

A(t) - number of arrivals to station I by time t:

A(t) is a Poisson process with rate λ.

AO(t) - number of overflowed calls by time t.

AI(t) = A(t)− AO(t) - arrivals entering station I.

XI(t),XO(t) - total number in respective system at t.

KI - threshold in station I (KI ≥ 0).

In isolation: station O is an GI/M/N + M queue.

 

λ1 λ2 

NO NI 

λ 

θ θ

µI µO 

  K 



Main Results

A sequence of overflow networks in a many-server heavy-traffic regime

1 Functional Central Limit Theorem (FCLT) for Overflow Process

2 Pointwise Stationarity and Asymptotic Independence



Asymptotic (Heavy Traffic) Analysis

We consider a sequence of networks indexed by arrival rate λ, with λ→∞.

Main Assumption:

1 Non-negligible overflow:

ν := lim
λ→∞

µINλ
I + θKλ

I
λ

< 1

2 Sufficient capacity in station O:

Nλ
O =

λ− µINλ
I − θIKλ

I
µO

+ o(λ)

 

λ1 λ2 

NO NI 

λ 

θ θ

µI µO 

  K 

1− ν interpreted as rough estimate for the (steady-state) blocking probability
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First Result

Dλ
I (t) = Nλ

I − Kλ
I − XλI (t), D̂λ

I (t) :=
Dλ

I (t)√
λ
,

ÂλO(t) :=
AλO(t)− (λ− µINλ

I − θKλ
I )t√

λ
, X̂λO(t) :=

XλO(t)− λ−µINλ
I −θKλ

I
µO√

λ

Theorem

If D̂λ
I (0)⇒ 0, then (D̂λ

I , Â
λ
O)⇒ (0, σB), u.o.c., where B is a standard

Brownian motion and σ2 = 1 + ν.

Recall: ν := lim
λ→∞

µINλ
I + θKλ

I
λ
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Outline of the proof: D̂λ
I ⇒ 0

Dλ
I (t) := Nλ

I + Kλ
I − XλI (t)

When close to threshold: ↑ rate ≈ µINλ
I + θKλ

I , ↓ rate = λ.

Slowing Dλ
I (t) down gives an M/M/1 with

arrival rate =
µINλ

I + θKλ
I

λ
≈ ν < 1 and service rate =

λ

λ
= 1

Let Qb(t) be M/M/1 with arrival rate ν and service rate 1. Then,

{Dλ
I (t) : t ∈ [0,T)} ≈ {Qb(t) : t ∈ [0, λT)}.

From extreme-value theory for M/M/1: supt≤T Dλ
I (t) = O(log(λT))



Outline of the proof: ÂλO ⇒ σB

AλO(t) =

∫ t

0
1{Dλ

I (s) = 0}dAλ(s)

Dλ
I completes O(λ) cycles over any time interval [s, t]

Functional limits for the cumulative processes∫ t

0
1{Dλ

I (s) = 0}ds⇒ (1− ν)t

√
λ

(∫ t

0
1{Dλ

I (s) = 0}ds− (1− ν)t
)
⇒ σ̃B(t)

Functional limit for ÂλO follows from that for
∫ t

0 1{D
λ
I (s) = 0}ds

An Averaging Principle (AP):

ÂλO is “driven” by a process that moves at a different time scale
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Implications

Approximating (complicated) overflow process with a simple process:

AλO(t) ≈ (λ− µINλ
I − θKλ

I )t +
√
λσB(t),

with the approximation being asymptotically exact.

AλO(t) is close to a renewal process with mean “inter-arrival” time

(λ− µINλ
I − θIKλ

I )−1 and squared coefficient of variation (SCV)

λσ2

λ− µINλ
I − θKλ

I
≈ σ2

(1− ν)
≥ 1.

Simpler than the original overflow renewal process.
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Implications Cont.

In isolation, station O is a GI/M/N + M queue.

Using overflow convergence and known results for GI/M/N + M,

(D̂λ
I , X̂

λ
O)⇒ (0, X̂O)

Asymptotic independence in a trivialized sense

What does this limit imply for joint distributions? ... not much...

E[Wλ(t)] = E[Wλ
I (t)1{XλI (t) < Nλ

I + Kλ
I }]

+ E[Wλ
O(t)1{XλI (t) = Nλ

I + Kλ
I }].
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Independence of the Limits

Independence of limits does not “carry over” to the pre-limits.

Example:

Yλ :=

 1/
√
λ, w.p. 1/2

0, w.p. 1/2
Xλ :=

 1, if Yλ > 0

0, otherwise

(Yλ,Xλ)⇒ (0,X), where X =

 1 w.p. 1/2

0 w.p. 1/2

Trivially, the limits 0 and X are independent. However,

1/2 = P{Xλ > 0,Yλ > 0} 6= P{Xλ > 0}P{Yλ > 0} = 1/4,

for all λ, no matter how large.



Asymptotic Independence

“Natural scale” of station I = constant

“Natural scale” of station O =
√
λ

Theorem (asymptotic independence)

Dλ
I is asymptotically independent of X̂λO, i.e, for all t > 0,

P
{

Dλ
I (t) ≥ x, X̂λO(t) ≥ y

}
= P

{
Dλ

I (t) ≥ x
}
P
{

X̂λO(t) ≥ y
}

+ o(1)

Note that X̂λO is scaled, but Dλ
I is not (requires refined analysis).
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Main Idea of the Proof

Showing asymptotic independence of the sequence in n via asymptotic

independence of the process in t

(*) Recall that {Dλ
I (s) : t ≤ s ≤ t + ε} ≈ {Qb(s) : t ≤ s ≤ t + λε} for λ

large, with Qb denoting a M/M/1.

(**) Qb(t + λε)⇒ Qb(∞) as λ→∞ for all ε > 0.

Steady state Qb(∞) is independent of Qb(t).

X̂λO has a continuous limit hence hardly changes within ε,

X̂λO(t + ε) ≈ X̂λO(t).
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Pointwise Stationarity

The following pointwise stationarity “follows” from (*) and (**):

Theorem (pointwise stationarity)

Dλ
I (t)⇒ Qb(∞) in R as λ→∞.

Pointwise stationarity and asymptotic independence allow us to obtain

performance metrics by treating

Station I as a stationary M/M/N/K + M queue

Station O as a GI/M/N + M queue (that is independent of station I)

P{Dλ
I (t) ≥ d,Xλ

O(t) ≥ q} = P{Dλ
I (∞) ≥ d}P{Xλ

O(t) ≥ q}

Overflow approximation simplifies analysis of station O
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Waiting Times and Asymptotic ASTA

wλk , wλI,k, wλO,k - waiting time of kth arrival to respective station.

f is a continuous and bounded function or of the form f (x) := 1{x > τ}.

Theorem (asymptotic finite-horizon ASTA)
For all t > 0,

lim
λ→∞

E

 1
Aλ(t)

Aλ(t)∑
k=1

f (wλ
k )

 = ν
1
t

∫ t

0
E
[
f (ŴI(s))

]
ds+(1−ν)

1
t

∫ t

0
E
[
f (ŴO(s))ds

]
.

where ŴO is the diffusion limit of the virtual waiting-time process in the

GI/M/N + M queue and ŴI ≡ K̄I .



Generalizing to multiple classes

min
∑

i E[
∫ T

0 Ci(Qπ
i (s))ds]

s.t. π ∈ Π.
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Theorem: “Benefit from in-house state information is marginal.”



Summary

Motivated by an outsourcing problem, we considered an overflow

system: from M/M/NI/KI + M to G/M/NO + M.

Under a resource pooling condition our heavy traffic analysis:

provides a simple approximation for the overflow renewal process, which

is asymptotically correct.

proves that in-house is asymptotically independent of outsourcer.

Proofs build on a separation of time scales and a resulting AP and

pointwise stationarity.

Results are applied to waiting times and virtual waiting times.

Generalized to more complicated systems (if queues are C-tight).



Questions?


