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Infinite horizon Markov decision problem (MDP)

T = {1, 2, . . .} is set of decision epochs

Optimization criterion:
Maximize expected average reward

Markov policy π is determined by infinite
sequence of decision rules,
π = (d1, d2, . . .).
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Difficulties in maximizing the reward

State space becomes (too) large
Curse of dimensionality

Optimal decision rule may be hard to implement

Imperfect current state information

Observing current state: costly,
time-consuming, impossible
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Mixing decision rules

Idea: Restrict to some easy implementable
(suboptimal) decision rules

Optimization Problem : Optimize control policy
π = (d1, d2, . . .) under restriction dt ∈ D for all
t ∈ T where D is a given finite set of Markov
decision rules
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Example D restricted problem

Queueing system: Route arriving jobs to
heterogeneous servers/machines to minimize
the average waiting time
Current state information: Number of jobs
waiting in each queue

D = {d1, d2, d3} where

d1: Choose server with shortest waiting
queue
d2: Choose the server with highest service
rate
d3: Choose a server at random
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Improving performance by mixing suboptimal decision
rules

Two approaches:

Randomized stationary policies

Deterministic non-stationary policies

Let D = {d1, d2, . . . , dk} be the set of available
decision rules,
Pi is transition matrix induced by d i for
i = 1, 2, . . . , k
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Bernoulli policies

At any decision epoch choose rule d i with
probability θi ,

∑k
i=1 θi = 1

Bernoulli policy: Randomized and Stationary

Let θ = (θ1, θ2, . . . , θk) be the vector of
probabilities determining the Bernoulli policy.
The corresponding Bernoulli policy πθ induces a
stationary Markov chain with transition matrix
Pθ =

∑k
i=1 θiPi
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Performance computation

Transition matrix Pθ =
∑k

i=1 θiPi induces
aperiodic unichain MC if all Pi do.

Let pθ be the unique stationary distribution for Pθ

For i = 1, 2, . . . , k let r(d i) be the expected
immediate reward (or cost) vector if decision
rule d i is applied.
Performance gπ(θ) of Bernoulli policy πθ:
gπ(θ) =

∑k
i=1 θi(pθ · r(d i))
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Performance optimization

g(θ) is the expected Césaro average profit
(costs) for Bernoulli policy of rate vector θ.

g(θ) is relatively easy to
compute/approximate

g(θ) is independent of initial state distribution
if all Pi are unichain and aperiodic.

g(θ) is a smooth function

Techniques for computing/approximating
optimal rate vector θ∗ are available
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Improvement by non-stationary mixing policies

Could a non-stationary Markov policy do better
than the optimal Bernoulli policy?

For example for D = {d1, d2, d3} suppose the
optimal Bernoulli rate vector is (close to)
(0.50,0.25,0.25)

Policy π = (d1, d2, d1, d3, d1, d2, d1, d3, . . .)
(periodic with period 4) could very well be an
improvement

Intuitively decisions are better spaced-out
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Difficulties for non-stationary mixing policies

Applied decision rules are time-dependent
inducing a non-stationary Markov chain

Performance computation and optimization
is harder than for Bernoulli policies

For non-stationary mixing policies the
performance may depend on the initial state
distribution even if all transition matrices Pi

induce aperiodic unichain MC
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Counterexample

Suppose D = {d1, d2}

P1 =

 0 0.5 0.5
0 0 1
1 0 0

 , P2 =

 0 0 1
0.5 0 0.5
0 1 0


Both decision rules induce an aperiodic
unichain MC
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Counterexample

P1P2 =

 0.25 0.5 0.25
0 1 0
0 0 1



Policy (d1, d2, d1, d2, . . .) induces two closed
classes of states

Also P2P1 =

 1 0 0
0.5 0.25 0.25
0 0 1


gives two closed classes
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Initial state (in)dependence

In counterexample performance of periodic
mixing policy π = (d1, d2, d1, d2, . . .) depends on
the initial state distribution

To apply and optimize over non-stationary
mixing policies we demand (d1, d2, d1, d2, . . .)
and (d2, d1, d2, d1, . . .) to have the same
performance and this performance to be
independent of initial state
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Criterion

General criterion: For any given infinite
sequence of D decision rules (d1, d2, . . .),
bounded reward vectors {r(d i), d i ∈ D} and
positive integers n, m:

D mixing policies (dn, dn+1, . . .) and
(dm, dm+1, . . .) should have equal performance
(expected Césaro average reward)

Look for condition(s) on the transition matrices
Pi induced by d i ∈ D
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Coefficient of ergodicity

Dobrushin’s coefficient of ergodicity for P = (pij):

ρ0(P) = 1
2maxi ,j

∑
k |pik − pjk |

Property: MC is aperiodic unichain if and only if
ρ0(PN) < 1 for some positive integer N
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Sufficient condition

Generalized ergodicity condition: Consider a
D restricted MDP with D = {d1, d2, . . . , dn}
Let A = {P1, P2, . . . , Pn} be the set of n
corresponding transition matrices

There exists some γ < 1 and positive integer N
such that for all nN matrix products A of the form
A =

∏N
k=1 Ak with Ak ∈ A for k = 1, 2, . . . , N it

holds that ρ0(A) ≤ γ

Claim: This generalized ergodicity condition is
sufficient
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The associated MDP

For optimizing over all D mixing policies the
following associated continuous state space
MDP could be considered

State space X is set of all probability
distributions on original (finite) state space

Action space is D for all x ∈ X

For all x ∈ X and d i ∈ D the immediate
reward r(x , d i) is the inner product x · r(d i)
of x and reward vector r(d i)

For all d i ∈ D state transitions are given by
state space mapping x → xPi
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Associated sample paths

Let (x1, d1, x2, d2, . . .) be a sample path for the
associated MDP. For n = 1, 2, . . . consider the
corresponding D mixing policy
πn := (dn, dn+1, . . .)

Claim: If generalized ergodicity condition holds
then for all mixing policies πn, n = 1, 2, . . . the
expected Césaro average reward is equal to the
Césaro average reward induced by the given
sample path
(which equals lim infN→∞

1
N

∑N
t=1 xt · r(dt))
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Optimal policies

Result: If generalized ergodicity condition holds
for D then there exists some optimal stationary
deterministic Markov policy for the associated
MDP

Such an optimal policy corresponds to mapping
f from X to D

Corollary: If (x1, d1 = f (x1), x2, d2 = f (x2), . . .) is
a corresponding optimal sample path then for all
n = 1, 2, . . . policy πn = (dn, dn+1, . . .) is optimal
among all D mixing policies
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Solving an D restricted problem

Solving the associated continuous state space
MDP is usually not tractable

Optimizing over a subclass of D mixing policies
may be tractable

Structural properties of optimal stationary
policies and corresponding sample paths for the
associated MDP could translate to specific
structural properties of optimal D mixing policies

For example: non-randomized, periodicity,
threshold structures
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policies and corresponding sample paths for the
associated MDP could translate to specific
structural properties of optimal D mixing policies

For example: non-randomized, periodicity,
threshold structures
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Implications of threshold structures

Formulation of key result:
Let I = [0, 1] and x1, x∗ ∈ I be given. Let
f1, f2 : I → I be given functions and f : I → I be

defined by f (x) =

{
f1(x) if x ≤ x∗

f2(x) if x > x∗

Consecutively for n = 1, 2, . . . determine un and
xn+1 iteratively by

un :=

{
0 if xn ≤ x∗

1 if xn > x∗
and xn+1 := f (xn)
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Key result

Result: Let U = (u1, u2, . . .) be an infinite
sequence of zeros and ones generated as
above with f1, f2 : I → I both monotonically
increasing and moreover,
f1(f2(x)) ≥ f2(f1(x)) for all x ∈ I

Then U eventually coincides with a 0-1 billiard
sequence
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Conclusion

Result establishes under certain conditions for
D = {d1, d2} the existence of an optimal mixing
policy being representable as billiard sequence

Can this result be generalized or other structural
properties be obtained?
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