

TU

Optimal lateral transshipment policies in spare parts inventory models

Sandra van Wijk

A.C.C.v.Wijk@tue.nl

Joint work with Ivo Adan and Geert-Jan van Houtum

exp (μ) Technische Universiteit

 $exp(\mu)$

Eindhoven University of Technology

Poi (λ_1)

Poi (λ_2)

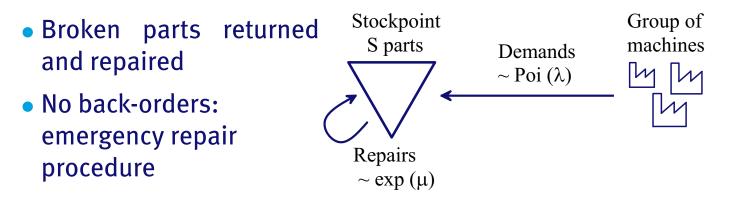
YEQT-IV: Optimal Control in Stochastic Systems

EURANDOM, Eindhoven, November 27, 2010

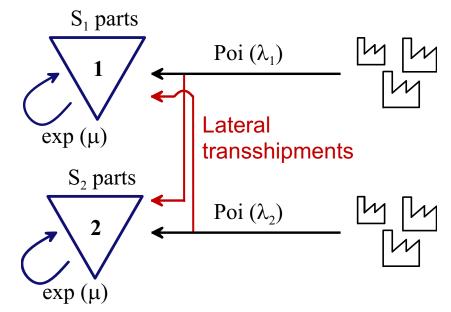
Introduction

Spare Parts Inventory System

- Technically advanced machines: down-times extremely expensive
- Breakdown: demand for spare part
- Ready-for-use spare parts are kept on stock: repair-by-replacement strategy



Two stock points: pooling of inventory

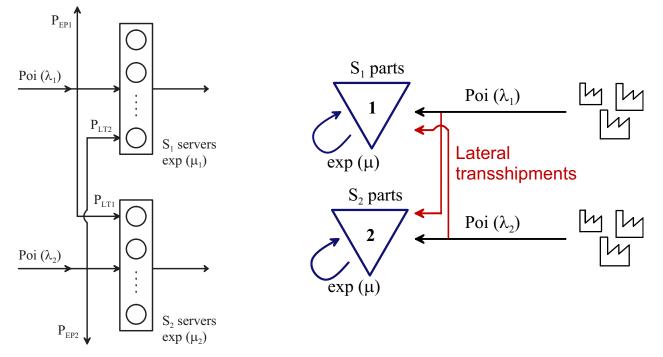


Lateral transshipment costs are <u>small</u> (compared to emergency procedure costs), hence costs can be saved.

/ department of mathematics and computer science

Introduction

PhD project: "Creation of Pooling in Queueing and Inventory Systems"



Technische Universiteit **Eindhoven** University of Technology

/ department of mathematics and computer science

Two location lateral transshipment problem

How to route the demands?

- Directly from stock;
- Via lateral transshipment (penalty costs *P*_{LT_i});
- Via emergency procedure (penalty costs P_{EP_i}).

Structure optimal lateral transshipment policy? When are simple policies optimal?

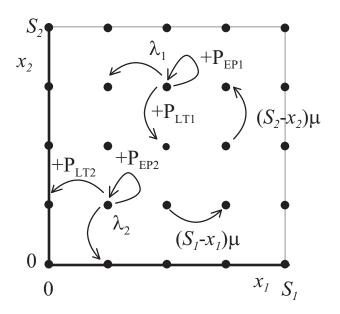
/ department of mathematics and computer science

Technique

Markov Decision Problem MDP with states (stock levels): (x_1, x_2)

Events:

- demand at 1 (decision!)
- demand at 2 (decision!)
- replenishment at 1
- replenishment at 2



Value iteration

Value function V_n (minimal expected *n*-period costs function, $V_0 \equiv 0$):

$$V_{n+1}(x_1, x_2) = \frac{\lambda_1 H_1(V_n) + \lambda_2 H_2(V_n) + \mu_1 G_1(V_n) + \mu_2 G_2(V_n)}{\lambda_1 + \lambda_2 + S_1 \mu_1 + S_2 \mu_2}$$

Operators

 H_i demands at i, G_i replenishments at i

$$H_1 f(x_1, x_2) = \begin{cases} \min\{f(x_1 - 1, x_2), \\ f(x_1, x_2 - 1) + P_{LT_1}, \\ f(x_1, x_2) + P_{EP_1}\}, \\ \dots \end{cases} \text{ if } x_1 > 0, x_2 > 0.$$

 $G_1 f(x_1, x_2) = (S_1 - x_1) f(x_1 + 1, x_2) + x_1 f(x_1, x_2).$

Theorem Provided equal μ 's, V_n is multimodular for all $n \ge 0$.

Multimodularity (for 2 dimensions):

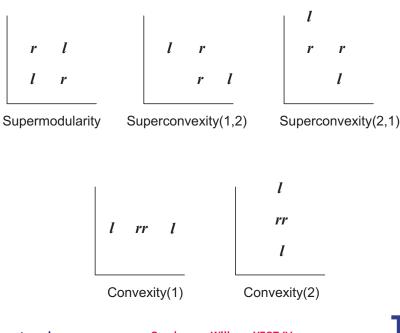
Supermodularity: $f(x_1, x_2) + f(x_1 + 1, x_2 + 1) \ge f(x_1 + 1, x_2) + f(x_1, x_2 + 1)$, Superconvexity(1,2): $f(x_1 + 2, x_2) + f(x_1, x_2 + 1) \ge f(x_1 + 1, x_2) + f(x_1 + 1, x_2 + 1)$, Superconvexity(2,1): $f(x_1, x_2 + 2) + f(x_1 + 1, x_2) \ge f(x_1, x_2 + 1) + f(x_1 + 1, x_2 + 1)$, which implies:

Convexity(1): $f(x_1, x_2) + f(x_1 + 2, x_2) \ge 2f(x_1 + 1, x_2)$, Convexity(2): $f(x_1, x_2) + f(x_1, x_2 + 2) \ge 2f(x_1, x_2 + 1)$.

Technique

Theorem Provided equal μ 's, V_n is multimodular for all $n \ge 0$.

Multimodularity (for 2 dimensions):



 $l \ge r$

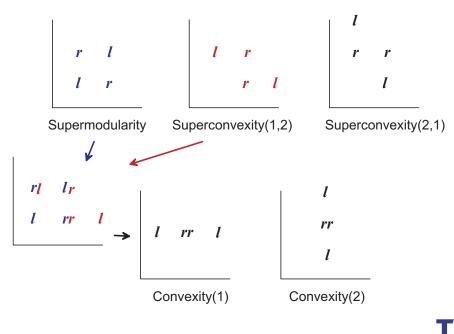
Technische Universiteit **Eindhoven** University of Technology

/ department of mathematics and computer science

Technique

Theorem Provided equal μ 's, V_n is multimodular for all $n \ge 0$.

Multimodularity (for 2 dimensions):



 $l \ge r$

Fechnische Universiteit **Eindhoven** University of Technology

/ department of mathematics and computer science

Theorem Provided equal μ 's, V_n is multimodular for all $n \ge 0$.

Proof

By induction:

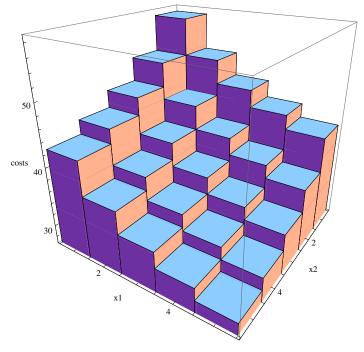
- $V_0 \equiv 0$ is MM
- Prove that H_1 , H_2 , and $G_1 + G_2$ preserve multimodularity:
 - $-f \mathsf{MM} \Rightarrow H_1 f \mathsf{MM}$
 - $-f \mathsf{MM} \Rightarrow H_2 f \mathsf{MM}$
 - $-f \mathsf{MM} \Rightarrow (G_1 + G_2)f \mathsf{MM}$

Hence V_n is multimodular for all $n \ge 0$.

Technique

Example Value function

Symmetric parameters: S = 4, $\lambda = 1$, $\mu = 1/3$, $P_{EP} = 10$, $P_{LT} = 7$. V_{50} :



/ department of mathematics and computer science

Implications of structural properties V_n Consider e.g. $(x_1, 0)$, with $x_1 > 0$.

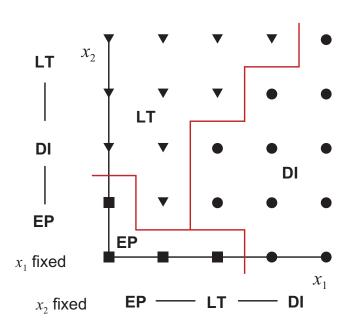
Decision for demand at 1: EP or DI.

 $P_{EP_1} + V_n(x_1, 0) - V_n(x_1 - 1, 0)$ is increasing in x_1 , as V_n is Convex in x_1 .

So there exists a threshold, say T^{DI}(0), such that
for x₁ < T^{DI}(0): emergency procedure (EP) is optimal,
for x₁ ≥ T^{DI}(0): directly from stock (DI) is optimal.

Results

Structure of Optimal Policy The optimal policy is a threshold type policy.



Demand at location 1

Directly from stock
 Lateral transshipment
 Emergency procedure

/ department of mathematics and computer science

Lateral Transshipment Problem

Simple policies

Complete pooling

(always hand out parts in case of demands, LTs)

Optimal if: $\begin{cases} P_{LT_1} + \frac{\lambda_2}{\lambda_2 + \mu} P_{EP_2} \leq P_{EP_1}, \\ P_{LT_2} + \frac{\lambda_1}{\lambda_1 + \mu} P_{EP_1} \leq P_{EP_2}. \end{cases}$

Hold back policy

(always hand out parts in case of demands,

hold back parts in case of LTs: hold back levels T_1 , T_2)

Optimal if:

$$P_{EP_2} \leq P_{LT_2} + \left(1 + \frac{\mu}{\lambda_2}\right) P_{EP_1},$$

$$P_{EP_1} \leq P_{LT_1} + \left(1 + \frac{\mu}{\lambda_1}\right) P_{EP_2}.$$

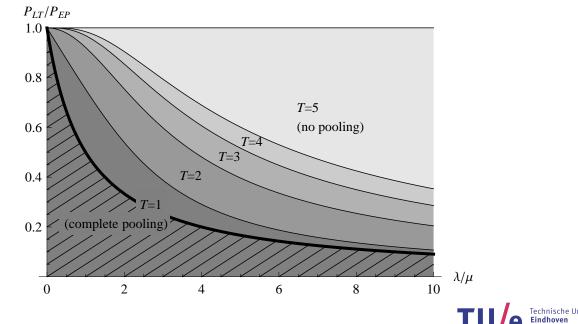
15/25

/ department of mathematics and computer science

Lateral Transshipment Problem

Symmetric Parameters

- Hold back policy is optimal
- Complete pooling optimal if $\frac{P_{LT}}{P_{EP}} \leq \frac{\mu}{\lambda/\mu}$.



/ department of mathematics and computer science

Sandra van Wijk - YEQT-IV

Lateral Transshipment Problem

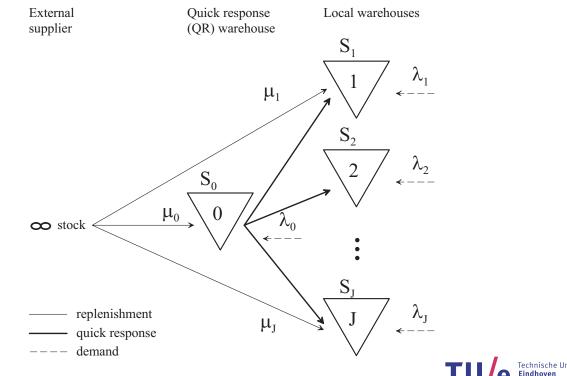
Model extensions:

- Consumables (holding costs)
- LTs in one direction
- Asymmetric repair rates
- Limited repair capacity
- \rightarrow More than two stock points ??
 - Approximation algorithm (hold back policy)
 - Related model

Inventory model with a quick response warehouse

18/25

related problem, same techniques

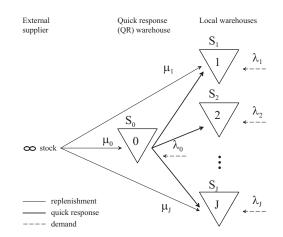


/ department of mathematics and computer science

Inventory model with a quick response warehouse

Decisions:

- Stock-out at local warehouse j:
 - quick response P_i^{QR} , or
 - emergency procedure P_i^{EP} ?
- Demand at QR warehouse:
 - satisfy, or
 - emergency procedure P_0^{EP} ?



Inventory model with a quick response warehouse Simple policies optimal:

• Always quick response when *j* is stocked-out. Optimal if:

$$\lambda_0 P_0^{EP} + \sum_{k=1}^J \lambda_k (P_k^{EP} - P_k^{QR}) \leq (P_j^{EP} - P_j^{QR}) \left(\mu_0 + \sum_{k=0}^J \lambda_k \right)$$

• Always satisfy demand at QR warehouse. Optimal if:

$$\sum_{k=1}^{J} \lambda_k (P_k^{EP} - P_k^{QR}) \leq P_0^{EP} \left(\mu_0 + \sum_{k=1}^{J} \lambda_k \right)$$

Model

- Markov Decision Problem (MDP) state (stock levels): $x = (x_0, x_1, ..., x_J)$
- Event Based Dynamic Programming value function V_n:

$$V_{n+1}(x) = \frac{1}{\sum_{j=0}^{J} S_j \mu_j + \sum_{j=0}^{J} \lambda_j} \left(\sum_{j=0}^{J} \mu_j G_j V_n(x) + \sum_{i=1}^{J} \lambda_j H_j V_n(x) + \lambda_0 H_{QR} V_n(x) \right)$$

- G_j replenishment at j (0..N)
- H_j demand at j (1..N)
- H_{QR} demand at QR warehouse

Value function

$$V_{n+1}(x) = \frac{1}{\sum_{j=0}^{J} S_j \mu_j + \sum_{j=0}^{J} \lambda_j} \left(\sum_{j=0}^{J} \mu_j G_j V_n(x) + \sum_{i=1}^{J} \lambda_j H_j V_n(x) + \lambda_0 H_{QR} V_n(x) \right)$$

• $G_j f(x) = \begin{cases} (S_j - x_j) f(x + e_j) + x_j f(x) & \text{if } x_j < S_j; \\ S_j f(x) & \text{if } x_j = S_j. \end{cases}$
 $\int f(x - e_j) & \text{if } x_j > 0; \\ \min\{P_i^{QR} + f(x - e_0), \end{bmatrix}$

•
$$H_j f(x) = \begin{cases} P_j^{EP} + f(x) \\ P_j^{EP} + f(x) \\ P_j^{EP} + f(x) \end{cases}$$
 if $x_j = 0, x_0 > 0;$
otherwise.
$$[\min\{f(x - e_0), P_0^{EP} + f(x)\}]$$
 if $x_0 > 0;$

•
$$H_{QR}f(x) = \begin{cases} \min\{f(x-e_0), P_0^{LT} + f(x)\} & \text{if } x_0 > 0; \\ P_0^{EP} + f(x) & \text{if } x_0 = 0. \end{cases}$$

/ department of mathematics and computer science

Structural properties

Convexity and Supermodularity:

Conv (x_i) : $f(x) + f(x + 2e_i) \ge 2f(x + e_i)$, Supermod (x_i, x_j) : $f(x) + f(x + e_i + e_j) \ge f(x + e_i) + f(x + e_j)$ for $i \ne j$.

<u>Theorem</u>: V_n is Conv and Supermod for all $n \ge 0$ when V_0 is so.

<u>Proof</u>: By induction, as Conv and Supermod are preserved by G_j , H_j , and H_{QR} .

<u>Consequently</u>: Optimal policy is threshold type policy, and we can derive conditions under which simple policies optimal.

23/25

/department of mathematics and computer science

Extensions

Analogous results for:

- including holding costs
- backlogging at local warehouses
- state-dependent replenishment rates

Further work

numerical study: optimal policy vs. simple policies

Summary

Summary

- Two location lateral transshipment model
- Quick response warehouse model
- → optimal policy structure
 & conditions for simple policies
- A.C.C. van Wijk, I.J.B.F. Adan and G.-J. van Houtum,
 - Optimal Lateral Transshipment Policy for a Two Location Inventory Problem (Eurandom report # 2009-027).
 - Approximate Evaluation of Multi-Location Inventory Models with Lateral Transshipments and Hold Back Levels (in preperation).
 - Optimal Policy for a Multi-location Inventory System with a Quick Response Warehouse (in preperation).

