Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Budapest University of Technology and Economics http://www.math.bme.hu/~pollux

March 10, 2010

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$ Illés Horváth Motivation Related models Environment process,

generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Kipnis– Varadhan theory, sector conditions

Outline

joint work with

- Bálint Tóth (professor, Budapest, PhD advisor)
- Bálint Vető (PhD student, Budapest)

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Kipnis-Varadhan theory, sector conditions

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3Illés Horváth Motivation Related models Diffusive bounds

Myopic (or 'true') self-avoiding walk (TSAW)

D. Amit, G. Parisi, L. Peliti, 1983

X(t) continuous time nearest neighbour random walk on \mathbb{Z}^d Local time (occupation time measure) with initialization: $I(t,x) := I(0,x) + |\{s \in [0,t] : X(s) = x\}|$

Jump rates:

$$\begin{split} \mathsf{P}\left(X(t+\mathrm{d}t)=y\mid \mathrm{past}, X(t)=x\right)\\ &=\mathbbm{1}_{\{|y-x|=1\}}w(I(t,x)-I(t,y))\,\mathrm{d}t+o(\mathrm{d}t) \end{split}$$

where $w : \mathbb{R} \to [0, \infty)$ increasing.

The walker is pushed by the discrete negative gradient of its own local time to less visited areas.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Similar models, earlier results and conjectures

Variations: edge/site repulsion, discrete/continuous time. Dimension-dependent behaviour:

 $d=1~X(t)\sim t^{2/3}$ with difficult non-Gaussian scaling limit

- limit theorem for an edge-repulsion version of TSAW (B. Tóth, 1995)
- construction of the limit process (B. Tóth, W. Werner, 1998)
- a site-repulsion version of TSAW (B. Tóth, B. Vető, 2009)

 $d=2~X(t)\sim t^{1/2}(\log t)^{\xi}$ with Gaussian limit, $\xi=?$

partial results (B. Valkó, 2009)

 $d \geq 3 \ X(t) \sim t^{1/2}$ with Gaussian limit

 limit theorem for a site-repulsion version of TSAW (I. H., B. Tóth, B. Vető, 2010) Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Self-repelling Brownian polymer model

Continuous space variant: Self-repelling Brownian polymer model

J. Norris, C. Rogers, D. Williams, 1987

R. Durrett, C. Rogers, 1992

X(t) diffusion process in \mathbb{R}^d

occupation time measure with initialization: $l(t, A) := l(0, A) + |\{s \in [0, t] : X(s) \in A\}|$ Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Kipnis– Varadhan theory, sector conditions

ション ふゆ アメリア メリア しょうくしゃ

Self-repelling Brownian polymer model

Continuous space variant: Self-repelling Brownian polymer model

J. Norris, C. Rogers, D. Williams, 1987

R. Durrett, C. Rogers, 1992

X(t) diffusion process in \mathbb{R}^d

occupation time measure with initialization: $l(t, A) := l(0, A) + |\{s \in [0, t] : X(s) \in A\}|$

 $V : \mathbb{R}^d \to \mathbb{R}^+$ approximate identity, e.g. $V(x) = e^{-|x|^2}$ Evolution (smeared-out local times):

$$\mathrm{d}X(t) = \mathrm{d}B(t) - \mathrm{grad}(V * I(t, \cdot))(X(t))\,\mathrm{d}t$$

ション ふゆ アメリア メリア しょうくしゃ

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Self-repelling Brownian polymer model

Continuous space variant: Self-repelling Brownian polymer model

J. Norris, C. Rogers, D. Williams, 1987

R. Durrett, C. Rogers, 1992

X(t) diffusion process in \mathbb{R}^d

occupation time measure with initialization: $l(t, A) := l(0, A) + |\{s \in [0, t] : X(s) \in A\}|$

 $V : \mathbb{R}^d \to \mathbb{R}^+$ approximate identity, e.g. $V(x) = e^{-|x|^2}$ Evolution (smeared-out local times):

$$\mathrm{d}X(t) = \mathrm{d}B(t) - \mathrm{grad}(V * I(t, \cdot))(X(t))\,\mathrm{d}t$$

CLT for the SRBP in $d \ge 3$ (I. H., B. Tóth, B. Vető, 2009)

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Environment seen from the position of the walker

X(t) random walk on \mathbb{Z}^d with jump rates

$$\begin{split} \mathsf{P}\left(X(t+\mathrm{d}t)=y\mid \mathrm{past}, X(t)=x\right)\\ &=\mathbbm{1}_{\{|y-x|=1\}}w(I(t,x)-I(t,y))\,\mathrm{d}t+o(\mathrm{d}t) \end{split}$$

where $w:\mathbb{R}
ightarrow [0,\infty)$ and the local time is

$$l(t,x) := l(0,x) + |\{s \in [0,t] : X(s) = x\}|.$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Environment seen from the position of the walker

X(t) random walk on \mathbb{Z}^d with jump rates

$$\begin{split} \mathsf{P}\left(X(t+\mathrm{d}t)=y\mid \mathrm{past}, X(t)=x\right)\\ &=\mathbbm{1}_{\{|y-x|=1\}}w(I(t,x)-I(t,y))\,\mathrm{d}t+o(\mathrm{d}t) \end{split}$$

where $w:\mathbb{R}
ightarrow [0,\infty)$ and the local time is

$$l(t,x) := l(0,x) + |\{s \in [0,t] : X(s) = x\}|.$$

The environment seen by the walker:

$$\eta(t) = (\eta(t,x))_{x \in \mathbb{Z}^d}, \qquad \eta(t,x) := l(t,X(t)+x).$$

 $t\mapsto \eta(t)$ is a Markov process on the state space

$$\Omega := \{\omega = (\omega(x))_{x \in \mathbb{Z}^d} : \omega(x) \in \mathbb{R}\}$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results Ergodicity, LLN

Diffusive bounds

Assumptions

(1)
$$d \ge 3$$
.

(2)
$$\inf_{u\in\mathbb{R}} w(u) = \gamma > 0.$$

(3)
$$\inf_{u \in \mathbb{R}} r'(u) = c_1 > 0.$$

s and r denote the even, respectively, odd part of w:

$$s(u):=\frac{w(u)+w(-u)}{2}-\gamma, \qquad r(u):=\frac{w(u)-w(-u)}{2},$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

(4) w is a polynomial.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$ Illés Horváth Motivation

Related models

Environment process, generator, stationary measure

lain results

Ergodicity, LLN

Diffusive bounds

Infinitesimal generator, stationary measure

The infinitesimal generator of the process $t \mapsto \eta(t)$ is acting as an operator on smooth cylinder functions from $\mathcal{L}^2(\Omega, \pi)$:

$$Gf(\omega) = \partial_0 f(\omega) + \sum_{e \in \mathbb{Z}^d, |e|=1} w(\omega(0) - \omega(e)) (f(\tau_e \omega) - f(\omega)),$$

where

$$\partial_0(\omega) := rac{\partial f}{\partial \omega(0)}(\omega),$$

and

$$au_z: \Omega o \Omega, \qquad au_z \omega(x) := \omega(z+x),$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

is the group of spatial shifts, acting naturally on Ω .

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Infinitesimal generator, stationary measure

The infinitesimal generator of the process $t \mapsto \eta(t)$ is acting as an operator on smooth cylinder functions from $\mathcal{L}^2(\Omega, \pi)$:

$$Gf(\omega) = \partial_0 f(\omega) + \sum_{e \in \mathbb{Z}^d, |e|=1} w(\omega(0) - \omega(e)) (f(\tau_e \omega) - f(\omega)),$$

where

$$\partial_0(\omega) := rac{\partial f}{\partial \omega(0)}(\omega),$$

and

$$au_z:\Omega o\Omega,\qquad au_z\omega(x):=\omega(z+x),$$

is the group of spatial shifts, acting naturally on $\boldsymbol{\Omega}.$ The stationary measure is

$$d\pi(\omega) = Z^{-1} \exp\left\{-\frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z}^d \\ |x-y|=1}} R(\omega(x) - \omega(y))\right\} \mathrm{d}\omega,$$

where $R(u) := \int_0^u r(v) dv$.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Theorem $\eta(t)$ is a stationary and ergodic Markov process on (Ω, π) .

Corollary

For π -almost all initial profiles

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Theorem $\eta(t)$ is a stationary and ergodic Markov process on (Ω, π) .

Corollary For π -almost all initial profiles

$$X(t)/t \rightarrow 0.$$

Theorem (I. H., B. Tóth, B. Vető, 2010) Under the previous assumptions,

$$\begin{split} 0 < \gamma &\leq \inf_{\substack{e \in \mathbb{R}^d \\ |e| = 1}} \lim_{t \to \infty} t^{-1} \mathsf{E}\left((e \cdot X(t))^2 \right) \leq \\ &\leq \sup_{\substack{e \in \mathbb{R}^d \\ |e| = 1}} \overline{\lim_{t \to \infty}} t^{-1} \mathsf{E}\left((e \cdot X(t))^2 \right) < \infty. \end{split}$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Theorem (I. H., B. Tóth, B. Vető, 2010)

If we also assume that r(u) is linear, the degree of s(u) is at most 4 and the main coefficient small enough, then the matrix of asymptotic covariances

$$\sigma^2 = (\sigma_{kl}^2)_{1 \leq k,l \leq d}, \quad \sigma_{kl}^2 := \lim_{t \to \infty} t^{-1} \mathsf{E} \left(X_k(t) X_l(t) \right)$$

exists and it is nondegenerate. The finite dimensional distributions of the rescaled displacement process

$$X_N(t) := N^{-1/2} X(Nt),$$

converge to those of a d-dimensional Brownian motion with covariance matrix σ^2 .

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Theorem (I. H., B. Tóth, B. Vető, 2010)

If we also assume that r(u) is linear, the degree of s(u) is at most 4 and the main coefficient small enough, then the matrix of asymptotic covariances

$$\sigma^2 = (\sigma_{kl}^2)_{1 \leq k,l \leq d}, \quad \sigma_{kl}^2 := \lim_{t \to \infty} t^{-1} \mathsf{E} \left(X_k(t) X_l(t) \right)$$

exists and it is nondegenerate. The finite dimensional distributions of the rescaled displacement process

 $X_N(t) := N^{-1/2} X(Nt),$

converge to those of a d-dimensional Brownian motion with covariance matrix σ^2 .

くしゃ 本面 そうせん ほう うめんろ

Remark

If r(u) is linear, the stationary measure is Gaussian.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Self-adjoint and skew-self-adjoint parts of the generator

Denote

$$S:=-rac{1}{2}(G+G^*), \qquad A:=rac{1}{2}(G-G^*),$$

(日) (四) (日) (日) (日)

the self-adjoint, respectively, skew-self-adjoint parts of the infinitesimal generator.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Self-adjoint and skew-self-adjoint parts of the generator

Denote

$$S:=-rac{1}{2}(G+G^*), \qquad A:=rac{1}{2}(G-G^*),$$

the self-adjoint, respectively, skew-self-adjoint parts of the infinitesimal generator.

$$Sf(\omega) = -\gamma \Delta - \sum_{\substack{e \in \mathbb{Z}^d \\ |e|=1}} s(\omega(0) - \omega(e)) (T_e f(\omega) - f(\omega))$$
$$Af(\omega) = \partial_0 f(\omega) + \sum_{e \in \mathbb{Z}^d \\ |e|=1} r(\omega(0) - \omega(e)) (T_e f(\omega) - f(\omega)),$$

$$(r) = \partial_0 f(\omega) + \sum_{\substack{e \in \mathbb{Z}^d \ |e|=1}} r(\omega(0) - \omega(e)) (T_e f(\omega) - f(\omega))$$

where

$$T_z f(\omega) := f(\tau_z \omega), \qquad \Delta := \sum_{\substack{e \in \mathbb{Z}^d \\ |e|=1}} (T_e - I).$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3

Illés Horváth

Motivation

Related models

Environment

Ergodicity, LLN

Diffusive bounds

Yaglom-reversibility, ergodicity

Stationarity follows from the so-called Yaglom-reversibility:

$$JSJ = S$$
, $JAJ = -A$, $JGJ = G^*$

where J is the unitary involution

$$Jf(\omega) := f(-\omega)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

on $\mathcal{H} := \mathcal{L}^2(\Omega, \pi)$.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$ Illés Horváth Motivation Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Yaglom-reversibility, ergodicity

Stationarity follows from the so-called Yaglom-reversibility:

$$JSJ = S$$
, $JAJ = -A$, $JGJ = G^*$

where J is the unitary involution

$$Jf(\omega) := f(-\omega)$$

on $\mathcal{H} := \mathcal{L}^2(\Omega, \pi)$. Ergodicity follows from

$$S \ge -\gamma \Delta$$

and ergodicity of the shifts on (Ω, π) .

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3Illés Horváth Motivation Related models Environment Main results Ergodicity, LLN Diffusive bounds

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Diffusive lower bound

Consider the following martingale+compensator decomposition:

$$X(t) = N(t) + M(t) + \int_0^t \varphi(\eta(s)) \mathrm{d}s,$$

where N(t) is the martingale part due to the jump rates γ , M(t) is the martingale part due to the jump rates $(w - \gamma)$ and $\varphi : \Omega \mapsto \mathbb{R}^d$ is the compensator (conditional velocity) function:

$$\varphi_{I}(\omega) = w(\omega(0) - \omega(e_{I})) - w(\omega(0) - \omega(-e_{I}))$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

≺ipnis− ∕aradhan theory, œctor conditions

Diffusive lower bound

Consider the following martingale+compensator decomposition:

$$X(t) = N(t) + M(t) + \int_0^t \varphi(\eta(s)) \mathrm{d}s,$$

where N(t) is the martingale part due to the jump rates γ , M(t) is the martingale part due to the jump rates $(w - \gamma)$ and $\varphi : \Omega \mapsto \mathbb{R}^d$ is the compensator (conditional velocity) function:

$$\varphi_{I}(\omega) = w(\omega(0) - \omega(e_{I})) - w(\omega(0) - \omega(-e_{I}))$$

Direct calculations show that N(t) is uncorrelated with the other terms.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Diffusive upper bound

The martingale terms scale diffusively, so the task is to prove diffusive upper bound for the integral term:

$$\varlimsup_{t\to\infty} t^{-1} \mathsf{E}\left(\big(\int_0^t \varphi(\eta(s)) \mathrm{d}s\big)^2\right) < \infty.$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Diffusive upper bound

The martingale terms scale diffusively, so the task is to prove diffusive upper bound for the integral term:

$$\overline{\lim_{t\to\infty}} t^{-1} \mathsf{E}\left(\big(\int_0^t \varphi(\eta(s)) \mathrm{d}s\big)^2\right) < \infty.$$

From standard variational arguments (e.g. Sethuraman – Varadhan – Yau, 2000),

$$\begin{split} & \overline{\lim_{t \to \infty}} t^{-1} \mathsf{E} \left(\big(\int_0^t \varphi(\eta(s)) \mathrm{d}s \big)^2 \right) \leq \\ & \leq \overline{\lim_{t \to \infty}} t^{-1} \mathsf{E} \left(\big(\int_0^t \varphi(\xi(s)) \mathrm{d}s \big)^2 \right), \end{split}$$

where $\xi(s)$ is the (reversible) process with generator S and the same stationary distribution.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Fourier-transform

The usual way to write this is

$$\int_\Omega arphi(\omega)(\mathcal{S}^{-1}arphi)(\omega)\mathrm{d}\pi(\omega)<\infty.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$ Illés Horváth Motivation Related models

Environmen process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Fourier-transform

The usual way to write this is

$$\int_\Omega arphi(\omega) (S^{-1} arphi)(\omega) \mathrm{d} \pi(\omega) < \infty.$$

Denote

$$egin{aligned} \mathcal{C}(x) &:= \mathsf{E}\left(arphi(\omega)arphi(au_x\omega)
ight), \ \hat{\mathcal{C}}(p) &:= \sum_{x\in\mathbb{Z}^d} e^{ip\cdot x}\mathcal{C}(x), \ p\in [-\pi,\pi]^d. \end{aligned}$$

In $d \geq 3$,

$$\sup_{p\in [-\pi,\pi]^d} \hat{C}(p) < \infty.$$

is sufficient for the upper bound to hold.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3Illés Horváth Motivation Related models Diffusive bounds

Brascamp-Lieb-inequality

The following important consequence of the Brascamp–Lieb-inequality is used:

Lemma

Let $f:\mathbb{R} \to \mathbb{R}$ be smooth, $e \in \mathbb{Z}^d, |e| = 1$ fixed and denote

$$C(x) := \operatorname{Cov} \left(f(\omega(0) - \omega(e)), f(\omega(x) - \omega(x + e)) \right),$$

$$C'(x) := \operatorname{Cov} \left(f'(\omega(0) - \omega(e)), f'(\omega(x) - \omega(x + e)) \right).$$

$$m' := \operatorname{E} \left(f'(\omega(0) - \omega(e)) \right).$$

Then

$$\sup_{p\in [-\pi,\pi]^d} \hat{C}(p) \leq (m')^2 + d^{-1} \sup_{p\in [-\pi,\pi]^d} \hat{C}'(p).$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Brascamp-Lieb-inequality

The following important consequence of the Brascamp–Lieb-inequality is used:

Lemma

Let $f:\mathbb{R} \to \mathbb{R}$ be smooth, $e \in \mathbb{Z}^d, |e| = 1$ fixed and denote

$$C(x) := \operatorname{Cov} \left(f(\omega(0) - \omega(e)), f(\omega(x) - \omega(x + e)) \right),$$

$$C'(x) := \operatorname{Cov} \left(f'(\omega(0) - \omega(e)), f'(\omega(x) - \omega(x + e)) \right).$$

$$m' := \operatorname{E} \left(f'(\omega(0) - \omega(e)) \right).$$

Then

$$\sup_{p\in [-\pi,\pi]^d} \hat{C}(p) \leq (m')^2 + d^{-1} \sup_{p\in [-\pi,\pi]^d} \hat{C}'(p).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The proof for the diffusive upper bound is finished by induction on the degree of w(x).

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Kipnis-Varadhan theory

In the decomposition

$$X(t) = N(t) + M(t) + \int_0^t \varphi(\eta(s)) \mathrm{d}s,$$

N(t) and M(t) are stationary, ergodic martingales and the martingale CLT can be applied. CLT for the integral term has been originally investigated by Kipnis and Varadhan.

- 日本 本語 本 本 田 本 田 本 田 本

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Kipnis-Varadhan theory

In the decomposition

$$X(t) = N(t) + M(t) + \int_0^t \varphi(\eta(s)) \mathrm{d}s,$$

N(t) and M(t) are stationary, ergodic martingales and the martingale CLT can be applied. CLT for the integral term has been originally investigated by Kipnis and Varadhan.

In general form: $\eta(t)$ is a stationary and ergodic Markov process on the state space (Ω, π) . *G* is the infinitesimal generator of $\eta(t)$ acting on $\mathcal{L}^2(\Omega, \pi)$. $\varphi \in \mathcal{L}^2(\Omega, \pi)$ with $\int_{\Omega} \varphi \, \mathrm{d}\pi = 0$.

Question

Sufficient condition for the martingale approximation and central limit theorem for

$$Y_N(t) := rac{1}{\sqrt{N}} \int_0^{Nt} \varphi(\eta(s)) \, \mathrm{d}s.$$

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Gaussian Hilbert space - an example

Example

Consider $\Omega_{ex} := \mathbb{R}$ with $\pi_{ex}(dx) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. There is an orthogonal decomposition

$$L^2(\Omega_{ex}, \pi_{ex}) = \oplus_{n=0}^{\infty} \mathcal{H}_n^{ex}$$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

where \mathcal{H}_n^{ex} contains polynomials of degree n.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3Illés Horváth Motivation Related models Environment Main results Diffusive bounds Kipnis-Varadhan theory, sector conditions

Gaussian Hilbert space - an example

Example

Consider $\Omega_{ex} := \mathbb{R}$ with $\pi_{ex}(dx) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. There is an orthogonal decomposition

$$L^2(\Omega_{ex},\pi_{ex})=\oplus_{n=0}^\infty\mathcal{H}_n^{ex}$$

where \mathcal{H}_n^{ex} contains polynomials of degree n. These are the Hermite polynomials, which can be constructed via Gram – Schmidt orthogonalization.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$ Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Gaussian Hilbert space - an example

Example

Consider $\Omega_{ex} := \mathbb{R}$ with $\pi_{ex}(dx) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. There is an orthogonal decomposition

$$L^2(\Omega_{ex}, \pi_{ex}) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n^{ex}$$

where \mathcal{H}_n^{ex} contains polynomials of degree n. These are the Hermite polynomials, which can be constructed via Gram – Schmidt orthogonalization.

Similarly with infinitely many variables, the same procedure gives

 $L^2(\Omega,\pi)=\oplus_{n=0}^\infty\mathcal{H}_n$

where \mathcal{H}_n is generated by the Wick polynomials of form $: \omega(x_1) \dots \omega(x_n) :$ with $x_1, \dots, x_n \in \mathbb{R}^d$, i.e. polynomials $\omega(x_1) \dots \omega(x_n)$ orthogonalized.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Sufficient conditions

- C. Kipnis, S. R. S. Varadhan, 1986 (reversible)
- B. Tóth, 1986 (non-reversible, discrete time)
- S. V. S. Varadhan, 1996: (strong) sector condition

 $\|S^{-1/2}AS^{-1/2}\| < \infty.$

S. Sethuraman, S. R. S. Varadhan, H-T. Yau, 2000: graded/weak sector condition: L²(Ω, π) = ⊕_{n=0}[∞] H_n and

►
$$S = \sum_{n} S_{n,n}$$
 with $S_{n,n} : \mathcal{H}_n \to \mathcal{H}_n$ and
► $A = \sum_{n} A_{n,n+1} + A_{n,n-1}$ with $A_{n,n\pm 1} : \mathcal{H}_n \to \mathcal{H}_{n\pm 1}$
 $\left\| S_{n+1,n+1}^{-1/2} A_{n,n+1} S_{n,n}^{-1/2} \right\| \leq Cn^{\gamma}$

where $\gamma < 1$ or $\{\gamma = 1 \text{ and } C \text{ is small enough}\}$.

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in d > 3

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds

Modified graded sector condition Setup: $\mathcal{L}^2(\Omega, \pi) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$ and $\blacktriangleright S = \sum_{n,j} S_{n,n+j}$ with $S_{n,n+j} : \mathcal{H}_n \to \mathcal{H}_{n+j}$, $|j| \le 4$ even $\blacktriangleright A = \sum_n A_{n,n+1} + A_{n,n-1}$ with $A_{n,n\pm 1} : \mathcal{H}_n \to \mathcal{H}_{n\pm 1}$ Denote $D = \sum_n S_{n,n}$.

Lemma

► upper bound on f
►
$$0 \le D \le \gamma S$$

► $\left\|S_{n+j,n+j}^{-1/2}A_{n,n+j}S_{n,n}^{-1/2}\right\| \le c_2 n^{\beta}$ with $\beta < 1$ or $\beta = 1$, c_2
small
► $\left\|S_{n+j,n+j}^{-1/2}S_{n,n+j}S_{n,n}^{-1/2}\right\| \le c_3 n^{\beta'}$ with $\beta' < 2$ or $\beta' = 2$,
 c_3 small
► $\left\|S_{n+j,n+j}^{-1/2}S_{n,n+j}S_{n,n}^{-1/2}\right\| \le c_4 n^{\beta''}$ with $\beta'' < \infty$

The above conditions together are sufficient for the martingale approximation and the CLT.

true (myopic) self-avoiding walk in d > 3Illés Horváth Motivation Related models Environment generator. Main results Kipnis-Varadhan theory, sector conditions

Diffusive bounds

and central limit theorem for the

The end

Thank you for your attention!

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖…

Diffusive bounds and central limit theorem for the true (myopic) self-avoiding walk in $d \ge 3$

Illés Horváth

Motivation

Related models

Environment process, generator, stationary measure

Main results

Ergodicity, LLN

Diffusive bounds