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The polling model

A queueing system consisting of a number of queues and a single server,
where there is a switch-over time when the server moves between queues.

The analysis of this kind of system is important in many real-life
applications:

Manufacturing systems

Computer communication systems

Traffic systems
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The polling model

We must decide

1 The order in which to serve the queues;

2 The number of customers to be served
during a service period;

3 The order in which customers within each
queue are served.

We will limit
the analysis to the most common configuration:

1 Cyclic service

2 Exhaustive (server will switch iff queue is empty)

3 First come first served
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Extended model

We consider an extended
version of this model.

Assumption

Processing time of a
type-i batch is
independent of its size!

Examples:

Oven with a fixed number
of baking slots,

Paint bath which paints
several items at once.



A trade-off arises...

The waiting time of a
customer can be decomposed in two parts:

Vi , the time a type-i customer waits until
its type-i batch is fully accumulated,

Wi , the time a type-i customers waits in
the inner system as part of a type-i batch.

We are confronted with a trade-off when choosing batch sizes. Di is the
size of type-i batches:

When taking Di small, Vi will be low, but Wi will be high!

When taking Di large, Wi will be low, but Vi will be high!
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Problem description

The problem at hand

How to take batch sizes ~D = (D1, . . . ,DN ) such that the weighted sum
of the mean total waiting times is minimized?

We need to define a cost function:

C (~D) =
N∑

i=1

ci (E[Vi ] + E[Wi ]).

Let Eij be the event that an arriving type-i customer is the j th taking
place in the currently accumulating type-i batch.

E[Vi ] is then easily computed by using

P[Eij ] =
1

Di
and E[Vi |Eij ] =

Di − j

λi
,

We end up with

C (~D) =
N∑

i=1

ci

(
Di − 1

2λi
+ E[Wi ]

)
.



Problem description

The problem at hand

arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi ]

)

No exact expression or even numerical method available to compute
E[Wi ]. Two approaches possible:

Approach 1: Use approximation by Boon et al., and approximate
solution numerically,

Approach 2: Use an even simpler approximation, E[Wi,app], and gain
a closed-form approximation.



Boon et al.

Boon, Winands, Adan and Van Wijk (2009) provide an approximation of
the mean waiting time for general load:

E[Wi,Boon] =
K0 + K1,iρ+ K2,iρ

2

1− ρ
,

where K0, K1,i and K2,i are closed-form functions dependent on the
polling system parameters and determined by three requirements:

Light traffic requirements:

1 E[Wi,Boon]|ρ=0 = E[Wi ]|ρ=0

2 d
dρE[Wi,Boon]|ρ=0 = d

dρE[Wi ]|ρ=0

Heavy traffic requirement:

3 (1− ρ)E[Wi,Boon]|ρ=1 = (1− ρ)E[Wi ]|ρ=1



Numerical Approach

Solve

arg min
~D

CBoon(~D) = arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,Boon]

)
numerically and round the obtained values.

Pro’s:

Very good performance.

Con’s:

Computation time may grow infeasibly long when the number of
queues/dimensions increases.

The numerical approach only gives limited insight in how the
optimal batch sizes behave in the system’s parameters.

Implementation may be quite cumbersome.



Closed-form approach

E[Wi,Boon] is too complex to gain a nice closed-form approximation of
optimal batch sizes.
Therefore, we use a simpler approximation of E[Wi ] with the form:

E[Wi,app] =
a + biρ

1− ρ

Coefficients a and bi are determined by two requirements:

LT: E[Wi,app]|ρ=0 = E[Wi ]|ρ=0

HT: (1− ρ)E[Wi,app]|ρ=1 = (1− ρ)E[Wi,simplification]|ρ=1

We end up with the following approximative cost function

Capp(~D) =
N∑

i=1

ci

(
Di − 1

2λi
+ E[Wi,app]

)



Closed-form approach

Solve

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,app]

)
with ordinary calculus.

The one-dimensional case is easily solved.

For the multi-dimensional case, the system of equations
d

dDi
Capp(~D) = 0 ∀i does not result in nice expressions.

Work-around: reduce multi-dimensional problem to a one-dimensional
problem by a priori assuming ratios between optimal batch sizes.
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Closed-form approach

The problem at hand

arg min
~D

Capp(~D) = arg min
~D

N∑
i=1

ci (
Di − 1

2λi
+ E[Wi,app]).

As batch sizes increase, the load of the inner system drops rapidly, hence
E[Wi,app] will be near-insensitive to the batch sizes.

The ratios of the optimal variables of the following problem can be
determined:

arg inf
~D

Capp(~D) = arg inf
~D

N∑
i=1

ci
Di − 1

2λi
.

I.e., the numbers d2 =
Dopt

2

Dopt
1

, . . . , dN =
Dopt

N

Dopt
1

are known here:

di =
λi

λ1

√
c1E[Bi ]

ciE[B1]
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Closed-form approach

Back to our problem, we write Dopt
1 = E ,Dopt

2 = d2E , . . . ,D
opt
N = dNE

with the di as found in the simple problem. Only optimization in E is
needed:

E opt
app =

N∑
i=1

λiE[Bi ]

di
+

√√√√2

(
N∑

i=1

cidi

λi

)−1( N∑
i=1

ciωi,app

)(
N∑

i=1

λiE[Bi ]

di

)
.

Going back to optimal batch sizes by multiplying with the di , we have:

~Dopt
app =(Dopt

1,app,D
opt
2,app, . . . ,D

opt
N,app)

=(E opt
app ,

λ2
λ1

√
c1E[B2]

c2E[B1]
E opt

app , . . . ,
λN

λ1

√
c1E[BN ]

cNE[B1]
E opt

app ).

Proper rounding of these values gives a nicely defined and
well-performing closed-form approximation.



Closed-form approach

The obtained closed-form approximation...

Pro’s:

Performs increasingly well when the number of queues or switch-over
times get larger,

Is easily implemented and requires virtually no computation time,

Gives insights in the dependency of the optimal batch sizes on the
systems parameters.

Con’s:

Performs not as well as the numerical approach in case of small
numbers of queues or small switch-over times. Complementary
effect!



Validation

Validation by means of simulation, based on testbeds of symmetric and
asymmetric systems, with a total of 1260 systems.

Differences expressed relatively in terms of costs in %.

Overall:
Test bed Numerical Closed-form

Symmetric 0.303 1.624
Asymmetric 0.645 4.848

Categorized in the number of queues:
Test bed N=2 N=5

Numerical Closed-form Numerical Closed-form
Symmetric 0.428 2.776 0.178 0.471

Asymmetric 0.870 7.715 0.419 1.981



Further Research

The current analysis may be extended in multiple directions:

Optimization based on higher moments and tail probabilities,

Model variations: non-cyclic routing, other service disciplines,
size-dependent service requirements, introduction of the possibility
to idle, etc.

Rounding strategy of the fractional Di -values.


