
Tenor Speci�c Pricing

Dilip B. Madan
Robert H. Smith School of Business

Advances in Mathematical Finance

Conference at Eurandom, Eindhoven

January 17 2011
Joint work with Wim Schoutens



Motivation

� Observing that pure discount curves are now based
on a variety of tenors giving rise to tenor speci�c
zero coupon bond prices, the question is raised on
how to construct tenor speci�c prices for all �nancial
contracts.

� Noting that in conic �nance one has the law of two
prices, bid and ask, that are nonlinear functions of
the random variables being priced, dynamically con-
sistent sequences of such prices are related to the
theory of nonlinear expectations.

� The latter theory is closely connected to solutions of
backward stochastic di¤erence equations.

� The drivers for these stochastic di¤erence equations
are modeled using concave distortions implementing
risk charges for local tenor speci�c risks.



� It is observed that tenor speci�c prices given by the
mid quotes of bid and ask converge to the risk neutral
price as the tenor is decreased and liquidity increased.

� The greater liquidity of lower tenors may lead to an
increase or decrease in prices depending on whether
the lower liquidity of a higher tenor has a mid quote
above or below the risk neutral value.

� Generally for contracts with a large upside and a
bounded downside the prices fall with liquidity while
the opposite is the case for contracts subject to a
large downside and a bounded upside.



Tenor Speci�c Yield Curves

� Most banks post the crisis of 2008 construct pure
discount curves using as base instruments �xed in-
come contracts like certi�cates of deposit, forward
rate agreements, futures contracts, and swaps to
build discount curves at a variety of tenors, with the
most popular ones being the OIS curve for the daily
tenor, followed by tenors of 1; 3; 6 and 12 months.

� By way of an example we present in Figure (1) the
gap in basis points between the pure discount price
of maturity t on a tenor above OIS and the OIS
price on December 15 2010. The price gap is almost
200 basis points near a ten year maturity.
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Figure 1: Zero coupon bond prices at tenors of one, three,
six and twelve months less the OIS price in basis points.
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Figure 2: Forward Rate spreads at various tenors over
OIS forward rates.

� From this data one may also construct the spread
between forward rates on the higher tenors and the
OIS forward rate. Figure (2) presents a graph of
these spreads at various maturities. The spread in
the forward rates reach up to 70 basis points.



� We have to ask ourselves what these prices are and
what is their basis.

� A possibility is that the di¤erences are credit related,
but the instruments employed are quite varied with
multiple counterparties and it is unclear that the bi-
ases built in are purely credit related.

� For example, Eberlein, Madan and Schoutens (2011)
show using a joint model of credit and liquidity that
the Lehman default was a liquidity event for the re-
maining banks and not a credit issue.

� Certainly lower tenors represent a greater liquidity so
might the di¤erence be to some extent due to this
enhanced liquidity.

� How does liquidity expressed via a lower trading tenor
theoretically a¤ect prices?



Theoretical Tenor Speci�c
Pricing

� We develop the theory for tenor speci�c pricing in
general.

� To focus attention we begin with the simplest secu-
rity of the pure discount bond.

� All economic agents must trade with the market and
in line with the principles of conic �nance the market
serves as the passive counterparty for all �nancial
transactions.

� The market is aware of a single risk neutral instanta-
neous spot rate process r = (r(t); t � 0) at which
funds may be transfered by the market through time.

� Suppose for simplicity that the underlying process for
r is a one dimensional Markov process.



� Consider in this context the desire by an economic
agent to buy from the market a unit face pure dis-
count bond of unit maturity.

� If the market �xes the ask price at a; the market
holds the random present value cash �ow of

X(0; 1) = a� e�
R 1
0 r(u)du:

� The economic agent could hold the bond for unit
time and then collect the unit face value.

� If the market prices this contract to acceptability us-
ing a convex set of test measures M then the ask
price is given by

a = sup
Q2M

EQ
�
e�
R 1
0 r(u)du

�
while the bid price is

b = inf
Q2M

EQ
�
e�
R 1
0 r(u)du

�
;



and the mid quote or the reference two way price is
the average of the bid and ask prices.



� Suppose now the economic agent wishes to have
from the only market he or she must trade with, the
opportunity to unwind this position at some earlier
date and he or she wishes to see the terms at which
this unwind my be possible.

� Essentially the economic agent asks the market for
a schedule of bid and ask prices as functions of the
prevailing spot rate at a frequency of h = 1=N: For
N = 4 we have a quarterly schedule while N = 12

yields a monthly schedule.

� The market then has to �rst determine the bid and
ask prices at time 1 � h: At this time the present
value of the risk Xa; Xb for an ask respectively bid
price is

Xa(1� h; 1) = a� e�
R 1
1�h r(u)du

Xb(1� h; 1) = e�
R 1
1�h r(u)du � b



� If the market uses the same cone of acceptability
then these ask and bid prices are

a1�h(r(1� h)) = sup
Q2M

EQ
�
e�
R 1
1�h r(u)du

�
b1�h(r(1� h)) = inf

Q2M
EQ

�
e�
R 1
1�h r(u)du

�
:

� In principle this schedule may be computed.



Rolling back one more
period

� We now consider the determination of the schedule
at the next time step of 1� 2h:

� Now the market is ready to sell for a(1�h) at time
1�h and we ask what price is the market willing to
sell for at time 1� 2h:

� If it sells for a at time 1 � 2h we have the present
value cash �ow at time 1 � h of earning the inter-
est and buying back at 1 � h for the ask price of
a1�h(r(1� h)):

Xa(1�2h; 1�h) = a�a1�h(r(1�h))e
�
R 1�h
1�2h r(u)du

� The corresponding bid cash �ow is

Xb(1�2h; 1�h) = b1�h(r(1�h))e
�
R 1�h
1�2h r(u)du�b



� It follows from making these risks acceptable that

a1�2h(r(1� 2h)) = sup
Q2M

EQ

24 a1�h(r(1� h))�
e�
R 1�h
1�2h r(u)du

35
b1�2h(r(1� 2h)) = inf

Q2M
EQ

24 b1�h(r(1� h))�
e�
R 1�h
1�2h r(u)du

35

� We thus get the ask and bid recursions on tenor h
of

ah(t� h) = sup
Q2M

�
EQ

�
e�
R t
t�h r(u)duah(t)

��
bh(t� h) = inf

Q2M

�
EQ

�
e�
R t
t�h r(u)dubh(t)

��

� The tenor speci�c discount curve is then given by
the time zero mid quotes computed on each tenor h
as

mh(T ) =
ah(0) + bh(0)

2
:



� The spreads between di¤erent tenors arise in these
computations from liquidity considerations embed-
ded in the cones of acceptable risks.

� They are not credit related as we do not have any
defaults but just a reluctance to take exposures.

� Observe that if we go back to the law of one price
with a base risk neutral measure Q0 we may rewrite
the recursion as

bh(t� h) = EQ
0
�
e�
R t
t�h r(u)dubh(t)

�

+ inf
Q2Mh

0B@EQ
264 e�

R t
t�h r(u)dubh(t)

�EQ0
�
e�
R t
t�h r(u)dubh(t)

�
375
1CA

where we have the one step ahead expectation plus a
risk charge based on the deviation. The risk charge
is for exposure to deviations and could in principle
be the same for two di¤erent tenors.



� However, the charge is for a risk exposure over an
interval of length h and should be levied as a rate per
unit time with the charge for h units of time being
proportional to h: Hence the recursion employed for
the tenor h is

bh(t� h) = EQ
0
�
e�
R t
t�h r(u)dubh(t)

�

+h inf
Q2M

0B@EQ
264 e�

R t
t�h r(u)dubh(t)

�EQ0
�
e�
R t
t�h r(u)dubh(t)

�
375
1CA

ah(t� h) = EQ
0
�
e�
R t
t�h r(u)duah(t)

�

+h sup
Q2M

0B@EQ
264 e�

R t
t�h r(u)duah(t)

�EQ0
�
e�
R t
t�h r(u)duah(t)

�
375
1CA

� The resulting bid and ask price sequences are dynam-
ically consistent nonlinear expectations operators as-
sociated with the solution of backward stochastic dif-
ference equations.



� We have presented them here without reference to
this underlying framework.



Connections to NonLinear
Expectations

� To establish this connection we �rst brie�y review
these concepts and the connection between them as
they have been established in the literature.

� In the context of a discrete time �nite state Markov
chain with states ei identi�ed with the unit vec-
tors of RM for some large integer M; Cohen and
Elliott (2010) have de�ned dynamically consistent
translation invariant nonlinear expectation operators
E(:jFt): The operators are de�ned on the family of
subsets

n
Qt � L2(FT )

o
:

� For completeness we recall here this de�nition of an
Ft�consistent nonlinear expectation forfQtg : This
Ft�consistent nonlinear expectation forfQtg is a
system of operators

E(:jFt) : L2(FT )! L2 (Ft) ; 0 � t � T
satisfying the following properties:



� 1. For Q;Q0 2 Qt; if Q � Q0 P� a:s: componen-
twise, then

E(QjFt) � E(Q0jFt)

P�a:s: componentwise, with for each i;

eiE(QjFt) = eiE(Q0jFt)

only if eiQ = eiQ
0 P�a:s:

� 2. E(QjFt) = Q P�a:s: for any Ft�measurable
Q:

� 3. E(E(QjFt)jFs) = E(QjFs) P�a:s: for any s �
t

� 4. For any A 2 Ft; 1AE(QjFt) = E(1AQjFt)
P�a:s:



� Furthermore the system of operators is dynamically
translation invariant if for any Q 2 L2 (FT ) and any
q 2 L2 (Ft) ;

E(Q+ qjFt) = E(QjFt) + q:



Connection with BSDE

� Such dynamically consistent translation invariant non-
linear expectations may be constructed from solu-
tions of Backward Stochastic Di¤erence Equations.

� These are equations to be solved simultaneously for
processes Y; Z where Yt is the nonlinear expectation
and the pair (Y; Z) satisfy

Yt�
X

t�u<T
F (!; u; Yu; Zu)+

X
t�u<T

ZuMu+1 = Q

for a suitably chosen adapted map F : 
�f0; � � � ; Tg�
RK �RK�N ! RK called the driver and for Q an
RK valued FT measurable terminal random vari-
able. We shall work in this paper generally with the
case K = 1:

� For all t; (Yt; Zt) are Ft measurable.



� Furthermore for a translation invariant nonlinear ex-
pectation the driver F must be independent of Y
and must satisfy the normalisation condition F (!; t; Yt; 0) =
0:

� The drivers of the backward stochastic di¤erence
equations are the risk charges and for our ask and bid
price sequences at tenor h we have drivers F a; F b

where

F a(!; u; Yu; Zu) = h sup
Q2M

EQ [ZuMu+1]

F b(!; u; Yu; Zu) = h inf
Q2M

EQ [ZuMu+1] ;

and the drivers are independent of Y:

� The process Zt represents the residual risk in terms
of a set of spanning martingale di¤erences Mu+1

and in our applications we solve for the nonlinear
expectations Yt without in general identifying either
Zt or the set of spanning martingale di¤erences.



� We de�ne risk charges directly for the risk de�ned
for example as the zero mean random variable

e�
R t
t�h r(u)duah(t)� EQ

0
�
e�
R t
t�h r(u)duah(t)

�
:

� Leaving aside pure discount bonds we may consider
for example a one year call option written on a for-
ward or futures price S(t) with zero risk neutral drift,
unit maturity, strike K and payo¤

(S(1)�K)+:

Dynamically consistent forward bid and ask price se-
quences on the tenor h may be constructed as non-
linear expectations starting with

a(1) = b(1) = (S(1)�K)+:



� Thereafter we apply the recursions

at�h(S(t� h)) = EQ
0
[at(S(t))]

+h sup
Q2M

 
EQ

"
at(S(t))

�EQ0 [at(S(t))]

#!

bt�h(S(t� h)) = EQ
0
[bt(S(t))]

+h inf
Q2M

 
EQ

"
bt(S(t))

�EQ0 [bt(S(t))]

#!

� Similar recursions apply to put options and other
functions of the terminal stock price.



Path Dependent Claims

� For path dependent claims of an underlying Markov
process with payo¤ on tenor h of

F ((S(jh) ; 0 � j � J)) = V aJ = V
b
J

� We determine the ask and bid value of the remain-
ing uncertainty V aj (S(jh)); V

b(S(jh)) by the re-
cursions

V aj (S(jh)) = E
Q0

264 F (S(kh) ; 0 � k � j + 1)�F (S(kh) ; 0 � k � j)
+V aj+1(S((j + 1)h))

375

+h sup
Q2M

EQ

2666666664

F (S(kh) ; 0 � k � j + 1)
�F (S(kh) ; 0 � k � j)
+V aj+1(S((j + 1)h))

�EQ0
264 F (S(kh) ; 0 � k � j + 1)�F (S(kh) ; 0 � k � j)

+V aj+1(S((j + 1)h))

375

3777777775



� The ask value of the claim is then

F (S(kh) ; 0 � k � j) + V aj (S(jh)):

� Similarly for the bid we have

V bj (S(jh)) = E
Q0

264 F (S(kh) ; 0 � k � j + 1)�F (S(kh) ; 0 � k � j)
+V bj+1(S((j + 1)h))

375

+h inf
Q2M

EQ

26666666664

F (S(kh) ; 0 � k � j + 1)
�F (S(kh) ; 0 � k � j)
+V bj+1(S((j + 1)h))

�EQ0
264 F (S(kh) ; 0 � k � j + 1)�F (S(kh) ; 0 � k � j)

+V bj+1(S((j + 1)h))

375

37777777775

and the bid value of the claim is

F (S(kh) ; 0 � k � j) + V bj (S(jh)):



� Tenor speci�c values may be constructed for a vast
array of �nancial claims using the procedures devel-
oped for nonlinear expectations after the selection of
an appropriate driver.

� The lower the tenor or the greater the frequency of
quotations the more the liquidity that is being o¤ered
to economic agents.

� One might enquire into the nature of the limiting
price associated with various drivers. These inter-
esting questions are left for a considerable future re-
search e¤ort.

� For the moment we investigate the resulting tenor
speci�c prices for bonds, stocks and options on stocks
in a variety of contexts for a speci�c set of drivers
based on distortions.



Drivers for nonlinear
expectations based on

distortions

� The driver for a translation invariant nonlinear ex-
pectation is basically a positive risk charge for the
ask price and a positive risk shave for a bid price ap-
plied to a zero mean risk exposure to be held over
an interim.

� We are then given as input the risk exposure ideally
spanned by some martingale di¤erences as ZuMu+1

or alternatively a zero mean random variable X with
a distribution function F (x):

� Cherny and Madan (2010) have constructed in the
context of a static model law invariant bid and ask
prices based on concave distortions.



� The bid and prices for a local exposure are then
de�ned in terms of a concave distribution function
	(u) de�ned on the unit interval as

b =
Z 1
�1

xd	(F (x))

a = �
Z 1
�1

xd	(1� F (�x)) :

� It is shown in Cherny and Madan (2010) that the
set M of test measures seen as measure changes
on the unit interval applied to G(u) = F�1(u) are
all densities Z(u) with respect to Lebesgue measure
for which the antiderivative H 0 = Z is distortion
bounded, or H � 	:

� We consider in the rest of the paper drivers based
on the distortion minmaxvar:



� In this case

F b(ZuMu+1) =
Z 1
�1

xd	(�(x))

F a (ZuMu+1) = �
Z 1
�1

xd	 (1��(�x))

�(x) = Pr (ZuMu+1 � x) :

� The distortion 	(u) is given by

	(u) = 1�
�
1� u

1
1+

�1+
:



� Importantly it was shown in Carr, Madan and Vicente
Alvarez (2010) that for such distortions in general
that the mid quote lies above the risk neutral ex-
pectation if a claim has large exposures at quantiles
above the median and low exposures below the me-
dian.

� The opposite is the case for large exposures at the
lower quantiles and low ones above.

� The quantile exposure is measured by the sensitivity
or derivative of the inverse of the distribution func-
tion.



Tenor Speci�c Discount
Curves for the CIR spot

rate model

� The construction of tenor speci�c discount curves
require access to the probability law of random vari-
ables of the form

Xa(t; t+ h) = e�
R t+h
t r(u)duat+h(r(t+ h)):

� Hence one needs access to the joint law of the for-
ward spot rate and the integral over the interim.

� This is available for the Cox, Ingersoll, Ross spot rate
process de�ned by the stochastic di¤erential equa-
tion

dr = �(� � r)dt+ �
p
rdW

where � is the rate of mean reversion, � is the long
term equilibrium interest rate and � is the spot rate
volatility parameter.



� The Laplace transform of the forward spot rate given
the current rate is available in closed form and an ap-
plication of an inverse Laplace transform along the
lines of Abate and Whitt gives us access to the dis-
tribution function. The forward spot rate may then
be simulated by the inverse uniform method.

� The Laplace transform of the integral given the initial
spot rate and the �nal spot rate is also available in
closed form (Pitman and Yor (1982)) and once again
an inverse Laplace transform allows us to draw from
the density of the integral given the rates at the two
ends.

� In this way we may simulate readings onXa(t; t+h)
andXb(t; t+h):Working backwards from a one year
maturity for the �rst step we just need the law of the
integral.



� Thereafter we �rst simulate r(t+ h) we then inter-
polate from stored values of bid and ask prices at the
later time step the value for at+h(r(t+h)); bt+h(r(t+
h)): Then we draw from the distribution of the in-
tegral given the rates at the two ends to do the dis-
counting and construct a single reading on Xa or
Xb:

� We are then in a position to perform the recursion
at di¤erent tenors back to time zero.



Estimating CIR

� For a sample of parameter values to work with we
employ the joint characteristic function for the rate
and its integral

�r(u; v) = E
�
exp

�
iur(t) + iv

Z t
0
r(s)ds

��
and determine the risk neutral pure discount bond
prices as

P (0; t) = �r(0; i):

� This model for bond prices was to the OIS discount
curve for data on December 15 2010.

� The estimated parameters were

� = 0:3712

� = 0:0477

� = 0:0599

r0 = 0:00004:
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Figure 3: Actual and CIR model predicted OIS discount
bond prices for maturities up to 60 years.

� A graph of the actual and �tted bond price curves
are presented in Figure (3)



� The recursions for bid and ask prices were performed
using the minmaxvar distortion at a stress level of
0:75; for all the local risk charges.

� Figure (4) presents discount �ve year bond prices at
time 0 for 3; 6 and 12 month tenors as a function of
the initial spot rate that we let vary to levels reached
at the �rst time point of 3; 6 and 12 months.

� An increase in the price of pure discount bonds asso-
ciated with the shorter tenor is observed in the model
in line with market data for such tenor speci�c dis-
count curves.

� The theory for tenor speci�c pricing presented in this
paper is capable of generating tenor speci�c discount
curves of the form observed in markets post the crisis
of 2008.
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Tenor Speci�c Forward
Stock Prices

� Consider tenor speci�c pricing for an underlying risk
neutral process that is forward price martingale.

� Our �rst example is that of geometric Brownian mo-
tion. The risk neutral process here is

S(t) = S(0) exp

 
�W (t)� �

2t

2

!
for a Brownian motion W (t) and we take the initial
stock price S(0) to be 100:

� Economic agents trading with the market do not
have access to this risk neutral process that repre-
sents the underlying risk priced by the market.



� Consider �rst the forward prices for delivery of stock
in one year for a variety of volatilities and quoting
tenors.

� We take for the two way price of the market, the mid
quote constructed using the distortionminmaxvar
at the stress level 0:75:

� Table 1 presents the resulting midquotes.

TABLE 1
Mid Quotes under GBM

Volatility
Tenor .2 .3 .4
12m 101.8420 103.7851 106.9213
6m 101.1343 102.4458 104.5791
3m 100.4782 101.4591 102.5282
1m 100.1019 100.0572 100.2699



� It is clear that for the geometric Brownian motion
model the single time step mid quote is above the
risk neutral value and furthermore as one enhances
liquidity by decreasing the tenor the prices fall to-
wards the risk neutral value.

� The positive skewness of the lognormal distribution
lifts the supremum and results in a mid quote above
the risk neutral value.

� This e¤ect is dampened for the shorter tenors.

� Actual risk neutral stock price distributions have a
considerable left skewness as re�ected in the implied
volatility smiles. It is therefore instructive to investi-
gate mid quotes in tenor speci�c pricing for models
that �t the smile. For this we turn next to the vari-
ance gamma model.



� For a set of stylized parameter values we �x � the
volatility of the Brownian motion at :2 as a control
on volatility.

� We then take some moderate and high values for
skewness and excess kurtosis via setting � at�:3;�:6
and setting � at :5; 1:5:

� For these four settings we report in Table 2 on the
midquotes for a quarterly tenor on a one year forward
quote.

TABLE 2
Mid Quotes under VG
� � � midquote
:2 :5 �:3 97:7905
:2 :5 �:6 97:0130
:2 1:5 �:3 96:0998
:2 1:5 �:6 95:2685

� It may be observed that in all these cases the mid
quote is below the risk neutral value.



� Preliminary numerical investigations con�rm that as
we increase liquidity we do get a convergence to the
risk neutral value and hence it appears that an in-
crease in liquidity raises the two way price quote on
stocks for two price markets.



Tenor Speci�c Option
Prices

� We now report on the mid quote and the risk neu-
tral value of out of the money options and loan type
contracts for an underlying geometric Brownian mo-
tion with a 30% volatility and the four V G processes
considered in section 6.

� The out of the money options are a put struck at 80
and a call struck at 120 with an annual maturity.

� The loan or risky debt type contract pays the mini-
mum of 1:25 times the stock price and a 100 dollars.
Loss is then taken for stock prices below 80:

� In each case the risk neutral value and the mid quote
are reported at each of two tenors, quarterly and
monthly.



� The results are in tables 3 and 4, one for the quarterly
tenor and the other for the monthly tenor.

� The loan mid quotes are below risk neutral values
and rise as the tenor comes down.

� The opposite is the case with out-of-the-money op-
tions re�ecting the expected convergence to risk neu-
tral values.

TABLE 3
Tenor Speci�c Options, Tenor 3m

Risky Debt 80 Put 120 Call
Model RNV MQ RNV MQ RNV MQ
GBM 95:78 94:18 3:40 4:68 5:14 7:77
VG1 95:88 93:20 3:33 5:48 2:44 3:48
VG2 91:20 87:46 7:02 10:01 6:95 7:92
VG3 93:42 89:62 5:31 8:35 2:46 3:20
VG4 87:30 82:39 10:29 14:22 8:93 9:08



TABLE 4
Tenor Speci�c Options, Tenor 1m

Risky Debt 80 Put 120 Call
Model RNV MQ RNV MQ RNV MQ
GBM 95:80 95:19 3:37 3:86 4:88 5:83
VG1 96:02 94:44 3:19 4:45 2:42 2:75
VG2 91:40 88:94 6:84 8:81 6:88 6:71
VG3 93:64 91:31 5:11 6:98 2:43 2:63
VG4 87:39 84:07 10:03 12:68 8:87 8:31



Conclusion

� Fixed income markets now construct pure discount
curves based on a variety of tenors for rolling over
funds between time points.

� This gives rise to tenor speci�c prices for zero coupon
bonds and raises the issue of the possibility of tenor
speci�c pricing for all �nancial contracts.

� It is recognized that the law of two prices, bid and
ask, as constructed in theory of conic �nance set
out in Cherny and Madan (2010), yields prices that
are nonlinear functions of the random variables being
priced.

� Dynamically consistent sequences of such prices are
then related to the theory of nonlinear expectations
and its connections with solutions to backward sto-
chastic di¤erence equations.



� The drivers for the stochastic di¤erence equations
are related to concave distortions that implement risk
charges for the local risk speci�c to the tenor.

� This theory is applied at a variety of tenors to gener-
ate such tenor speci�c bid and ask prices for discount
bonds, stocks, and options on stocks.

� It is observed that such tenor speci�c prices given by
the mid quotes of bid and ask converge to the risk
neutral price as the tenor is decreased.

� The greater liquidity of lower tenors may lead to an
increase or decrease in prices depending on whether
the lower liquidity of a higher tenor has a mid quote
above or below the risk neutral value.

� Generally for contracts with a large upside and a
bounded downside the prices fall with liquidity while
the opposite is the case for contracts subject to a
large downside and a bounded upside.


