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Myopic (or ‘true’) self-avoiding walk (TSAW)

D. Amit, G. Parisi, L. Peliti, 1983

X (t) continuous time nearest neighbour random walk on Zd

Local time (occupation time measure) with initialization:
l(t, x) := l(0, x) + |{s ∈ [0, t] : X (s) = x}|
Jump rates:

P
(
X (t + dt) = y

∣∣ past,X (t) = x
)

= 11{|y−x |=1}w(l(t, x)− l(t, y)) dt + o(dt)

where w : R→ [0,∞) increasing.

The walker is pushed by the discrete negative gradient of its
own local time to less visited areas.
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Similar models, earlier results and conjectures

Variations: edge/site repulsion, discrete/continuous time.

Dimension-dependent behaviour:

d = 1 X (t) ∼ t2/3 with difficult non-Gaussian scaling limit
I limit theorem for an edge-repulsion version of TSAW

(B. Tóth, 1995)
I construction of the limit process (B. Tóth, W. Werner,

1998)
I a site-repulsion version of TSAW (B. Tóth, B. Vető,

2009)

d = 2 X (t) ∼ t1/2(log t)ξ with Gaussian limit, ξ =?
I partial results (B. Valkó, 2009)

d ≥ 3 X (t) ∼ t1/2 with Gaussian limit
I limit theorem for a site-repulsion version of TSAW (I.

H., B. Tóth, B. Vető, 2010)
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Self-repelling Brownian polymer model

Continuous space variant: Self-repelling Brownian polymer
model
J. Norris, C. Rogers, D. Williams, 1987
R. Durrett, C. Rogers, 1992

X (t) diffusion process in Rd

occupation time measure with initialization:
l(t,A) := l(0,A) + |{s ∈ [0, t] : X (s) ∈ A}|

V : Rd → R+ approximate identity, e.g. V (x) = e−|x |
2

Evolution (smeared-out local times):

dX (t) = dB(t)− grad(V ∗ l(t, ·))(X (t)) dt

CLT for the SRBP in d ≥ 3 (I. H., B. Tóth, B. Vető, 2009)
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Environment seen from the position of the walker

X (t) random walk on Zd with jump rates

P
(
X (t + dt) = y

∣∣ past,X (t) = x
)

= 11{|y−x |=1}w(l(t, x)− l(t, y)) dt + o(dt)

where w : R→ [0,∞) and the local time is

l(t, x) := l(0, x) + |{s ∈ [0, t] : X (s) = x}|.

The environment seen by the walker:

η(t) =
(
η(t, x)

)
x∈Zd , η(t, x) := l(t,X (t) + x).

t 7→ η(t) is a Markov process on the state space

Ω := {ω =
(
ω(x)

)
x∈Zd : ω(x) ∈ R}
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Assumptions

(1) d ≥ 3.
(2) infu∈R w(u) = γ > 0.
(3) infu∈R r ′(u) = c1 > 0.

s and r denote the even, respectively, odd part of w :

s(u) :=
w(u) + w(−u)

2
− γ, r(u) :=

w(u)− w(−u)

2
,

(4) w is a polynomial.
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Infinitesimal generator, stationary measure
The infinitesimal generator of the process t 7→ η(t) is acting
as an operator on smooth cylinder functions from L2(Ω, π):

Gf (ω) = ∂0f (ω) +
∑

e∈Zd ,|e|=1

w(ω(0)− ω(e))
(
f (τeω)− f (ω)

)
,

where

∂0(ω) :=
∂f

∂ω(0)
(ω),

and

τz : Ω→ Ω, τzω(x) := ω(z + x),

is the group of spatial shifts, acting naturally on Ω.

The stationary measure is

dπ(ω) = Z−1 exp
{
− 1

2

∑
x,y∈Zd

| x−y |=1

R(ω(x)− ω(y))
}
dω,

where R(u) :=
∫ u
0 r(v)dv .
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Infinitesimal generator, stationary measure
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Main results

Theorem
η(t) is a stationary and ergodic Markov process on (Ω, π).

Corollary
For π-almost all initial profiles

X (t)/t → 0.

Theorem (I. H., B. Tóth, B. Vető, 2010)
Under the previous assumptions,

0 < γ ≤ inf
e∈Rd
| e |=1

lim
t→∞

t−1E
(
(e · X (t))2) ≤

≤ sup
e∈Rd
| e |=1

lim
t→∞

t−1E
(
(e · X (t))2) <∞.
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Main results

Theorem (I. H., B. Tóth, B. Vető, 2010)
If we also assume that r(u) is linear, the degree of s(u) is at
most 4 and the main coefficient small enough, then the
matrix of asymptotic covariances

σ2 = (σ2
kl )1≤k,l≤d , σ2

kl := lim
t→∞

t−1E (Xk(t)Xl (t))

exists and it is nondegenerate. The finite dimensional
distributions of the rescaled displacement process

XN(t) := N−1/2X (Nt),

converge to those of a d-dimensional Brownian motion with
covariance matrix σ2.

Remark
If r(u) is linear, the stationary measure is Gaussian.
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Self-adjoint and skew-self-adjoint parts of the
generator
Denote

S := −1
2

(G + G ∗), A :=
1
2

(G − G ∗),

the self-adjoint, respectively, skew-self-adjoint parts of the
infinitesimal generator.

Sf (ω) = −γ∆−
∑
e∈Zd
| e |=1

s(ω(0)− ω(e))
(
Te f (ω)− f (ω)

)
Af (ω) = ∂0f (ω) +

∑
e∈Zd
| e |=1

r(ω(0)− ω(e))
(
Te f (ω)− f (ω)

)
,

where

Tz f (ω) := f (τzω), ∆ :=
∑
e∈Zd
| e |=1

(Te − I ).
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Yaglom-reversibility, ergodicity

Stationarity follows from the so-called Yaglom-reversibility:

JSJ = S , JAJ = −A, JGJ = G ∗

where J is the unitary involution

Jf (ω) := f (−ω)

on H := L2(Ω, π).

Ergodicity follows from

S ≥ −γ∆

and ergodicity of the shifts on (Ω, π).
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Diffusive lower bound

Consider the following martingale+compensator
decomposition:

X (t) = N(t) + M(t) +

∫ t

0
ϕ(η(s))ds,

where N(t) is the martingale part due to the jump rates γ,
M(t) is the martingale part due to the jump rates (w − γ)
and ϕ : Ω 7→ Rd is the compensator (conditional velocity)
function:

ϕl (ω) = w(ω(0)− ω(el ))− w(ω(0)− ω(−el ))

Direct calculations show that N(t) is uncorrelated with the
other terms.
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Diffusive upper bound

The martingale terms scale diffusively, so the task is to prove
diffusive upper bound for the integral term:

lim
t→∞

t−1E
((∫ t

0
ϕ(η(s))ds

)2)
<∞.

From standard variational arguments (e.g.
Sethuraman –Varadhan –Yau, 2000),

lim
t→∞

t−1E
((∫ t

0
ϕ(η(s))ds

)2) ≤
≤ lim

t→∞
t−1E

((∫ t

0
ϕ(ξ(s))ds

)2)
,

where ξ(s) is the (reversible) process with generator S and
the same stationary distribution.
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Fourier-transform

The usual way to write this is∫
Ω
ϕ(ω)(S−1ϕ)(ω)dπ(ω) <∞.

Denote

C (x) := E (ϕ(ω)ϕ(τxω)) ,

Ĉ (p) :=
∑
x∈Zd

e ip·xC (x), p ∈ [−π, π]d .

In d ≥ 3,

sup
p∈[−π,π]d

Ĉ (p) <∞.

is sufficient for the upper bound to hold.
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Brascamp–Lieb-inequality

The following important consequence of the
Brascamp–Lieb-inequality is used:

Lemma
Let f : R→ R be smooth, e ∈ Zd , |e| = 1 fixed and denote

C (x) := Cov (f (ω(0)− ω(e)), f (ω(x)− ω(x + e))) ,

C ′(x) := Cov
(
f ′(ω(0)− ω(e)), f ′(ω(x)− ω(x + e))

)
.

m′ := E
(
f ′(ω(0)− ω(e))

)
.

Then

sup
p∈[−π,π]d

Ĉ (p) ≤ (m′)2 + d−1 sup
p∈[−π,π]d

Ĉ ′(p).

The proof for the diffusive upper bound is finished by
induction on the degree of w(x).
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Kipnis – Varadhan theory
In the decomposition

X (t) = N(t) + M(t) +

∫ t

0
ϕ(η(s))ds,

N(t) and M(t) are stationary, ergodic martingales and the
martingale CLT can be applied. CLT for the integral term
has been originally investigated by Kipnis and Varadhan.

In general form: η(t) is a stationary and ergodic Markov
process on the state space (Ω, π). G is the infinitesimal
generator of η(t) acting on L2(Ω, π). ϕ ∈ L2(Ω, π) with∫

Ω ϕ dπ = 0.

Question
Sufficient condition for the martingale approximation and
central limit theorem for

YN(t) :=
1√
N

∫ Nt

0
ϕ(η(s)) ds.
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Gaussian Hilbert space - an example

Example
Consider Ωex := R with πex(dx) := 1√

2π
e−x2/2dx.

There is an orthogonal decomposition

L2(Ωex , πex) = ⊕∞n=0Hex
n

where Hex
n contains polynomials of degree n.

These are the
Hermite polynomials, which can be constructed via
Gram–Schmidt orthogonalization.

Similarly with infinitely many variables, the same procedure
gives

L2(Ω, π) = ⊕∞n=0Hn

where Hn is generated by the Wick polynomials of form
: ω(x1) . . . ω(xn) : with x1, . . . , xn ∈ Rd , i.e. polynomials
ω(x1) . . . ω(xn) orthogonalized.
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Sufficient conditions

I C. Kipnis, S. R. S. Varadhan, 1986 (reversible)
I B. Tóth, 1986 (non-reversible, discrete time)
I S. V. S. Varadhan, 1996: (strong) sector condition

‖S−1/2AS−1/2‖ <∞.

I S. Sethuraman, S. R. S. Varadhan, H-T. Yau, 2000:
graded/weak sector condition: L2(Ω, π) = ⊕∞n=0Hn and

I S =
∑

n Sn,n with Sn,n : Hn → Hn and
I A =

∑
n An,n+1 + An,n−1 with An,n±1 : Hn → Hn±1∥∥∥S−1/2

n+1,n+1An,n+1S
−1/2
n,n

∥∥∥ ≤ Cnγ

where γ < 1 or {γ = 1 and C is small enough}.
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Modified graded sector condition
Setup: L2(Ω, π) = ⊕∞n=0Hn and

I S =
∑

n,j Sn,n+j with Sn,n+j : Hn → Hn+j , |j | ≤ 4 even
I A =

∑
n An,n+1 + An,n−1 with An,n±1 : Hn → Hn±1

Denote D =
∑

n Sn,n.

Lemma
I upper bound on f
I 0 ≤ D ≤ γS
I

∥∥∥S−1/2
n+j ,n+jAn,n+jS

−1/2
n,n

∥∥∥ ≤ c2nβ with β < 1 or β = 1, c2
small

I

∥∥∥S−1/2
n+j ,n+jSn,n+jS

−1/2
n,n

∥∥∥ ≤ c3nβ
′
with β′ < 2 or β′ = 2,

c3 small

I

∥∥∥S−1/2
n+j ,n+jSn,n+jS

−1/2
n,n

∥∥∥ ≤ c4nβ
′′
with β′′ <∞

The above conditions together are sufficient for the
martingale approximation and the CLT.
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The end

Thank you for your attention!
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