
Optimization of polling systems with batch service

Jan-Pieter Dorsman, Rob van der Mei, Erik Winands

11/27/2010

The polling model

A queueing system consisting of a number of queues and a single server,
where there is a switch-over time when the server moves between queues.

The analysis of this kind of system is important in many real-life
applications:

Manufacturing systems

Computer communication systems

Traffic systems

The polling model

A queueing system consisting of a number of queues and a single server,
where there is a switch-over time when the server moves between queues.

The analysis of this kind of system is important in many real-life
applications:

Manufacturing systems

Computer communication systems

Traffic systems

The polling model

We must decide

1 The order in which to serve the queues;

2 The number of customers to be served
during a service period;

3 The order in which customers within each
queue are served.

We will limit
the analysis to the most common configuration:

1 Cyclic service

2 Exhaustive (server will switch iff queue is empty)

3 First come first served

The polling model

We must decide

1 The order in which to serve the queues;

2 The number of customers to be served
during a service period;

3 The order in which customers within each
queue are served.

We will limit
the analysis to the most common configuration:

1 Cyclic service

2 Exhaustive (server will switch iff queue is empty)

3 First come first served

Extended model

We consider an extended
version of this model.

Assumption

Processing time of a
type-i batch is
independent of its size!

Examples:

Oven with a fixed number
of baking slots,

Paint bath which paints
several items at once.

A trade-off arises...

The waiting time of a
customer can be decomposed in two parts:

Vi , the time a type-i customer waits until
its type-i batch is fully accumulated,

Wi , the time a type-i customers waits in
the inner system as part of a type-i batch.

We are confronted with a trade-off when choosing batch sizes. Di is the
size of type-i batches:

When taking Di small, Vi will be low, but Wi will be high!

When taking Di large, Wi will be low, but Vi will be high!

A trade-off arises...

The waiting time of a
customer can be decomposed in two parts:

Vi , the time a type-i customer waits until
its type-i batch is fully accumulated,

Wi , the time a type-i customers waits in
the inner system as part of a type-i batch.

We are confronted with a trade-off when choosing batch sizes. Di is the
size of type-i batches:

When taking Di small, Vi will be low, but Wi will be high!

When taking Di large, Wi will be low, but Vi will be high!

Problem description

The problem at hand

How to take batch sizes ~D = (D1, . . . ,DN) such that the weighted sum
of the mean total waiting times is minimized?

We need to define a cost function:

C (~D) =
N∑

i=1

ci (E[Vi] + E[Wi]).

Let Eij be the event that an arriving type-i customer is the j th taking
place in the currently accumulating type-i batch.

E[Vi] is then easily computed by using

P[Eij] =
1

Di
and E[Vi |Eij] =

Di − j

λi
,

We end up with

C (~D) =
N∑

i=1

ci

(
Di − 1

2λi
+ E[Wi]

)
.

Problem description

The problem at hand

arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi]

)

No exact expression or even numerical method available to compute
E[Wi]. Two approaches possible:

Approach 1: Use approximation by Boon et al., and approximate
solution numerically,

Approach 2: Use an even simpler approximation, E[Wi,app], and gain
a closed-form approximation.

Boon et al.

Boon, Winands, Adan and Van Wijk (2009) provide an approximation of
the mean waiting time for general load:

E[Wi,Boon] =
K0 + K1,iρ+ K2,iρ

2

1− ρ
,

where K0, K1,i and K2,i are closed-form functions dependent on the
polling system parameters and determined by three requirements:

Light traffic requirements:

1 E[Wi,Boon]|ρ=0 = E[Wi]|ρ=0

2 d
dρE[Wi,Boon]|ρ=0 = d

dρE[Wi]|ρ=0

Heavy traffic requirement:

3 (1− ρ)E[Wi,Boon]|ρ=1 = (1− ρ)E[Wi]|ρ=1

Numerical Approach

Solve

arg min
~D

CBoon(~D) = arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,Boon]

)
numerically and round the obtained values.

Pro’s:

Very good performance.

Con’s:

Computation time may grow infeasibly long when the number of
queues/dimensions increases.

The numerical approach only gives limited insight in how the
optimal batch sizes behave in the system’s parameters.

Implementation may be quite cumbersome.

Closed-form approach

E[Wi,Boon] is too complex to gain a nice closed-form approximation of
optimal batch sizes.
Therefore, we use a simpler approximation of E[Wi] with the form:

E[Wi,app] =
a + biρ

1− ρ

Coefficients a and bi are determined by two requirements:

LT: E[Wi,app]|ρ=0 = E[Wi]|ρ=0

HT: (1− ρ)E[Wi,app]|ρ=1 = (1− ρ)E[Wi,simplification]|ρ=1

We end up with the following approximative cost function

Capp(~D) =
N∑

i=1

ci

(
Di − 1

2λi
+ E[Wi,app]

)

Closed-form approach

Solve

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,app]

)
with ordinary calculus.

The one-dimensional case is easily solved.

For the multi-dimensional case, the system of equations
d

dDi
Capp(~D) = 0 ∀i does not result in nice expressions.

Work-around: reduce multi-dimensional problem to a one-dimensional
problem by a priori assuming ratios between optimal batch sizes.

Closed-form approach

Solve

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,app]

)
with ordinary calculus.

The one-dimensional case is easily solved.

For the multi-dimensional case, the system of equations
d

dDi
Capp(~D) = 0 ∀i does not result in nice expressions.

Work-around: reduce multi-dimensional problem to a one-dimensional
problem by a priori assuming ratios between optimal batch sizes.

Closed-form approach

The problem at hand

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci (
Di − 1

2λi
+ E[Wi,app]).

As batch sizes increase, the load of the inner system drops rapidly, hence
E[Wi,app] will be near-insensitive to the batch sizes.

The ratios of the optimal variables of the following problem can be
determined:

arg inf
~D

Capp(~D) = arg inf
~D

N∑
i=1

ci
Di − 1

2λi
.

I.e., the numbers d2 =
Dopt

2

Dopt
1

, . . . , dN =
Dopt

N

Dopt
1

are known here:

di =
λi

λ1

√
c1E[Bi]

ciE[B1]

Closed-form approach

The problem at hand

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci (
Di − 1

2λi
+ E[Wi,app]).

As batch sizes increase, the load of the inner system drops rapidly, hence
E[Wi,app] will be near-insensitive to the batch sizes.

The ratios of the optimal variables of the following problem can be
determined:

arg inf
~D

Capp(~D) = arg inf
~D

N∑
i=1

ci
Di − 1

2λi
.

I.e., the numbers d2 =
Dopt

2

Dopt
1

, . . . , dN =
Dopt

N

Dopt
1

are known here:

di =
λi

λ1

√
c1E[Bi]

ciE[B1]

Closed-form approach

The problem at hand

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci (
Di − 1

2λi
+ E[Wi,app]).

As batch sizes increase, the load of the inner system drops rapidly, hence
E[Wi,app] will be near-insensitive to the batch sizes.

The ratios of the optimal variables of the following problem can be
determined:

arg inf
~D

Capp(~D) = arg inf
~D

N∑
i=1

ci
Di − 1

2λi
.

I.e., the numbers d2 =
Dopt

2

Dopt
1

, . . . , dN =
Dopt

N

Dopt
1

are known here:

di =
λi

λ1

√
c1E[Bi]

ciE[B1]

Closed-form approach

Back to our problem, we write Dopt
1 = E ,Dopt

2 = d2E , . . . ,D
opt
N = dNE

with the di as found in the simple problem. Only optimization in E is
needed:

E opt
app =

N∑
i=1

λiE[Bi]

di
+

√√√√2

(
N∑

i=1

cidi

λi

)−1(N∑
i=1

ciωi,app

)(
N∑

i=1

λiE[Bi]

di

)
.

Going back to optimal batch sizes by multiplying with the di , we have:

~Dopt
app =(Dopt

1,app,D
opt
2,app, . . . ,D

opt
N,app)

=(E opt
app ,

λ2
λ1

√
c1E[B2]

c2E[B1]
E opt

app , . . . ,
λN

λ1

√
c1E[BN]

cNE[B1]
E opt

app).

Proper rounding of these values gives a nicely defined and
well-performing closed-form approximation.

Closed-form approach

The obtained closed-form approximation...

Pro’s:

Performs increasingly well when the number of queues or switch-over
times get larger,

Is easily implemented and requires virtually no computation time,

Gives insights in the dependency of the optimal batch sizes on the
systems parameters.

Con’s:

Performs not as well as the numerical approach in case of small
numbers of queues or small switch-over times. Complementary
effect!

Validation

Validation by means of simulation, based on testbeds of symmetric and
asymmetric systems, with a total of 1260 systems.

Differences expressed relatively in terms of costs in %.

Overall:
Test bed Numerical Closed-form

Symmetric 0.303 1.624
Asymmetric 0.645 4.848

Categorized in the number of queues:
Test bed N=2 N=5

Numerical Closed-form Numerical Closed-form
Symmetric 0.428 2.776 0.178 0.471

Asymmetric 0.870 7.715 0.419 1.981

Further Research

The current analysis may be extended in multiple directions:

Optimization based on higher moments and tail probabilities,

Model variations: non-cyclic routing, other service disciplines,
size-dependent service requirements, introduction of the possibility
to idle, etc.

Rounding strategy of the fractional Di -values.

