Recent Trends in Control and Optimization of Stochastic Models

Bernd Heidergott Vrije Universiteit, Econometrics

November 26, 2010

イロン イロン イヨン イヨン 三日

1/91

Outline of the Talk

A Few Thoughts About Control and Optimization

Stationary Control

Online Control

A Few Thoughts About Control and Optimization

イロト 不通 とうほう 不良とう 間

3/91

The general model of control is that an input process is fed to a system (box) which produces an output process.

Control/optimization is possible if the either the input process or the system behavior can be influenced by a controller. The general model of control is that an input process is fed to a system (box) which produces an output process.

Control/optimization is possible if the either the input process or the system behavior can be influenced by a controller.

The general model of control is that an input process is fed to a system (box) which produces an output process.

Control/optimization is possible if the either the input process or the system behavior can be influenced by a controller.

The world of comtrol/optimization has two main paradigms.

The Black Box Paradigm

No (or only very little) information is available on how the input leads to the output (think of the economy).

The White Box Paradigm

A detailed model is available on the relation between the input and the output (think of a queueing system).

The world of comtrol/optimization has two main paradigms.

The Black Box Paradigm

No (or only very little) information is available on how the input leads to the output (think of the economy).

The White Box Paradigm

A detailed model is available on the relation between the input and the output (think of a queueing system).

The world of comtrol/optimization has two main paradigms.

The Black Box Paradigm

No (or only very little) information is available on how the input leads to the output (think of the economy).

The White Box Paradigm

A detailed model is available on the relation between the input and the output (think of a queueing system).

The world of comtrol/optimization has two main paradigms.

The Black Box Paradigm

No (or only very little) information is available on how the input leads to the output (think of the economy).

The White Box Paradigm

A detailed model is available on the relation between the input and the output (think of a queueing system).

- In the following we assume that the system can be modeled by a Markov chain *P* (possibly on a general state space).
- We assume that the system dynamics can be influenced through the choice of some design parameter θ and we write P_θ to indicate this.
- The output process is denoted by $\{X_{\theta}(t)\}$ where $t \in \mathbb{R}_+$ or $t \in \mathbb{N}$.

- In the following we assume that the system can be modeled by a Markov chain *P* (possibly on a general state space).
- We assume that the system dynamics can be influenced through the choice of some design parameter θ and we write P_θ to indicate this.
- The output process is denoted by $\{X_{\theta}(t)\}$ where $t \in \mathbb{R}_+$ or $t \in \mathbb{N}$.

- In the following we assume that the system can be modeled by a Markov chain *P* (possibly on a general state space).
- We assume that the system dynamics can be influenced through the choice of some design parameter θ and we write P_θ to indicate this.
- The output process is denoted by $\{X_{\theta}(t)\}$ where $t \in \mathbb{R}_+$ or $t \in \mathbb{N}$.

- In the following we assume that the system can be modeled by a Markov chain *P* (possibly on a general state space).
- We assume that the system dynamics can be influenced through the choice of some design parameter θ and we write P_θ to indicate this.
- The output process is denoted by $\{X_{\theta}(t)\}$ where $t \in \mathbb{R}_+$ or $t \in \mathbb{N}$.

- In the following we assume that the system can be modeled by a Markov chain *P* (possibly on a general state space).
- We assume that the system dynamics can be influenced through the choice of some design parameter θ and we write P_θ to indicate this.
- The output process is denoted by $\{X_{\theta}(t)\}$ where $t \in \mathbb{R}_+$ or $t \in \mathbb{N}$.

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Consider a controller that regulates the amount of insulin given to a diabetics patient.

It is of key importance that the control algorithm

- quickly adapts to a changing environment, and
- quickly stabilizes after a regime change.

Non-Stationary Control

Control in a changing environment is very hard!

Stationary Control

- Assume that P_{θ} is homogeneous (time independent) and we want to control the steady-state behavior of the system.
- Suppose the system is operating at θ. A natural question to ask is the following: Would it be better to change θ a little bit?

Challenge

Compare $\pi_{\theta+\Delta}$ with π_{θ} in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot do better, or as Hinderer said: "In the long-run we are all dead."

• Assume that P_{θ} is homogeneous (time independent) and we want to control the steady-state behavior of the system.

 Suppose the system is operating at θ. A natural question to ask is the following: Would it be better to change θ a little bit?

Challenge

Compare $\pi_{\theta+\Delta}$ with π_{θ} in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot do better, or as Hinderer said: "In the long-run we are all dead."

- Assume that P_{θ} is homogeneous (time independent) and we want to control the steady-state behavior of the system.
- Suppose the system is operating at θ. A natural question to ask is the following: Would it be better to change θ a little bit?

Challenge

Compare $\pi_{\theta+\Delta}$ with π_{θ} in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot do better, or as Hinderer said: "In the long-run we are all dead."

- Assume that P_{θ} is homogeneous (time independent) and we want to control the steady-state behavior of the system.
- Suppose the system is operating at θ. A natural question to ask is the following: Would it be better to change θ a little bit?

Challenge

Compare $\pi_{\theta+\Delta}$ with π_{θ} in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot do better, or as Hinderer said: "In the long-run we are all dead."

- Assume that P_{θ} is homogeneous (time independent) and we want to control the steady-state behavior of the system.
- Suppose the system is operating at θ. A natural question to ask is the following: Would it be better to change θ a little bit?

Challenge

Compare $\pi_{\theta+\Delta}$ with π_{θ} in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot do better, or as Hinderer said: "In the long-run we are all dead."

- Let $\Theta \subset \mathbb{R}$ denote the set of feasible parameters.
- Let P_{θ} denote a Markov kernel on (S, S).
- Assume that for each θ ∈ Θ, P_θ admits a unique stationary distribution π_θ.
- Assume that the group inverse of P_{θ} exists for all $\theta \in \Theta$.

• Let $\Theta \subset \mathbb{R}$ denote the set of feasible parameters.

- Let P_{θ} denote a Markov kernel on (S, S).
- Assume that for each $\theta \in \Theta$, P_{θ} admits a unique stationary distribution π_{θ} .
- Assume that the group inverse of P_{θ} exists for all $\theta \in \Theta$.

- Let $\Theta \subset \mathbb{R}$ denote the set of feasible parameters.
- Let P_{θ} denote a Markov kernel on (S, S).
- Assume that for each θ ∈ Θ, P_θ admits a unique stationary distribution π_θ.
- Assume that the group inverse of P_{θ} exists for all $\theta \in \Theta$.

- Let $\Theta \subset \mathbb{R}$ denote the set of feasible parameters.
- Let P_{θ} denote a Markov kernel on (S, S).
- Assume that for each $\theta \in \Theta$, P_{θ} admits a unique stationary distribution π_{θ} .
- Assume that the group inverse of P_{θ} exists for all $\theta \in \Theta$.

- Let $\Theta \subset \mathbb{R}$ denote the set of feasible parameters.
- Let P_{θ} denote a Markov kernel on (S, S).
- Assume that for each θ ∈ Θ, P_θ admits a unique stationary distribution π_θ.
- Assume that the group inverse of P_{θ} exists for all $\theta \in \Theta$.

What is the Group Inverse?

• Let

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N P_{\theta}^n = \Pi_{\theta},$$

provided the limit exists. Then for any probability distribution μ on (S, S) it holds that $\mu \Pi_{\theta} = \pi_{\theta}$.

- In the uni-chain case, Π_{θ} is a matrix with rows equal to π_{θ} .
- In the multi-chain case, Π_θ has a simple block structure where each block corresponds to the ergodic projector of that particular ergodic class.

The group inverse of P_{θ} is defined as

$$(I - P_{\theta} + \Pi_{\theta})^{-1} = \sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n,$$

provided it exists.

What is the Group Inverse?

Let

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N P_{\theta}^n = \Pi_{\theta},$$

provided the limit exists. Then for any probability distribution μ on (S, S) it holds that $\mu \Pi_{\theta} = \pi_{\theta}$.

• In the uni-chain case, Π_{θ} is a matrix with rows equal to π_{θ} .

 In the multi-chain case, Π_θ has a simple block structure where each block corresponds to the ergodic projector of that particular ergodic class.

The group inverse of P_{θ} is defined as

$$(I - P_{\theta} + \Pi_{\theta})^{-1} = \sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n,$$

provided it exists.

What is the Group Inverse?

Let

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N P_{\theta}^n = \Pi_{\theta},$$

provided the limit exists. Then for any probability distribution μ on (S, S) it holds that $\mu \Pi_{\theta} = \pi_{\theta}$.

- In the uni-chain case, Π_{θ} is a matrix with rows equal to π_{θ} .
- In the multi-chain case, Π_θ has a simple block structure where each block corresponds to the ergodic projector of that particular ergodic class.

The group inverse of $P_{ heta}$ is defined as

$$(I - P_{\theta} + \Pi_{\theta})^{-1} = \sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n,$$

provided it exists.
What is the Group Inverse?

Let

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N P_{\theta}^n = \Pi_{\theta},$$

provided the limit exists. Then for any probability distribution μ on (S, S) it holds that $\mu \Pi_{\theta} = \pi_{\theta}$.

- In the uni-chain case, Π_{θ} is a matrix with rows equal to π_{θ} .
- In the multi-chain case, Π_{θ} has a simple block structure where each block corresponds to the ergodic projector of that particular ergodic class.

The group inverse of $P_{ heta}$ is defined as

$$(I - P_{\theta} + \Pi_{\theta})^{-1} = \sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n,$$

provided it exists.

What is the Group Inverse?

Let

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N P_{\theta}^n = \Pi_{\theta},$$

provided the limit exists. Then for any probability distribution μ on (S, S) it holds that $\mu \Pi_{\theta} = \pi_{\theta}$.

- In the uni-chain case, Π_{θ} is a matrix with rows equal to π_{θ} .
- In the multi-chain case, Π_{θ} has a simple block structure where each block corresponds to the ergodic projector of that particular ergodic class.

The group inverse of P_{θ} is defined as

$$(I-P_{\theta}+\Pi_{\theta})^{-1}=\sum_{n\geq 0}(P_{\theta}-\Pi_{\theta})^n,$$

provided it exists.

Note that $\sum_{n\geq 0} (P_{\theta} - \Pi_{\theta})^n = \underbrace{\sum_{n\geq 0} (P_{\theta}^n - \Pi_{\theta})}_{\mathbb{Q}} + \Pi_{\theta}$

where D_{θ} is called the *deviation matrix* of P_{θ} .

Deviation Matrix

The group inverse/deviation matrix measures the speed of convergence of P_{θ} to its stationary regime.

For cost vector f, $D_P f$ is called the value function in MDP.

where D_{θ} is called the *deviation matrix* of P_{θ} .

Deviation Matrix

The group inverse/deviation matrix measures the speed of convergence of P_{θ} to its stationary regime.

For cost vector f, $D_P f$ is called the value function in MDP.

where D_{θ} is called the *deviation matrix* of P_{θ} .

Deviation Matrix

The group inverse/deviation matrix measures the speed of convergence of P_{θ} to its stationary regime.

For cost vector f, $D_P f$ is called the value function in MDP.

Note that $\sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n = \underbrace{\sum_{n \ge 0} (P_{\theta}^n - \Pi_{\theta})}_{=:D_{\theta}} + \Pi_{\theta},$

where D_{θ} is called the *deviation matrix* of P_{θ} .

Deviation Matrix

The group inverse/deviation matrix measures the speed of convergence of P_{θ} to its stationary regime.

For cost vector f, $D_P f$ is called the value function in MDP.

Note that $\sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n = \underbrace{\sum_{n \ge 0} (P_{\theta}^n - \Pi_{\theta})}_{=:D_{\theta}} + \Pi_{\theta},$

where D_{θ} is called the *deviation matrix* of P_{θ} .

Deviation Matrix

The group inverse/deviation matrix measures the speed of convergence of P_{θ} to its stationary regime.

For cost vector f, $D_P f$ is called the value function in MDP.

Note that $\sum_{n \ge 0} (P_{\theta} - \Pi_{\theta})^n = \underbrace{\sum_{n \ge 0} (P_{\theta}^n - \Pi_{\theta})}_{=:D_{\theta}} + \Pi_{\theta},$

where D_{θ} is called the *deviation matrix* of P_{θ} .

Deviation Matrix

The group inverse/deviation matrix measures the speed of convergence of P_{θ} to its stationary regime.

For cost vector f, $D_P f$ is called the value function in MDP.

Theorem 1 For $\Delta + \theta, \theta \in \Theta$, it holds that

$$\Pi_{ heta+\Delta} = \Pi_{ heta} + \Pi_{ heta+\Delta} (P_{ heta+\Delta} - P_{ heta}) D_{ heta}$$

Lets proof this basic fact. By simple algebra

$$egin{array}{rcl} \mathcal{P}_{ heta} D_{ heta} &=& P_{ heta} \sum_{n=0}^{\infty} (\mathcal{P}_{ heta}^n - \Pi_{ heta}) \ &=& P_{ heta} \left(I - \Pi_{ heta} + \sum_{n=1}^{\infty} (\mathcal{P}_{ heta}^n - \Pi_{ heta})
ight) = \Pi_{ heta} - I + D_{ heta}, \end{array}$$

Theorem 1 For $\Delta + \theta, \theta \in \Theta$, it holds that

$$\Pi_{ heta+\Delta} = \Pi_{ heta} + \Pi_{ heta+\Delta} (P_{ heta+\Delta} - P_{ heta}) D_{ heta}$$

Lets proof this basic fact. By simple algebra

$$egin{array}{rcl} \mathcal{P}_{ heta} D_{ heta} &=& P_{ heta} \sum_{n=0}^{\infty} (\mathcal{P}_{ heta}^n - \Pi_{ heta}) \ &=& P_{ heta} \left(I - \Pi_{ heta} + \sum_{n=1}^{\infty} (\mathcal{P}_{ heta}^n - \Pi_{ heta})
ight) = \Pi_{ heta} - I + D_{ heta}, \end{array}$$

Theorem 1 For $\Delta + \theta, \theta \in \Theta$, it holds that

$$\Pi_{ heta+\Delta} = \Pi_{ heta} + \Pi_{ heta+\Delta} (P_{ heta+\Delta} - P_{ heta}) D_{ heta}$$

Lets proof this basic fact. By simple algebra

$$egin{array}{rcl} \mathcal{P}_{ heta} D_{ heta} &=& P_{ heta} \sum_{n=0}^{\infty} (\mathcal{P}_{ heta}^n - \Pi_{ heta}) \ &=& P_{ heta} \left(I - \Pi_{ heta} + \sum_{n=1}^{\infty} (\mathcal{P}_{ heta}^n - \Pi_{ heta})
ight) = \Pi_{ heta} - I + D_{ heta}, \end{array}$$

Theorem 1 For $\Delta + \theta, \theta \in \Theta$, it holds that

$$\Pi_{ heta+\Delta} = \Pi_{ heta} + \Pi_{ heta+\Delta} (P_{ heta+\Delta} - P_{ heta}) D_{ heta}$$

Lets proof this basic fact. By simple algebra

$$egin{array}{rcl} P_{ heta} D_{ heta} &=& P_{ heta} \sum_{n=0}^{\infty} (P_{ heta}^n - \Pi_{ heta}) \ &=& P_{ heta} \left(I - \Pi_{ heta} + \sum_{n=1}^{\infty} (P_{ heta}^n - \Pi_{ heta})
ight) = \Pi_{ heta} - I + D_{ heta}, \end{array}$$

Theorem 1 For $\Delta + \theta, \theta \in \Theta$, it holds that

$$\Pi_{ heta+\Delta} = \Pi_{ heta} + \Pi_{ heta+\Delta} (P_{ heta+\Delta} - P_{ heta}) D_{ heta}$$

Lets proof this basic fact. By simple algebra

$$egin{array}{rcl} P_{ heta} D_{ heta} &=& P_{ heta} \sum_{n=0}^{\infty} (P_{ heta}^n - \Pi_{ heta}) \ &=& P_{ heta} \left(I - \Pi_{ heta} + \sum_{n=1}^{\infty} (P_{ heta}^n - \Pi_{ heta})
ight) = \Pi_{ heta} - I + D_{ heta}, \end{array}$$

which yields $I - \Pi_{\theta} = (I - P_{\theta})D_{\theta}$, or $I = \Pi_{\theta} + (I - P_{\theta})D_{\theta}$.

Multiplying by $\Pi_{\theta+\Delta}$ (and noting that $\Pi_{\theta+\Delta}\Pi_{\theta} = \Pi_{\theta}$, and $\Pi_{\theta}I = \Pi_{\theta}P_{\theta}$) proves the claim.

Theorem 1 For $\Delta + \theta, \theta \in \Theta$, it holds that

$$\Pi_{ heta+\Delta} = \Pi_{ heta} + \Pi_{ heta+\Delta} (P_{ heta+\Delta} - P_{ heta}) D_{ heta}$$

Lets proof this basic fact. By simple algebra

$$\begin{aligned} P_{\theta}D_{\theta} &= P_{\theta}\sum_{n=0}^{\infty}(P_{\theta}^{n}-\Pi_{\theta}) \\ &= P_{\theta}\left(I-\Pi_{\theta}+\sum_{n=1}^{\infty}(P_{\theta}^{n}-\Pi_{\theta})\right)=\Pi_{\theta}-I+D_{\theta}, \end{aligned}$$

Suppose you want to minimize $\pi_{\theta} f$.

By Theorem 1 (in vectorial form) it holds that

$$\pi_{\theta+\Delta}f - \pi_{\theta}f = \pi_{\theta+\Delta}(P_{\theta+\Delta} - P_{\theta})D_{\theta}f.$$

Since $\pi_{\theta+\Delta}$ is positive, we have the following

• condition for switching from θ to $\theta + \Delta$:

$$\pi_{ heta+\Delta}f - \pi_{ heta}f \leq 0$$
 if $(P_{ heta+\Delta} - P_{ heta})D_{ heta}f \leq 0$

• condition for not switching from θ to $\theta + \Delta$:

 $\pi_{\theta+\Delta}f - \pi_{\theta}f \ge 0$ if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \ge 0$.

Suppose you want to minimize $\pi_{\theta} f$.

By Theorem 1 (in vectorial form) it holds that

$$\pi_{\theta+\Delta}f - \pi_{\theta}f = \pi_{\theta+\Delta}(P_{\theta+\Delta} - P_{\theta})D_{\theta}f.$$

Since $\pi_{\theta+\Delta}$ is positive, we have the following

• condition for switching from θ to $\theta + \Delta$:

$$\pi_{\theta+\Delta}f - \pi_{\theta}f \leq 0$$
 if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \leq 0$,

• condition for not switching from θ to $\theta + \Delta$:

 $\pi_{\theta+\Delta}f - \pi_{\theta}f \ge 0$ if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \ge 0$.

Suppose you want to minimize $\pi_{\theta} f$.

By Theorem 1 (in vectorial form) it holds that

$$\pi_{\theta+\Delta}f - \pi_{\theta}f = \pi_{\theta+\Delta}(P_{\theta+\Delta} - P_{\theta})D_{\theta}f.$$

Since π_{θ+Δ} is positive, we have the following
condition for switching from θ to θ + Δ:

$$\pi_{\theta+\Delta}f - \pi_{\theta}f \leq 0$$
 if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \leq 0$,

• condition for not switching from θ to $\theta + \Delta$:

 $\pi_{\theta+\Delta}f - \pi_{\theta}f \ge 0$ if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \ge 0$.

Suppose you want to minimize $\pi_{\theta} f$.

By Theorem 1 (in vectorial form) it holds that

$$\pi_{\theta+\Delta}f - \pi_{\theta}f = \pi_{\theta+\Delta}(P_{\theta+\Delta} - P_{\theta})D_{\theta}f.$$

Since $\pi_{\theta+\Delta}$ is positive, we have the following • condition for switching from θ to $\theta + \Delta$:

 $\pi_{\theta+\Delta}f - \pi_{\theta}f \leq 0$ if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \leq 0$,

• condition for not switching from θ to $\theta + \Delta$:

 $\pi_{\theta+\Delta}f - \pi_{\theta}f \ge 0$ if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \ge 0$.

Suppose you want to minimize $\pi_{\theta} f$.

By Theorem 1 (in vectorial form) it holds that

$$\pi_{\theta+\Delta}f - \pi_{\theta}f = \pi_{\theta+\Delta}(P_{\theta+\Delta} - P_{\theta})D_{\theta}f.$$

Since $\pi_{\theta+\Delta}$ is positive, we have the following • condition for switching from θ to $\theta + \Delta$:

$$\pi_{\theta+\Delta}f - \pi_{\theta}f \leq 0$$
 if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \leq 0$,

• condition for not switching from θ to $\theta + \Delta$:

 $\pi_{\theta+\Delta}f - \pi_{\theta}f \ge 0$ if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \ge 0$.

Suppose you want to minimize $\pi_{\theta} f$.

By Theorem 1 (in vectorial form) it holds that

$$\pi_{\theta+\Delta}f - \pi_{\theta}f = \pi_{\theta+\Delta}(P_{\theta+\Delta} - P_{\theta})D_{\theta}f.$$

Since $\pi_{\theta+\Delta}$ is positive, we have the following

• condition for switching from θ to $\theta + \Delta$:

$$\pi_{\theta+\Delta}f - \pi_{\theta}f \leq 0 ext{ if } (P_{\theta+\Delta} - P_{\theta})D_{\theta}f \leq 0,$$

• condition for not switching from θ to $\theta + \Delta$:

$$\pi_{\theta+\Delta}f - \pi_{\theta}f \ge 0$$
 if $(P_{\theta+\Delta} - P_{\theta})D_{\theta}f \ge 0$.

We check for each state s what the best choice for θ is, i.e., we solve

$$\min_{\theta'\in\Theta}(P_{\theta'}(s)-P_{\theta}(s))D_{\theta}f$$

We check for each state s what the best choice for θ is, i.e., we solve

$$\min_{\theta'\in\Theta}(P_{\theta'}(s)-P_{\theta}(s))D_{\theta}f$$

58 / 91

We check for each state s what the best choice for $\boldsymbol{\theta}$ is, i.e., we solve

$$\min_{\theta'\in\Theta}(P_{\theta'}(s)-P_{\theta}(s))D_{\theta}f$$

59 / 91

We check for each state s what the best choice for $\boldsymbol{\theta}$ is, i.e., we solve

$$\min_{\theta'\in\Theta}(P_{\theta'}(s)-P_{\theta}(s))D_{\theta}f$$

Is it Applicable?

The problem with any policy-iteration-like approach is that D_{θ} is usually not available in closed analytical form.

An obvious analytical way around this is to work with

$$\sum_{n=0}^{k} (P_{\theta}^{n} - \Pi_{\theta})$$

as approximation of D_{θ} , and

$$\sum_{n=0}^{k} (P_{\theta}^{n} - \Pi_{\theta})f$$

as approximate value function for cost function f.

Is it Applicable?

The problem with any policy-iteration-like approach is that D_{θ} is usually not available in closed analytical form.

An obvious analytical way around this is to work with

$$\sum_{n=0}^{k} (P_{\theta}^{n} - \Pi_{\theta})$$

as approximation of D_{θ} , and

$$\sum_{n=0}^{k} (P_{\theta}^{n} - \Pi_{\theta})f$$

as approximate value function for cost function f.

Is it Applicable?

The problem with any policy-iteration-like approach is that D_{θ} is usually not available in closed analytical form.

An obvious analytical way around this is to work with

$$\sum_{n=0}^{k} (P_{\theta}^{n} - \Pi_{\theta})$$

as approximation of D_{θ} , and

$$\sum_{n=0}^{k} (P_{\theta}^{n} - \Pi_{\theta})f$$

as approximate value function for cost function f.

Online Control

Let's Take a Step back: What is really needed?

Note that in our approximative formula for $\pi_{\theta+\Delta}f - \pi_{\theta}f$ we actually need the term

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f,$$

which can be rewritten as follows

$$(P_{\theta+\Delta} - P_{\theta})D_{\theta}f = (P_{\theta+\Delta} - P_{\theta})\sum_{n\geq 0}(P_{\theta}^{n} - \Pi_{\theta})f$$

 $= \sum_{n\geq 0}(P_{\theta+\Delta} - P_{\theta})(P_{\theta}^{n} - \Pi_{\theta})f$
 $= \sum_{n=0}^{\infty}(P_{\theta+\Delta} - P_{\theta})P_{\theta}^{n}f.$

 Let's Take a Step back: What is really needed?

Note that in our approximative formula for $\pi_{\theta+\Delta}f - \pi_{\theta}f$ we actually need the term

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f,$$

which can be rewritten as follows

$$(P_{\theta+\Delta} - P_{\theta})D_{\theta}f = (P_{\theta+\Delta} - P_{\theta})\sum_{n\geq 0}(P_{\theta}^{n} - \Pi_{\theta})f$$

 $= \sum_{n\geq 0}(P_{\theta+\Delta} - P_{\theta})(P_{\theta}^{n} - \Pi_{\theta})f$
 $= \sum_{n=0}^{\infty}(P_{\theta+\Delta} - P_{\theta})P_{\theta}^{n}f.$

Let's Take a Step back: What is really needed?

Note that in our approximative formula for $\pi_{\theta+\Delta}f - \pi_{\theta}f$ we actually need the term

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f,$$

which can be rewritten as follows

$$\begin{aligned} (P_{\theta+\Delta}-P_{\theta})D_{\theta}f &= (P_{\theta+\Delta}-P_{\theta})\sum_{n\geq 0}(P_{\theta}^{n}-\Pi_{\theta})f \\ &= \sum_{n\geq 0}(P_{\theta+\Delta}-P_{\theta})(P_{\theta}^{n}-\Pi_{\theta})f \\ &= \sum_{n=0}^{\infty}(P_{\theta+\Delta}-P_{\theta})P_{\theta}^{n}f. \end{aligned}$$

Introduce the Potential Matrix

• For given cost function f, let $g_{\theta}(s)$ be defined as follows

$$g_{ heta}(s) = \sum_{n=0}^{\infty} (P_{ heta}^n(s)f - \pi_{ heta}f).$$

The vector g_{θ} is called *bias vector* in MDP. • The matrix

$$H_{ heta}(s,u) = g_{ heta}(s) - g_{ heta}(u), \quad s,u \in S$$

イロン イロン イヨン イヨン 三日

68/91

is called the *potential matrix*.

Introduce the Potential Matrix

• For given cost function f, let $g_{\theta}(s)$ be defined as follows

$$g_{\theta}(s) = \sum_{n=0}^{\infty} (P_{\theta}^n(s)f - \pi_{\theta}f).$$

The vector g_θ is called *bias vector* in MDP.
The matrix

$$H_{ heta}(s,u) = g_{ heta}(s) - g_{ heta}(u), \quad s,u \in S$$

イロン イロン イヨン イヨン 三日

69/91

is called the *potential matrix*.

Introduce the Potential Matrix

• For given cost function f, let $g_{\theta}(s)$ be defined as follows

$$g_{\theta}(s) = \sum_{n=0}^{\infty} (P_{\theta}^n(s)f - \pi_{\theta}f).$$

The vector g_{θ} is called *bias vector* in MDP.

The matrix

$$H_{ heta}(s,u) = g_{ heta}(s) - g_{ heta}(u), \quad s,u \in S$$

70 / 91

is called the *potential matrix*.

Estimating the Potential Matrix

• The potential matrix can be written as

$$H_{\theta}(s,u) = \sum_{n=0}^{\infty} (P_{\theta}^{n}(s)f - P_{\theta}^{n}(u)f).$$

 Let τ_θ(s, u) be the time until the version started in s and the version started in u couple, then

$$H_{\theta}(s, u) = \mathbb{E}\left[\sum_{n=0}^{ au_{ heta}(s, u)} f(X_{ heta}(n, s)) - f(X_{ heta}(n, u))
ight],$$

where $X_{\theta}(n, r)$ the n-th state of a P_{θ} -Markov chain started in state $r \in S$.

Note that $H_{\theta}(s, u)$ can be estimated from the observing a single-sample path using cut-and-past methods.

イロン イロン イヨン イヨン 三日

Estimating the Potential Matrix

• The potential matrix can be written as

$$H_{\theta}(s,u) = \sum_{n=0}^{\infty} (P_{\theta}^{n}(s)f - P_{\theta}^{n}(u)f).$$

 Let τ_θ(s, u) be the time until the version started in s and the version started in u couple, then

$$H_{ heta}(s,u) = \mathbb{E}\left[\sum_{n=0}^{ au_{ heta}(s,u)} f(X_{ heta}(n,s)) - f(X_{ heta}(n,u))
ight],$$

where $X_{\theta}(n, r)$ the n-th state of a P_{θ} -Markov chain started in state $r \in S$.

Note that $H_{\theta}(s, u)$ can be estimated from the observing a single-sample path using cut-and-past methods.
Estimating the Potential Matrix

• The potential matrix can be written as

$$H_{\theta}(s,u) = \sum_{n=0}^{\infty} (P_{\theta}^n(s)f - P_{\theta}^n(u)f).$$

 Let τ_θ(s, u) be the time until the version started in s and the version started in u couple, then

$$H_{ heta}(s,u) = \mathbb{E}\left[\sum_{n=0}^{ au_{ heta}(s,u)} f(X_{ heta}(n,s)) - f(X_{ heta}(n,u))
ight],$$

where $X_{\theta}(n, r)$ the n-th state of a P_{θ} -Markov chain started in state $r \in S$.

Note that $H_{\theta}(s, u)$ can be estimated from the observing a single-sample path using cut-and-past methods.

Estimating the Potential Matrix

• The potential matrix can be written as

$$H_{\theta}(s,u) = \sum_{n=0}^{\infty} (P_{\theta}^{n}(s)f - P_{\theta}^{n}(u)f).$$

 Let τ_θ(s, u) be the time until the version started in s and the version started in u couple, then

$$H_{\theta}(s, u) = \mathbb{E}\left[\sum_{n=0}^{\tau_{\theta}(s, u)} f(X_{\theta}(n, s)) - f(X_{\theta}(n, u))\right],$$

where $X_{\theta}(n, r)$ the n-th state of a P_{θ} -Markov chain started in state $r \in S$.

Note that $H_{\theta}(s, u)$ can be estimated from the observing a single-sample path using cut-and-past methods.

Estimating the Potential Matrix

• The potential matrix can be written as

$$H_{\theta}(s,u) = \sum_{n=0}^{\infty} (P_{\theta}^{n}(s)f - P_{\theta}^{n}(u)f).$$

Let τ_θ(s, u) be the time until the version started in s and the version started in u couple, then

$$H_{\theta}(s, u) = \mathbb{E}\left[\sum_{n=0}^{ au_{ heta}(s, u)} f(X_{ heta}(n, s)) - f(X_{ heta}(n, u))
ight],$$

where $X_{\theta}(n, r)$ the n-th state of a P_{θ} -Markov chain started in state $r \in S$.

Note that $H_{\theta}(s, u)$ can be estimated from the observing a single-sample path using cut-and-past methods.

• Recall that we are want to evaluate

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f.$$

• Using the potential matrix, this can be written as

$$(P_{ heta+\Delta}(s)-P_{ heta}(s))D_{ heta}f=\int_{S imes S}(P_{ heta+\Delta}(s,ds')-P_{ heta}(s,du'))H_{ heta}(s',u')$$

• Recall that we are want to evaluate

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f.$$

Using the potential matrix, this can be written as

$$(P_{ heta+\Delta}(s)-P_{ heta}(s))D_{ heta}f=\int_{S imes S}(P_{ heta+\Delta}(s,ds')-P_{ heta}(s,du'))H_{ heta}(s',u')$$

• Recall that we are want to evaluate

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f.$$

• Using the potential matrix, this can be written as

$$(P_{ heta+\Delta}(s)-P_{ heta}(s))D_{ heta}f=\int_{S imes S}(P_{ heta+\Delta}(s,ds')-P_{ heta}(s,du'))H_{ heta}(s',u')$$

• Recall that we are want to evaluate

$$(P_{\theta+\Delta}-P_{\theta})D_{\theta}f.$$

• Using the potential matrix, this can be written as

$$(P_{ heta+\Delta}(s)-P_{ heta}(s))D_{ heta}f=\int_{S imes S}(P_{ heta+\Delta}(s,ds')-P_{ heta}(s,du'))H_{ heta}(s',u')$$

- Suppose the chain is in state $s = X_{\theta}(n)$.
- Then simulate then next state according to $P_{\theta+\Delta}$, denoted by $X_{\theta+\Delta}(s)$, and the next state under P_{θ} , denoted by $X_{\theta}(s)$.

• If

$$H_{\theta}(X_{\theta+\Delta}(s), X_{\theta}(s)) \leq 0,$$

then in state s, the design parameter should be switched to $\theta+\Delta$ (in order to minimize costs) .

• Suppose the chain is in state $s = X_{\theta}(n)$.

Then simulate then next state according to P_{θ+Δ}, denoted by X_{θ+Δ}(s), and the next state under P_θ, denoted by X_θ(s).
 If

$$H_{\theta}(X_{\theta+\Delta}(s), X_{\theta}(s)) \leq 0,$$

then in state s, the design parameter should be switched to $\theta+\Delta$ (in order to minimize costs) .

- Suppose the chain is in state $s = X_{\theta}(n)$.
- Then simulate then next state according to $P_{\theta+\Delta}$, denoted by $X_{\theta+\Delta}(s)$, and the next state under P_{θ} , denoted by $X_{\theta}(s)$.

• If

 $H_{ heta}(X_{ heta+\Delta}(s),X_{ heta}(s))\leq 0,$

then in state s, the design parameter should be switched to $\theta+\Delta$ (in order to minimize costs) .

- Suppose the chain is in state $s = X_{\theta}(n)$.
- Then simulate then next state according to $P_{\theta+\Delta}$, denoted by $X_{\theta+\Delta}(s)$, and the next state under P_{θ} , denoted by $X_{\theta}(s)$.

If

$$H_{ heta}(X_{ heta+\Delta}(s),X_{ heta}(s))\leq 0,$$

then in state s, the design parameter should be switched to $\theta+\Delta$ (in order to minimize costs) .

- Suppose the chain is in state $s = X_{\theta}(n)$.
- Then simulate then next state according to $P_{\theta+\Delta}$, denoted by $X_{\theta+\Delta}(s)$, and the next state under P_{θ} , denoted by $X_{\theta}(s)$.

If

$$H_{ heta}(X_{ heta+\Delta}(s),X_{ heta}(s))\leq 0,$$

then in state s, the design parameter should be switched to $\theta + \Delta$ (in order to minimize costs) .

- Suppose the chain is in state $s = X_{\theta}(n)$.
- Then simulate then next state according to $P_{\theta+\Delta}$, denoted by $X_{\theta+\Delta}(s)$, and the next state under P_{θ} , denoted by $X_{\theta}(s)$.

If

$$H_{\theta}(X_{\theta+\Delta}(s), X_{\theta}(s)) \leq 0,$$

then in state s, the design parameter should be switched to $\theta + \Delta$ (in order to minimize costs).

- The basic techniques are rather straightforward.
- Markov decision processes techniques can be made fruitful for on-line control.
- Simulation offers an interesting alternative for computing the input data for on-line control (read the potential matrix).

- The basic techniques are rather straightforward.
- Markov decision processes techniques can be made fruitful for on-line control.
- Simulation offers an interesting alternative for computing the input data for on-line control (read the potential matrix).

- The basic techniques are rather straightforward.
- Markov decision processes techniques can be made fruitful for on-line control.
- Simulation offers an interesting alternative for computing the input data for on-line control (read the potential matrix).

- The basic techniques are rather straightforward.
- Markov decision processes techniques can be made fruitful for on-line control.
- Simulation offers an interesting alternative for computing the input data for on-line control (read the potential matrix).

Impressive!?

Well, I hope so, but don't forget that everything said applies only to the simple (=stationary) control problem.

Impressive!?

Well, I hope so, but don't forget that everything said applies only to the simple (=stationary) control problem.

Impressive!?

Well, I hope so, but don't forget that everything said applies only to the simple (=stationary) control problem.