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Myopic (or ‘true’) self-avoiding walk (TSAW)

D. Amit, G. Parisi, L. Peliti, 1983
X(t) continuous time nearest neighbour random walk on Z¢

Local time (occupation time measure) with initialization:
I(t,x) :=1(0,x) + |{s € [0,t] : X(s5) = x}|

Jump rates:
P(X(t+dt)=y | past, X(t) = x)
= Lgy—xj=1yw(/(t,x) = I(t,y)) dt + o(dt)

where w : R — [0, 00) increasing.

The walker is pushed by the discrete negative gradient of its
own local time to less visited areas.
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Similar models, earlier results and conjectures e el o
heorem for the
t|:rue (myopit:)
self-avoiding

Variations: edge/site repulsion, discrete/continuous time. walk in d >3

Dimension-dependent behaviour: lliés Horvath

d =1 X(t) ~ t?/3 with difficult non-Gaussian scaling limit

Related models

> limit theorem for an edge-repulsion version of TSAW
(B. Téth, 1995)
» construction of the limit process (B. Téth, W. Werner,

1998)
> a site-repulsion version of TSAW (B. Téth, B. Vetd,

2009)
d =2 X(t) ~ t/?(log t)¢ with Gaussian limit, £ =?
» partial results (B. Valks, 2009)
d >3 X(t) ~ t'/? with Gaussian limit

» limit theorem for a site-repulsion version of TSAW (I.
H., B. Téth, B. Vets, 2010)




Self-repelling Brownian polymer model

Continuous space variant: Self-repelling Brownian polymer
model

J. Norris, C. Rogers, D. Williams, 1987

R. Durrett, C. Rogers, 1992

X(t) diffusion process in RY

occupation time measure with initialization:
I(t,A) :==1(0,A) + [{s € [0, t] : X(s) € A}
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Self-repelling Brownian polymer model

Continuous space variant: Self-repelling Brownian polymer
model

J. Norris, C. Rogers, D. Williams, 1987
R. Durrett, C. Rogers, 1992

X(t) diffusion process in RY

occupation time measure with initialization:
I(t,A) :==1(0,A) + [{s € [0, t] : X(s) € A}

V :RY — RY approximate identity, e.g. V(x) = e~ IxI?
Evolution (smeared-out local times):

dX(t) = dB(t) — grad(V = I(t,))(X(¢)) dt
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Diffusive bounds

Self-repelling Brownian polymer model and central imit

theorem for the
true (myopic)

self-avoiding
. . . . walk ind > 3
Continuous space variant: Self-repelling Brownian polymer

model
J. Norris, C. Rogers, D. Williams, 1987
R. Durrett, C. Rogers, 1992 Related models

X(t) diffusion process in RY
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occupation time measure with initialization:
I(t,A) :==1(0,A) + [{s € [0, t] : X(s) € A}

V :RY — RY approximate identity, e.g. V(x) = e~ IxI?
Evolution (smeared-out local times):

dX(t) = dB(t) — grad(V = I(t,))(X(¢)) dt

CLT for the SRBP in d > 3 (I. H., B. Téth, B. Vets, 2009)




Environment seen from the position of the walker

X(t) random walk on Z? with jump rates

P (X(t+dt) =y | past, X(t) = x)
= ]].{|y_x‘:1}W(/(t,X) — /(t,y)) dt + O(dt)

where w : R — [0, 00) and the local time is

I(t,x) :=1(0,x) + [{s € [0, t] : X(s) = x}|.
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Environment seen from the position of the walker

X(t) random walk on Z? with jump rates

P (X(t+dt) =y | past, X(t) = x)
= ]].{|y_x‘:1}W(/(t,X) — /(t,y)) dt + O(dt)

where w : R — [0, 00) and the local time is
I(t,x) :=1(0,x)+ [{s € [0, t] : X(s) = x}|.
The environment seen by the walker:
0E) = (1(60) e 1(E%) = (£, X(2) + %).
t — n(t) is a Markov process on the state space

Q:={w= (w(x))xezd s w(x) € R}
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Assumptions

(1) d > 3.
(2) infyer w(u) =~ > 0.
(3) infuer r'(u) = a > 0.
s and r denote the even, respectively, odd part of w:

s(u) = wlu) + w(=u) +2w(u) -7, r(u) .=

w(u) — w(—u)
-5

(4) w is a polynomial.

Diffusive bounds

and central limit

theorem for the
true (myopic)
self-avoiding
walk ind > 3

lllés Horvath

Environment
process,
generator,
stationary
measure




Infinitesimal generator, stationary measure

The infinitesimal generator of the process t — n(t) is acting
as an operator on smooth cylinder functions from £2(Q, 7):

Gf (w) = dof (W) + Y w(w(0) — w(e))(F(rew) — f(w)),

ecZd,|e|=1
where
of
80(&)) T (%J(O) (W),
and
Q0 — Q, Tw(x) == w(z + x),

is the group of spatial shifts, acting naturally on €.
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Infinitesimal generator, stationary measure

The infinitesimal generator of the process t — n(t) is acting
as an operator on smooth cylinder functions from £2(Q, 7):

Gf (w) = dof (W) + Y w(w(0) — w(e))(F(rew) — f(w)),

eczZ9 |e|=1
where
of
80(&)) T (%J(O) (W),
and
Q0 — Q, Tw(x) == w(z + x),

is the group of spatial shifts, acting naturally on €.
The stationary measure is

dr(w) =Z texp{ - % > Rw(x) —w(y))}dw,

x,yGZd
|x—y|=1

where R(u) := [5' r(v)dv.
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n(t) is a stationary and ergodic Markov process on (2, ).
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Main results

Theorem

n(t) is a stationary and ergodic Markov process on (2, ).

Corollary
For m-almost all initial profiles

X(t)/t — 0.

Theorem (I. H., B. Téth, B. Vets, 2010)
Under the previous assumptions,

0<~< inf limtlE ((e'X(t))2) <

ecRd t—o00

le|=1
< sup lim t7'E ((e- X(t))?) < o0.
ccRrd t—o0
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Main results and contrar e
theorem for the

true (m){oPic)

Theorem (I. H., B. Téth, B. Vets, 2010) p e

If we also assume that r(u) is linear, the degree of s(u) is at lllés Horvath
most 4 and the main coefficient small enough, then the
matrix of asymptotic covariances
2 = (o} 2= lim t7'E (X (£)X)(t
0° = (Tucki<d, ok = Jim (Xi(£)Xi(t))

exists and it is nondegenerate. The finite dimensional
distributions of the rescaled displacement process

Main results

Xn(t) == N~Y2X(Nt),

converge to those of a d-dimensional Brownian motion with

covariance matrix o2.




Main results

Theorem (I. H., B. Téth, B. Vets, 2010)
If we also assume that r(u) is linear, the degree of s(u) is at
most 4 and the main coefficient small enough, then the
matrix of asymptotic covariances

0® = (0k1<ki<dr  oh 1= Jim tIE (X (£)X)(1))

exists and it is nondegenerate. The finite dimensional
distributions of the rescaled displacement process

Xn(t) == N~Y2X(Nt),

converge to those of a d-dimensional Brownian motion with

covariance matrix o2.

Remark
If r(u) is linear, the stationary measure is Gaussian.
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Self-adjoint and skew-self-adjoint parts of the
generator
Denote

S:=—5(G+67),  A:=(G-G),

the self-adjoint, respectively, skew-self-adjoint parts of the
infinitesimal generator.
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Self-adjoint and skew-self-adjoint parts of the
generator
Denote

1 * L }7 . *
S:=—5(G+67),  A:=(G-G),

the self-adjoint, respectively, skew-self-adjoint parts of the
infinitesimal generator.

Sf(w)=—8— > s(w (€)(Tef(w) — f(w))

eczd
le|=1

Af(w) = Oof (w) + Z r(w(0) — w(e))(Tef (w) — f(w)),

eczd
lel=1

where

TA(w) = f(rw), A= (Te—1).

Diffusive bounds

and central limit

theorem for the
true (myopic)
self-avoiding
walk ind > 3

lllés Horvath

Ergodicity, LLN




Yaglom-reversibility, ergodicity

Stationarity follows from the so-called Yaglom-reversibility:
JSJ=S, JAJ = —A, JGJ = G*
where J is the unitary involution
JF(w) == f(-w)

on H = L3(Q, 7).
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Yaglom-reversibility, ergodicity

Stationarity follows from the so-called Yaglom-reversibility:

JSJ =S, JAJ = —A, JGJ = G*
where J is the unitary involution
Jf(w) = f(—w)

on H = L3(Q, 7).
Ergodicity follows from

S>—A

and ergodicity of the shifts on (2, 7).
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Diffusive lower bound

Consider the following martingale+compensator
decomposition:

X(0) = N(e) + (o) + | " o(n(s))ds,

where N(t) is the martingale part due to the jump rates ~,
M(t) is the martingale part due to the jump rates (w — =)
and ¢ : Q — RY is the compensator (conditional velocity)
function:

pi(w) = w(w(0) — wler) — w(w(0) — w(—e))
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Diffusive lower bound

Consider the following martingale+compensator
decomposition:

X(0) = N(e) + (o) + | " o(n(s))ds,

where N(t) is the martingale part due to the jump rates ~,
M(t) is the martingale part due to the jump rates (w — =)
and ¢ : Q — RY is the compensator (conditional velocity)

function:

pi(w) = w(w(0) — wler) — w(w(0) — w(—e))

Direct calculations show that N(t) is uncorrelated with the
other terms.
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Diffusive upper bound

The martingale terms scale diffusively, so the task is to prove
diffusive upper bound for the integral term:

lim t'E <(/Otgo(n(s))ds)2> < 0.

t—oo
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Diffusive upper bound

The martingale terms scale diffusively, so the task is to prove
diffusive upper bound for the integral term:

lim t'E <(/Otg0(n(s))ds)2> < 0.

t—oo

From standard variational arguments (e.g.
Sethuraman —Varadhan - Yau, 2000),

i e ([ wtatsas)?) <
< fim ¢7'E ((/Otcp(i(S))dsf),

T t—oo

where £(s) is the (reversible) process with generator S and
the same stationary distribution.
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Fourier-transform

The usual way to write this is

/Q o(0)(5 1) (w)drm(w) < oo,
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Fourier-transform

The usual way to write this is

/Q o(0)(5 1) (w)drm(w) < oo,

Denote

C(x) == E (p(w)p(mxw))
Clp) =) _ eP*C(x), pe[-m ]’

xezd

Ind >3,

sup C(p) < oo.
pe[—m,m]d

is sufficient for the upper bound to hold.
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Brascamp—'_|eb-|neq uallty Diffusive bounds

and central limit
theorem for the
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The following important consequence of the self-avoiding
walk in d >

Brascamp-Lieb-inequality is used:
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Lemma
Let f : R — R be smooth, e € 79, |e| = 1 fixed and denote

C(x) = Cov (f(w(0) — w(e)), f(wlx) —wlx +e))),
C'(x) := Cov (f'(w(0) — w(e)), f'(w(x) — w(x + €))) .

m' = E (f'(w(0) — w(e))).
Then Diffusive bounds

A

sup C(p) < (m)2+d 1 sup C'(p)

pe[—m,m]d pe[—m,x]d




Brascamp—-Lieb-inequality
The following important consequence of the
Brascamp-Lieb-inequality is used:

Lemma
Let f : R — R be smooth, e € 79, |e| = 1 fixed and denote

C(x) := Cov (f(w(0) — w(e)), f(w(x) — w(x + €))),
C'(x) := Cov (f’(w(O) —w(e)), f(w(x) — w(x + e))) )
m' = E (f'(w(0) — w(e))).

Then

sup C(p) < (m)2+d 1 sup C'(p)

pe[—m,m]d pe[—m,x]d

The proof for the diffusive upper bound is finished by
induction on the degree of w(x).
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Kipnis—Varadhan theory

In the decomposition

X(£) = N(t) + M(r) + /0 o(n(s))ds,

N(t) and M(t) are stationary, ergodic martingales and the
martingale CLT can be applied. CLT for the integral term
has been originally investigated by Kipnis and Varadhan.
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Kipnis—Varadhan theory

In the decomposition

X(£) = N(t) + M(r) + /0 o(n(s))ds,

N(t) and M(t) are stationary, ergodic martingales and the
martingale CLT can be applied. CLT for the integral term
has been originally investigated by Kipnis and Varadhan.

In general form: n(t) is a stationary and ergodic Markov
process on the state space (2, 7). G is the infinitesimal
generator of 7(t) acting on £2(Q, 7). ¢ € L3(Q, ) with
Joedm =0.

Question

Sufficient condition for the martingale approximation and
central limit theorem for

Nt
Yiu(t) = & /0 2 (n(s)) ds.
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Gaussian Hilbert space - an example nd coneral it
theorem for the

trulef (m){zf)ic)

Example walk in d >3

Consider Qex := R with e (dx) := \/%e_’gﬂdx,
There is an orthogonal decomposition
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Lz(Qem 7Tex) = @20207'[2)(

where HEX contains polynomials of degree n.
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Gaussian Hilbert space - an example

Example

Consider Qex := R with e (dx) := \/%e_’gﬂdx,

There is an orthogonal decomposition
Lz(Qem Tex) = ®poHy

where HEX contains polynomials of degree n. These are the
Hermite polynomials, which can be constructed via
Gram —Schmidt orthogonalization.
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Gaussian Hilbert space - an example

Example
Consider Qex := R with e (dx) := \/%e_’gﬂdx,
There is an orthogonal decomposition

Lz(Qem 7T6><) = EB?:OH:?X

where HEX contains polynomials of degree n. These are the
Hermite polynomials, which can be constructed via
Gram —Schmidt orthogonalization.

Similarly with infinitely many variables, the same procedure
gives

Lz(Qv 7T) = @?):OHn
where H,, is generated by the Wick polynomials of form
cw(x1) ... w(x,)  with x1,...,x, € RY, i.e. polynomials
w(x1) ...w(x,) orthogonalized.
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Sufficient conditions

» C. Kipnis, S. R. S. Varadhan, 1986 (reversible)
» B. Téth, 1986 (non-reversible, discrete time)
» S. V. S. Varadhan, 1996: (strong) sector condlition

157Y2A5712)| < .

» S. Sethuraman, S. R. S. Varadhan, H-T. Yau, 2000:
graded/weak sector condition: £L?(Q,7) = &% yH, and
» S=>,Snnwith S, ,: H, — H, and
» A= Zn An,n+1 + An,n—l with An,nil : Hn - Hnil

‘5_1/2 An,n+1sf7_,r£/2‘ < Cn?

n+1,n+1
where v < 1 or {y =1 and C is small enough}.
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Modified graded sector condition
Setup: £2(Q,7) = ®° o H, and
> S = Znu’ Spntj With Sp it Hin — Hayj, [j] < 4 even
> A=Y Annt1 + Ann—1 With Appi1 - Hp — Hotl
Denote D =) Sy p.
Lemma

» upper bound on f
» 0<D<~»S

—-1/2 —1 2 .
> Sn+j/7n+_/ I‘ln+j / H S CZnB Wlth ﬁ <1 Or/g = 1! (%)

small
-1/2 —1/2
> 5n+j7n+J nn+] H

c3 small
> 571/2 Sh n+j H < C4n6 with B” < 0

c3n® with 3 <2 or 3/ =2,

IN

n-+j,n+j

The above conditions together are sufficient for the
martingale approximation and the CLT.
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The end

Thank you for your attention!
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