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Spare Parts Inventory System
• Technically advanced machines:
down-times extremely expensive

• Breakdown: demand for spare part

• Ready-for-use spare parts are kept on stock:
repair-by-replacement strategy

• Broken parts returned
and repaired

• No back-orders:
emergency repair
procedure
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Two stock points: pooling of inventory
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Lateral transshipment costs are small (compared to
emergency procedure costs), hence costs can be saved.

Introduction
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PhD project: "Creation of Pooling
in Queueing and Inventory Systems"
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Two location lateral transshipment problem

How to route the demands?

• Directly from stock;

• Via lateral transshipment (penalty costs PLTi );

• Via emergency procedure (penalty costs PE Pi ).

Structure optimal lateral transshipment policy?

When are simple policies optimal?

Lateral Transshipment Problem
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Markov Decision Problem
MDP with states (stock levels): (x1, x2)

Events:

• demand at 1 (decision!)

• demand at 2 (decision!)

• replenishment at 1

• replenishment at 2
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Technique
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Value iteration
Value function Vn (minimal expected n-period costs function, V0 ≡ 0):

Vn+1(x1, x2) =
λ1H1(Vn)+ λ2H2(Vn)+ µ1G1(Vn)+ µ2G2(Vn)

λ1 + λ2 + S1µ1 + S2µ2
.

Operators
Hi demands at i , Gi replenishments at i

H1 f (x1, x2) =


min{ f (x1 − 1, x2),

f (x1, x2 − 1)+ PLT1,

f (x1, x2)+ PE P1}, if x1 > 0, x2 > 0.
. . .

G1 f (x1, x2) = (S1 − x1) f (x1 + 1, x2)+ x1 f (x1, x2).

Technique
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Theorem
Provided equal µ’s, Vn is multimodular for all n ≥ 0.

Multimodularity (for 2 dimensions):

Supermodularity: f (x1, x2)+ f (x1 + 1, x2 + 1) ≥ f (x1 + 1, x2)+ f (x1, x2 + 1),
Superconvexity(1,2): f (x1 + 2, x2)+ f (x1, x2 + 1) ≥ f (x1 + 1, x2)+ f (x1 + 1, x2 + 1),
Superconvexity(2,1): f (x1, x2 + 2)+ f (x1 + 1, x2) ≥ f (x1, x2 + 1)+ f (x1 + 1, x2 + 1),

which implies:
Convexity(1): f (x1, x2)+ f (x1 + 2, x2) ≥ 2 f (x1 + 1, x2),

Convexity(2): f (x1, x2)+ f (x1, x2 + 2) ≥ 2 f (x1, x2 + 1).

Technique
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Theorem
Provided equal µ’s, Vn is multimodular for all n ≥ 0.

Multimodularity (for 2 dimensions): l      r
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Theorem
Provided equal µ’s, Vn is multimodular for all n ≥ 0.
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Theorem
Provided equal µ’s, Vn is multimodular for all n ≥ 0.

Proof
By induction:

• V0 ≡ 0 is MM

• Prove that H1, H2, and G1 + G2 preserve multimodularity:

– f MM⇒ H1 f MM
– f MM⇒ H2 f MM
– f MM⇒ (G1 + G2) f MM

Hence Vn is multimodular for all n ≥ 0.

Technique
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Example Value function
Symmetric parameters: S = 4, λ = 1, µ = 1/3, PE P = 10, PLT = 7.
V50:
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Implications of structural properties Vn
Consider e.g. (x1, 0), with x1 > 0.

Decision for demand at 1: EP or DI.

PE P1 + Vn(x1, 0)− Vn(x1 − 1, 0) is increasing in x1,
as Vn is Convex in x1.

So there exists a threshold, say T DI (0), such that

• for x1 < T DI (0): emergency procedure (EP) is optimal,

• for x1 ≥ T DI (0): directly from stock (DI) is optimal.

Results
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Structure of Optimal Policy
The optimal policy is a threshold type policy.
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Simple policies

• Complete pooling
(always hand out parts in case of demands, LTs)

Optimal if:

{
PLT1 +

λ2
λ2+µ

PE P2 ≤ PE P1,

PLT2 +
λ1

λ1+µ
PE P1 ≤ PE P2.

• Hold back policy
(always hand out parts in case of demands,

hold back parts in case of LTs: hold back levels T1, T2)

Optimal if:

 PE P2 ≤ PLT2 +

(
1+ µ

λ2

)
PE P1,

PE P1 ≤ PLT1 +

(
1+ µ

λ1

)
PE P2.

Lateral Transshipment Problem
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Symmetric Parameters

• Hold back policy is optimal

• Complete pooling optimal if PLT
PE P
≤

µ
λ/µ

.
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Lateral Transshipment Problem
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Model extensions:
• Consumables (holding costs)

• LTs in one direction

• Asymmetric repair rates

• Limited repair capacity

→More than two stock points ??

• Approximation algorithm (hold back policy)

• Related model

Lateral Transshipment Problem
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Inventory model with a quick response warehouse
related problem, same techniques
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Quick response warehouse
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Inventory model with a quick response warehouse

Decisions:

• Stock-out at local
warehouse j :
– quick response P Q R

j , or

– emergency procedure P E P
j ?

• Demand at QR warehouse:
– satisfy, or
– emergency procedure P E P

0 ?
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Quick Response Warehouse
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Inventory model with a quick response warehouse

Simple policies optimal:

• Always quick response when j is stocked-out. Optimal if:

λ0 P E P
0 +

J∑
k=1

λk(P E P
k −P Q R

k ) ≤ (P E P
j −P Q R

j )
(
µ0+

J∑
k=0

λk

)
• Always satisfy demand at QR warehouse. Optimal if:

J∑
k=1

λk(P E P
k − P Q R

k ) ≤ P E P
0

(
µ0 +

J∑
k=1

λk

)

Quick Response Warehouse
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Model

• Markov Decision Problem (MDP)
state (stock levels): x = (x0, x1, . . . , xJ )

• Event Based Dynamic Programming
value function Vn:

Vn+1(x) =
1

J∑
j=0

S j µ j +

J∑
j=0

λ j

( J∑
j=0

µ j G j Vn(x)+
J∑

i=1

λ j H j Vn(x)+λ0HQ RVn(x)
)

– G j replenishment at j (0..N )
– H j demand at j (1..N )
– HQ R demand at QR warehouse

Quick Response Warehouse
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Value function

Vn+1(x) =
1

J∑
j=0

S j µ j +

J∑
j=0

λ j

( J∑
j=0

µ j G j Vn(x)+
J∑

i=1

λ j H j Vn(x)+ λ0HQ RVn(x)
)

• G j f (x) =
{
(S j − x j) f (x + e j)+ x j f (x) if x j < S j ;

S j f (x) if x j = S j .

• H j f (x) =


f (x − e j) if x j > 0;
min{P Q R

j + f (x − e0),

P E P
j + f (x)} if x j = 0, x0 > 0;

P E P
j + f (x) otherwise.

• HQ R f (x) =
{

min{ f (x − e0), P E P
0 + f (x)} if x0 > 0;

P E P
0 + f (x) if x0 = 0.

Quick Response Warehouse
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Structural properties
Convexity and Supermodularity:

Conv(xi) : f (x)+ f (x + 2 ei) ≥ 2 f (x + ei),

Supermod(xi , x j) : f (x)+ f (x + ei + e j) ≥ f (x + ei)+ f (x + e j) for i 6= j .

Theorem: Vn is Conv and Supermod for all n ≥ 0 when V0 is so.

Proof: By induction, as Conv and Supermod are preserved
by G j , H j , and HQ R.

Consequently: Optimal policy is threshold type policy, and we can derive con-

ditions under which simple policies optimal.

Quick Response Warehouse
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Extensions

Analogous results for:

• including holding costs

• backlogging at local warehouses

• state-dependent replenishment rates

Further work
numerical study: optimal policy vs. simple policies

Quick Response Warehouse
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Summary

• Two location lateral transshipment model

• Quick response warehouse model

→ optimal policy structure
x & conditions for simple policies

A.C.C. van Wijk, I.J.B.F. Adan and G.-J. van Houtum,

• Optimal Lateral Transshipment Policy for a Two Location Inventory
Problem (Eurandom report # 2009-027).

• Approximate Evaluation of Multi-Location Inventory Models with Lateral
Transshipments and Hold Back Levels (in preperation).

• Optimal Policy for a Multi-location Inventory System with a
Quick Response Warehouse (in preperation).

Summary
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