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Multi-armed bandits

History

Multi-armed bandits date back to times long before the term was coined.

What are they?

A collection of n reward-generating objects;

Rewards are incurred in continuous time;

Action/Decision: which objects to activate at each timestep?

Reward rates depend on current state and action;

Markovian dynamics also depend on whether a state is active or
passive;

Applications? Everywhere in stochastic control!

Natural, obvious, direct uses in queues, and machine maintenance;

Also in financial decision making;

A very wide variety of MDPs.
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Gittins index

The problem

To optimally determine a dynamic policy of activation decisions, at each
system state, which bandit to activate and leave all other bandits passive.
Passive ⇒ no change in state!

What does optimally mean above?

Discounted rewards (over infinite horizon);

Long-run average rewards.

Examples

Drug trials – which drug to use on the next patient?

Single server queue with holding costs – which class to serve next?
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Optimality of Gittins

Theorem

The solution, π, maximizing

Vπ = Eπ

[ ∞∑
t=0

βtRj(t)

(
xj(t) (t)

) ∣∣∣ x(0) = x

]
,

is characterized by index functions I j(·) for each bandit j ∈ {1, . . . , n}.
Optimal policy π acts on bandit j at time t if

I j (xj (t)) = max
1≤i≤n

I i (xi (t))

Note:

One active bandit at each time;

Passive bandits are fixed.

Hodge & Glazebrook Multi-action restless bandit asymptotics 26th November 2010 4 / 20



Subsidy problem approach (primarily Whittle)
Various proofs from Gittins, Jones, Weber, Whittle

The retirement option

Introduce a new bandit with fixed constant reward W ;

Equivalent to a reward W for passivity;

Characterize the value function in terms of W ;

Identify the value function as a solution to the original DP, for
appropriate W .

Optimality?

When only one active choice, yes!

More than one active bandit, no! (Sometimes yes)
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Restless bandits

What are they?

Passive bandits can evolve;

Passive bandits reward rates now matter (previously could be
reassigned and neglected);

We consider discrete state space restless bandits.

How much harder?

Tsitsiklis & Papadimitriou showed PSPACE-hard. This is (probably!)
worse than NP-Hard.

Applications?

Far too many to list!
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Whittle approach for restless bandits

What’s been tried?

W -subsidy approach still applies;

Equivalent to rewarding W for being passive;

(or −W if minimizing some costs)

Index policies no longer necessarily optimal.

Conjecture of asymptotic result. . . false! (Weber & Weiss 1990)

How do indices arise?

Introduce passivity reward W ;

Bandits become independent;

Lagrangian relaxation attains optimum (with W );

Index = Fair charge = W value at which optimal policy changes;

Indexability: passive set monotone increasing in W .
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Weber & Weiss (1990)
‘On an index policy for restless bandits’

Model

Define a bandit on a finite state space {1, 2, . . . , k};
Take n copies of this bandit;

Two actions: active or passive for each bandit;

Reward rate g(i , a) in state i under action a;

Long-run average reward objective;

m of n bandits can be activated with m ∼= αn, α ∈ (0, 1);

Different Markovian evolution matrices for active or passive.

Conjecture

If the bandits are indexable then the policy which, in each state, activates
the m indices with current highest value, achieves asymptotically optimal
reward per bandit as n→∞ with m/n→ α.

False! (rarely and by very little)
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Weber & Weiss (1990)
‘On an index policy for restless bandits’

Overview

Two problems: hard constraint m = αn, relaxed constraint Em = αn;

Inequalities:

R
(n)
ind (α)

1
≤ R

(n)
opt(α)

2
≤ R

(n)
rel (α) = nr(α);

Inequality 2 is a per bandit (i.e. ÷n) equality – relaxing m = αn to
Em = αn doesn’t improve reward per bandit;

Indexability is not sufficient for 1 to be an order n equality;

Indexability plus global attraction of a fluid limit differential equation
⇒ asymptotic optimality.
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Weber & Weiss (1990 & 1991)
‘Addendum to: On an index policy for restless bandits’

Counterexample!

Weber & Weiss provide a (hard sought) counterexample above.
Constructing an indexable bandit not satisfying the differential equation
condition on four states.

Theorem

Global attraction of a unique solution to the derived fluid limit differential
equation in two and three dimensions is guaranteed.

Question: What happens if we extend the action space?

More than just active, 1, or passive, 0, . . .

Does indexability still make sense?

What constraints are natural?

Do we have asymptotic optimality?

Before we address these we ask ‘What more has been shown?’
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Intervening years – application areas

Areas with an interest – 1990 to present

ADP/LP relaxations: Exploration v Exploitation (Powell)

Bandwidth allocation

Complexity (Papadimitriou & Tsitsiklis)

Maintenance (Glazebrook)

Military applications: primarily target selection

Network optimization

PCLs, high-level abstract indexability (Niño-Mora)

Revenue management: esp. retail (Caro & Gallien)

Optimal search: e.g. the Cow-path problem

Sensor management

Warranties (Glazebrook)

More general resource allocation (Glazebrook, Niño-Mora)

Around 100 references from works in a wide variety of areas.
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More general resource allocation
Multi-action bandits

Model

Multiple levels of activity;

Extended Markovian dynamics;

Varying resource consumption;

More general resource constraints.

Summary

Niño-Mora: very general, gives heuristics with knapsack concerns;

Glazebrook, Hodge, Kirkbride:
I Indexability of multi-action restless bandits – server pools &

replenishment;
I Performance evaluation of index heuristics;
I Indexability under state dependent resource consumption.
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Multi-action asymptotic framework

Model

Define a bandit on a finite state space {1, 2, . . . , k};
Take n copies of this bandit;

Many actions: a ∈ {0, 1, 2, . . . ,A} for each bandit;

Reward rate g(i , a) in state i under action a;

Long-run average reward objective;

m units of activity to use across n bandits – i.e. m ∼= βn, β ∈ (0,A);

Different Markovian evolution matrices depending on action a.
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What does indexability mean?

Multi-action finite state restless bandit

Decouple bandits with W -passivity relaxation (equivalently mean
usage constraint);

We’re talking state-wise monotonicity of bandit optimal policy in a
W -passivity relaxation;

In a given state x :
I at high W we use a low action,
I at low W we use a high action;

Given x , we see W -values at which the optimal policy transitions
between actions a;

I(x , a) ≡ Ix(a) = value of W at which optimal policy is indifferent
between a and a− 1;

∀x , Ix(1) ≥ Ix(2) ≥ Ix(3) ≥ . . . ≥ Ix(A) (indexability).
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Asymptotic optimality of greedy index policy
New result

Theorem

If we take n copies of an indexable restless bandit (as previously
described), and if the fluid limit differential equation for the proportion of
bandits in each state has a single-point limit set, then the greedy
multi-action index policy agrees with both the strict resource constraint
and relaxed constraint problems in average reward per bandit:

lim
n→∞

R
(n)
ind (β)

n
= lim

n→∞

R
(n)
opt(β)

n
= r(β).
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Overview of Weber & Weiss

Stage 1: Establish that R
(n)
opt(β) ∼ R

(n)
rel (β) – difference is o(n)

You can modify the Weber & Weiss argument:

Bright idea: Consider the evolution of n bandits under the optimal
relaxed policy;

Zoom in on a single bandit and observe its equilibrium π on
{1, 2, . . . , k};
Now make rational (Q) assumptions, incl. n such that nπi ∈ N;

Now start n bandits from x∗ ∈ {1, 2, . . . , k}n mirroring π;

The relaxed optimal policy will use exactly βn: use that policy for
fixed time δ. A suboptimal, feasible(!), policy for the hard constraint
which almost achieves r(β) per bandit.

Theorem

This establishes that asymptotically the strict m = βn and Em = βn
problems have the same reward per bandit.
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The fluid limit constraint for multi-action bandits
some identical and some similar ideas to Weber & Weiss

Stage 2: Evaluate the greedy index policy

Space scaling ⇒ z(n) ∈ [0, 1]k with jumps of size 1/n;

Time scaling ⇒ rates of z(n1) ∼ rates of z(n2) for all n1, n2;

For a known set of indices Ix(a) the evolution of z(n) under the index
policy can be compared with a ‘piecewise not-quite-linear’
k-dimensional differential equation:

dz

dt
=
∑
i ,j

ziφi (z,λij(·))eij .

‘‖z(n)(t)− z(t)‖ is small’ (same mean rewards);

Idea: Identify the relaxed single-bandit equilibrium π from earlier as a
stationary point!

Indexability ⇒ uniqueness of stationary point.
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Applications

Motivating areas

Direct:

Many flows models in communication networks;

Large scale bandit problems.

Indirect:

Theoretical justification that greedy index-based heuristics are strong;

Motivation to study approaches to NP-Hard bandit problems via
approximations with index-interpretations;

Problems in the many diverse areas mentioned earlier now may have a
much closer class of problems with known asymptotically optimal
policies.
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Open questions

Where now?

Small k and small A sufficient? (cf. Weber & Weiss 1991) A question
for the differential equation buffs.

Can we quantify suboptimality in counterexamples? (Likely yes!) How
large suboptimality?

Infinite bandit state spaces?
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Thank you
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