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system (box) which produces an output process.
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The World of Control

The general model of control is that an input process is fed to a
system (box) which produces an output process.

Control /optimization is possible if the either the input process or
the system behavior can be influenced by a controller.
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White Box vs. Black Box

The world of comtrol/optimization has two main paradigms.

The Black Box Paradigm

No (or only very little) information is available on how the input
leads to the output (think of the economy).

The White Box Paradigm

A detailed model is available on the relation between the input and
the output (think of a queueing system).

This talk is about white box control /optimization.

10/91



A More Detailed Model

11/91



A More Detailed Model

@ In the following we assume that the system can be modeled
by a Markov chain P (possibly on a general state space).

12 /91



A More Detailed Model

@ In the following we assume that the system can be modeled
by a Markov chain P (possibly on a general state space).

@ We assume that the system dynamics can be influenced
through the choice of some design parameter 6 and we write
Py to indicate this.

13 /91



A More Detailed Model

@ In the following we assume that the system can be modeled
by a Markov chain P (possibly on a general state space).

@ We assume that the system dynamics can be influenced
through the choice of some design parameter 6 and we write
Py to indicate this.

@ The output process is denoted by {Xy(t)} where t € R or
teN.

14 /91



A More Detailed Model

@ In the following we assume that the system can be modeled
by a Markov chain P (possibly on a general state space).

@ We assume that the system dynamics can be influenced
through the choice of some design parameter 6 and we write
Py to indicate this.

@ The output process is denoted by {Xy(t)} where t € R or
teN.

We assume that Py is given to us in a closed-form analytical
expression (white box), so we can do math with it.
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A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

17 /91



A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

It is of key importance that the control algorithm

18 /91



A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

It is of key importance that the control algorithm

@ quickly adapts to a changing environment, and

19/91



A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

It is of key importance that the control algorithm
@ quickly adapts to a changing environment, and

@ quickly stabilizes after a regime change.

20/91



A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

It is of key importance that the control algorithm
@ quickly adapts to a changing environment, and

@ quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

21/91



A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

It is of key importance that the control algorithm
@ quickly adapts to a changing environment, and

@ quickly stabilizes after a regime change.
Non-Stationary Control
Control in a changing environment is very hard!

We don't even know what "optimal” control means in the
non-stationary problem.
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@ Suppose the system is operating at 6. A natural question to
ask is the following: Would it be better to change 0 a little
bit?
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Compare mg4a with 7g in an efficient way.
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Let's turn to Stationary Control

@ Assume that Py is homogeneous (time independent) and we
want to control the steady-state behavior of the system.

@ Suppose the system is operating at 6. A natural question to
ask is the following: Would it be better to change 0 a little
bit?

Challenge J

Compare mg4a with 7g in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot
do better, or as Hinderer said: "In the long-run we are all dead.”
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The Stationary Control Model: The Basic Set Up

@ Let © C R denote the set of feasible parameters.
@ Let Py denote a Markov kernel on (S, S).

@ Assume that for each 6 € ©, Py admits a unique stationary
distribution 7y.

@ Assume that the group inverse of Py exists for all § € ©.
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What is the Group Inverse?

o Let

1 N
im ~ S P7 =T
Nlnooan; 0 o

provided the limit exists. Then for any probability distribution
won (S,8) it holds that ully = .
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@ In the uni-chain case, Iy is a matrix with rows equal to my.
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o Let

1 N
im ~ S P7 =T
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provided the limit exists. Then for any probability distribution
won (S,8) it holds that ully = .
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each block corresponds to the ergodic projector of that
particular ergodic class.
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What is the Group Inverse?

o Let

1 N
im ~ S P7 =T
Nl—r;nooNnZ; 0 o

provided the limit exists. Then for any probability distribution
won (S,8) it holds that ully = .
@ In the uni-chain case, Iy is a matrix with rows equal to my.

@ In the multi-chain case, Iy has a simple block structure where
each block corresponds to the ergodic projector of that
particular ergodic class.

The group inverse of Py is defined as

(1= Py+Tlg) ™t => " (Py—My)",
n>0

provided it exists.
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What does the Group Inverse Mean?

Note that

> (Py—TNg)" = (P§ —Mg) +My,

n>0 n>0

=:Dy

where Dy is called the deviation matrix of Py.
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Note that
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n>0 n>0
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where Dy is called the deviation matrix of Py.

Deviation Matrix

The group inverse/deviation matrix measures the speed of
convergence of Py to its stationary regime.
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What does the Group Inverse Mean?

Note that

> (Py—TNg)" = (P§ —Mg) +My,

n>0 n>0

=:Dy

where Dy is called the deviation matrix of Py.

Deviation Matrix

The group inverse/deviation matrix measures the speed of
convergence of Py to its stationary regime.

For cost vector f, Dpf is called the value function in MDP.

Existence is guaranteed in the finite case, otherwise via
geometric (!) ergodicity
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All very nice but can we use the Deviation Matrix in
Control?
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All very nice but can we use the Deviation Matrix in
Control?

Theorem 1
For A + 6,0 € ©, it holds that

Mora = Mo + Mora(Pora — Po) Dy

Lets proof this basic fact. By simple algebra

o0

PoDy = Py» (P§—Ty)
n=0

Py (I—ﬂg—i—Z(Pg—ﬂg)) =My — I + Dy,
n=1
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All very nice but can we use the Deviation Matrix in
Control?

Theorem 1
For A + 6,0 € ©, it holds that

Mora = Mo + Mora(Pora — Po) Dy

Lets proof this basic fact. By simple algebra

o0

PoDy = Py» (P§—Ty)
n=0

Py (I—HG+Z(P5—H9)> =My — I + Dy,
n=1

which yields | — Mg = (I — Pg)Dy, or | =My + (I — Py)Ds.
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All very nice but can we use the Deviation Matrix in
Control?

Theorem 1
For A + 6,0 € ©, it holds that

Mora = Mg + Mo a(Pora — Po)Dy

Lets proof this basic fact. By simple algebra

o0

PoDy = Py» (P§—Ty)
n=0

Py </—n9+Z(P3—n9)> =My — I + Dy,
n=1

which yields | — Mg = (I — Pg)Dy, or | =My + (I — Py)Ds.
Multiplying by Mg a (and noting that My, Ay = My , and Myl = MyPy)
proves the claim.
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Should we switch from 0 to 6 + A?

Suppose you want to minimize myf.
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Should we switch from 0 to 6 + A?

Suppose you want to minimize myf.

By Theorem 1 (in vectorial form) it holds that

mgraf — mof = moyn(Pora — Po)Dpf.

Since gy A is positive, we have the following
@ condition for switching from 6 to 6 + A:

779+Af —mpf <0 if (P9+A — Pg)Dgf <0,
@ condition for not switching from 6 to 6 + A:

Tornf — mof >0 if (Poon — Pg)Dpf > 0.
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Since a Markov transition probability is a collection of conditional
probabilities we can construct a new kernel Py as follows.
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Can we do better?

Since a Markov transition probability is a collection of conditional
probabilities we can construct a new kernel Py as follows.

We check for each state s what the best choice for 8 is, i.e., we

solve

;Peig(Pe'(S) — Py(s)) Dof
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Can we do better?

Since a Markov transition probability is a collection of conditional
probabilities we can construct a new kernel Py as follows.

We check for each state s what the best choice for 8 is, i.e., we
solve

;Peig(Pe'(S) — Py(s)) Dof

In Markov decision process theory this is called policy iteration.
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usually not available in closed analytical form.



Is it Applicable?

The problem with any policy-iteration-like approach is that Dy is
usually not available in closed analytical form.
An obvious analytical way around this is to work with

k

> (P§ —p)

n=0
as approximation of Dy, and

k

> (Py —TNg)f

n=0

as approximate value function for cost function f.

63 /91



Online Control
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(Po+n — Pg)Dof,
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Let's Take a Step back: What is really needed?

Note that in our approximative formula for mgaf — mpf we
actually need the term

(Po+a — Pg)Dyf,
which can be rewritten as follows

(Posn — Po)Dof = (Pora—Po) Y (P§—Tg)f

n>0
= > (Pora — Po)(P — Ng)f
n>0

= > (Posn — Po)PF.
n=0
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Introduce the Potential Matrix

@ For given cost function f, let gy(s) be defined as follows

o0

g(s) = Y _(P(s)f — mof).

n=0

The vector gy is called bias vector in MDP.
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Introduce the Potential Matrix

@ For given cost function f, let gy(s) be defined as follows

o0

g(s) = Y _(P(s)f — mof).

n=0

The vector gy is called bias vector in MDP.

@ The matrix
H@(S’ U) :gﬂ(s) —gg(u), Ss,uc S

is called the potential matrix.
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Estimating the Potential Matrix

@ The potential matrix can be written as

o0

Ho(s,u) = Y (PF(s)f — Py (u)f).

n=0
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Estimating the Potential Matrix

@ The potential matrix can be written as

o0

Ho(s,u) = Y (PF(s)f — Py (u)f).

n=0
@ Let 7y(s, u) be the time until the version started in s and the

version started in u couple, then

To(s,u)

Hy(s, u) Z f(Xo(n,s)) — f(Xo(n, u))|
n=0

where Xp(n, r) the n-th state of a Pyp-Markov chain started in
state r € S.
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Estimating the Potential Matrix

@ The potential matrix can be written as

o0

Ho(s,u) = Y (PF(s)f — Py (u)f).

n=0
@ Let 7y(s, u) be the time until the version started in s and the

version started in u couple, then

To(s,u)

Hy(s, u) Z f(Xo(n,s)) — f(Xo(n, u))|
n=0

where Xp(n, r) the n-th state of a Pyp-Markov chain started in
state r € S.

Note that Hy(s, u) can be estimated from the observing a
single-sample path using cut-and-past methods.
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How to use the Potential Matrix in Control?

@ Recall that we are want to evaluate

(Pon — Py)Dyf .
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How to use the Potential Matrix in Control?

@ Recall that we are want to evaluate
(Pon — Py)Dyf .

@ Using the potential matrix, this can be written as
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How to use the Potential Matrix in Control?

@ Recall that we are want to evaluate
(Pon — Py)Dyf .

@ Using the potential matrix, this can be written as

(Pg_,_A(S)*Pg(S))D@f: /SXS(P9+A(S, dSl)*Pg(S, dul))Hg(Sl, Ul)

@ The above formula can be made useful for on-line control.
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On-line Control and Sample-Path based learning

@ Suppose the chain is in state s = Xp(n).
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On-line Control and Sample-Path based learning

@ Suppose the chain is in state s = Xp(n).
@ Then simulate then next state according to Pysa, denoted by
Xg+n(s), and the next state under Py, denoted by Xp(s).
o If
Hp(Xo+a(s), Xp(s)) <0,

then in state s, the design parameter should be switched to
6 + A (in order to minimize costs) .
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On-line Control and Sample-Path based learning

@ Suppose the chain is in state s = Xy(n).

@ Then simulate then next state according to Pysa, denoted by
Xg+n(s), and the next state under Py, denoted by Xp(s).

o If
Ho(Xo+a(s), Xo(s)) <O,

then in state s, the design parameter should be switched to
6 + A (in order to minimize costs) .

This way the best choice for each state s can be found.
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On-line Control and Sample-Path based learning

@ Suppose the chain is in state s = Xp(n).
@ Then simulate then next state according to Pysa, denoted by
Xg+n(s), and the next state under Py, denoted by Xp(s).
o If
Hp(Xo+a(s), Xp(s)) <0,

then in state s, the design parameter should be switched to
6 + A (in order to minimize costs) .

This way the best choice for each state s can be found. This leads
to on-line control, resp. on-line learning.
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Summary

@ The basic techniques are rather straightforward.

@ Markov decision processes techniques can be made fruitful for
on-line control.

@ Simulation offers an interesting alternative for computing the
input data for on-line control (read the potential matrix).
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Impressive!?

Well, | hope so,
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Impressive!?

Well, | hope so, but don’t forget that everything said applies only
to the simple (=stationary) control problem.
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