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The World of Control

The general model of control is that an input process is fed to a
system (box) which produces an output process.

Control/optimization is possible if the either the input process or
the system behavior can be influenced by a controller.
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White Box vs. Black Box

The world of comtrol/optimization has two main paradigms.
.
The Black Box Paradigm
..

.

. ..

.

.

No (or only very little) information is available on how the input
leads to the output (think of the economy).

.
The White Box Paradigm
..

.

. ..

.

.

A detailed model is available on the relation between the input and
the output (think of a queueing system).

This talk is about white box control/optimization.
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A More Detailed Model

In the following we assume that the system can be modeled
by a Markov chain P (possibly on a general state space).

We assume that the system dynamics can be influenced
through the choice of some design parameter θ and we write
Pθ to indicate this.

The output process is denoted by {Xθ(t)} where t ∈ R+ or
t ∈ N.

We assume that Pθ is given to us in a closed-form analytical
expression (white box), so we can do math with it.
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A Real Control Problem

Consider a controller that regulates the amount of insulin given to
a diabetics patient.

It is of key importance that the control algorithm

quickly adapts to a changing environment, and

quickly stabilizes after a regime change.

.
Non-Stationary Control
..

.

. ..

.

.

Control in a changing environment is very hard!

We don’t even know what ”optimal” control means in the
non-stationary problem.
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Stationary Control
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Let’s turn to Stationary Control

Assume that Pθ is homogeneous (time independent) and we
want to control the steady-state behavior of the system.

Suppose the system is operating at θ. A natural question to
ask is the following: Would it be better to change θ a little
bit?

.
Challenge
..
.
. ..

.

.

Compare πθ+∆ with πθ in an efficient way.

Nota Bene: Never forget that we are doing this only because we cannot

do better, or as Hinderer said: ”In the long-run we are all dead.”
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The Stationary Control Model: The Basic Set Up

Let Θ ⊂ R denote the set of feasible parameters.

Let Pθ denote a Markov kernel on (S ,S).
Assume that for each θ ∈ Θ, Pθ admits a unique stationary
distribution πθ.

Assume that the group inverse of Pθ exists for all θ ∈ Θ.
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What is the Group Inverse?

Let

lim
N→∞

1

N

N∑
n=1

Pn
θ = Πθ,

provided the limit exists. Then for any probability distribution
µ on (S ,S) it holds that µΠθ = πθ.

In the uni-chain case, Πθ is a matrix with rows equal to πθ.

In the multi-chain case, Πθ has a simple block structure where
each block corresponds to the ergodic projector of that
particular ergodic class.

The group inverse of Pθ is defined as

(I − Pθ +Πθ)
−1 =

∑
n≥0

(Pθ − Πθ)
n,

provided it exists.
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What does the Group Inverse Mean?

Note that ∑
n≥0

(Pθ − Πθ)
n =

∑
n≥0

(Pn
θ − Πθ)︸ ︷︷ ︸

=:Dθ

+Πθ,

where Dθ is called the deviation matrix of Pθ.

.
Deviation Matrix
..

.

. ..

.

.

The group inverse/deviation matrix measures the speed of
convergence of Pθ to its stationary regime.

For cost vector f , DP f is called the value function in MDP.

Existence is guaranteed in the finite case, otherwise via
geometric (!) ergodicity
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All very nice but can we use the Deviation Matrix in
Control?

.
Theorem 1
..

.

. ..

.

.

For ∆ + θ, θ ∈ Θ, it holds that

Πθ+∆ = Πθ +Πθ+∆(Pθ+∆ − Pθ)Dθ

Lets proof this basic fact. By simple algebra

PθDθ = Pθ

∞∑
n=0

(Pn
θ − Πθ)

= Pθ

(
I − Πθ +

∞∑
n=1

(Pn
θ − Πθ)

)
= Πθ − I + Dθ,

which yields I − Πθ = (I − Pθ)Dθ, or I = Πθ + (I − Pθ)Dθ.

Multiplying by Πθ+∆ (and noting that Πθ+∆Πθ = Πθ , and ΠθI = ΠθPθ)

proves the claim.
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Should we switch from θ to θ +∆?

Suppose you want to minimize πθf .

By Theorem 1 (in vectorial form) it holds that

πθ+∆f − πθf = πθ+∆(Pθ+∆ − Pθ)Dθf .

Since πθ+∆ is positive, we have the following

condition for switching from θ to θ +∆:

πθ+∆f − πθf ≤ 0 if (Pθ+∆ − Pθ)Dθf ≤ 0,

condition for not switching from θ to θ +∆:

πθ+∆f − πθf ≥ 0 if (Pθ+∆ − Pθ)Dθf ≥ 0.
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. . . . . .

Can we do better?

Since a Markov transition probability is a collection of conditional
probabilities we can construct a new kernel P̂θ as follows.

We check for each state s what the best choice for θ is, i.e., we
solve

min
θ′∈Θ

(Pθ′(s)− Pθ(s))Dθf

In Markov decision process theory this is called policy iteration.
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. . . . . .

Is it Applicable?

The problem with any policy-iteration-like approach is that Dθ is
usually not available in closed analytical form.

An obvious analytical way around this is to work with

k∑
n=0

(Pn
θ − Πθ)

as approximation of Dθ, and

k∑
n=0

(Pn
θ − Πθ)f

as approximate value function for cost function f .
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. . . . . .

Online Control
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. . . . . .

Let’s Take a Step back: What is really needed?

Note that in our approximative formula for πθ+∆f − πθf we
actually need the term

(Pθ+∆ − Pθ)Dθf ,

which can be rewritten as follows

(Pθ+∆ − Pθ)Dθf = (Pθ+∆ − Pθ)
∑
n≥0

(Pn
θ − Πθ)f

=
∑
n≥0

(Pθ+∆ − Pθ)(P
n
θ − Πθ)f

=
∞∑
n=0

(Pθ+∆ − Pθ)P
n
θ f .

65 / 91



. . . . . .

Let’s Take a Step back: What is really needed?

Note that in our approximative formula for πθ+∆f − πθf we
actually need the term

(Pθ+∆ − Pθ)Dθf ,

which can be rewritten as follows

(Pθ+∆ − Pθ)Dθf = (Pθ+∆ − Pθ)
∑
n≥0

(Pn
θ − Πθ)f

=
∑
n≥0

(Pθ+∆ − Pθ)(P
n
θ − Πθ)f

=
∞∑
n=0

(Pθ+∆ − Pθ)P
n
θ f .

66 / 91



. . . . . .

Let’s Take a Step back: What is really needed?

Note that in our approximative formula for πθ+∆f − πθf we
actually need the term

(Pθ+∆ − Pθ)Dθf ,

which can be rewritten as follows

(Pθ+∆ − Pθ)Dθf = (Pθ+∆ − Pθ)
∑
n≥0

(Pn
θ − Πθ)f

=
∑
n≥0

(Pθ+∆ − Pθ)(P
n
θ − Πθ)f

=
∞∑
n=0

(Pθ+∆ − Pθ)P
n
θ f .

67 / 91



. . . . . .

Introduce the Potential Matrix

For given cost function f , let gθ(s) be defined as follows

gθ(s) =
∞∑
n=0

(Pn
θ (s)f − πθf ).

The vector gθ is called bias vector in MDP.

The matrix

Hθ(s, u) = gθ(s)− gθ(u), s, u ∈ S

is called the potential matrix.
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. . . . . .

Estimating the Potential Matrix

The potential matrix can be written as

Hθ(s, u) =
∞∑
n=0

(Pn
θ (s)f − Pn

θ (u)f ).

Let τθ(s, u) be the time until the version started in s and the
version started in u couple, then

Hθ(s, u) = E

τθ(s,u)∑
n=0

f (Xθ(n, s))− f (Xθ(n, u))

 ,

where Xθ(n, r) the n-th state of a Pθ-Markov chain started in
state r ∈ S .

Note that Hθ(s, u) can be estimated from the observing a
single-sample path using cut-and-past methods.
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. . . . . .

How to use the Potential Matrix in Control?

Recall that we are want to evaluate

(Pθ+∆ − Pθ)Dθf .

Using the potential matrix, this can be written as

(Pθ+∆(s)−Pθ(s))Dθf =

∫
S×S

(Pθ+∆(s, ds
′)−Pθ(s, du

′))Hθ(s
′, u′)

The above formula can be made useful for on-line control.
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. . . . . .

On-line Control and Sample-Path based learning

Suppose the chain is in state s = Xθ(n).

Then simulate then next state according to Pθ+∆, denoted by
Xθ+∆(s), and the next state under Pθ, denoted by Xθ(s).

If
Hθ(Xθ+∆(s),Xθ(s)) ≤ 0,

then in state s, the design parameter should be switched to
θ +∆ (in order to minimize costs) .

This way the best choice for each state s can be found. This leads
to on-line control, resp. on-line learning.
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. . . . . .

Summary

The basic techniques are rather straightforward.

Markov decision processes techniques can be made fruitful for
on-line control.

Simulation offers an interesting alternative for computing the
input data for on-line control (read the potential matrix).
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. . . . . .

Impressive!?

Well, I hope so, but don’t forget that everything said applies only
to the simple (=stationary) control problem.
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