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The problem

Counterparty Risk

This is the exposure of a bank to a counterparty in some contract
should the counterparty default at some specific time in the future.

Note: Exposure = max(value, 0) [No exposure if we owe them!]

‘Exposure’ can be quantified using various risk-measures:

Quantile of loss distribution (VAR)

Expected shortfall (ES)

Expected Positive Exposure (EPE)

These are all functions of the post-default distribution of contract
value.

Counterparty Valuation Adjustment (CVA)

the ‘fair’ amount to be charged for counterparty risk
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The problem

Right-way/Wrong-way risk

To quantify the counterparty risk the connection between exposure
and the assumed counterparty default at t needs to be taken into
account, i.e. the conditional distribution of the value of the contract
given that the default event occurs at time t.

Right-way risk: Negative correlation between default and exposure.

Wrong-way risk: Positive correlation.
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Problem

The problem of quantification/measurement of counterparty risk is
split into two steps:

Develop a dynamical credit risk model for the timing of default
of the counterparty that matches exactly given CDS quotes.

Develop a joint asset price-credit risk model
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Dynamical credit index model

Following the approach of John Hull we model the default time
τY of the counterparty by the first passage time below zero

τY0 = inf{t ≥ 0 : Yt < 0}

of a credit-index process Y .

Given a (risk-neutral) default time distribution H and a family Y
of stochastic processes, the model for the credit index process
Y ∈ Y should be such that

P (τY0 ≤ t) = H(t)

for all t ≥ 0.
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A drifted BM model

Given a distribution function H on R+ ∪ {∞} with density function
h, can we find a distribution function F on R+ such that τX0 has
distribution H where

Xt = A+ νt+Bt

where A ∼ F and A is independent of the Brownian motionBt?
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A drifted BM model

Given a distribution function H on R+ ∪ {∞} with density function
h, can we find a distribution function F on R+ such that τX0 has
distribution H where

Xt = A+ νt+Bt

where A ∼ F and A is independent of the Brownian motion Bt?

Answer: Necessary condition is that there exists an distribution
function F s.t.

LH(ψ(θ)) = LF (θ) (∗)

where

ψ(θ) =
1

2
θ2 − νθ

The equation (∗) does not always admit a solution as the left-hand
side may not be a Laplace transform of a probability distribution.
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A drifted BM model

Let a > 0 be fixed and

Xt = a+ νt+Bt.

The moment generating function is given by

Ea[e
−qτX0 ] = e−aΦ(q), q > 0,

where Φ(q) = ν +
√
ν2 + 2q.

The corresponding distribution function is Ka with density

ka(t) =
1
√
2π
at−3/2e−(a−νt)

2/2t.

It is also known that:

Pa
(
τX0 <∞

)
= exp ((2νa)−) ,
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A drifted BM model

We are looking for F that satisfies

H(t) = P[τX0 ≤ t] =
∫ ∞

0
Pa[τ

X
0 ≤ t]F (da).

Taking the Laplace-Stieltjes transform in t gives

LH(q) =
∫ ∞

0
Ea[e

−qτX0 ]F (da) =

∫ ∞

0
e−aΦ(q)F (da).

We know Φ has inverse q = ψ(θ) = 1
2θ
2 − νθ so if F exists it must

satisfy the stated relation (∗).
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Key example: exponential distribution

Here the left-hand side of (∗) is

λ

ψ(θ) + λ
=

2λ

θ+ − θ−

(
1

θ − θ+
−

1

θ − θ−

)

.

This is the LT of a distribution on R+ if and only if ψ(θ) > −λ for all
θ ≥ 0 and ν2 − λ ≥ 0. We obtain the following solutions for the
density fλ(x) = (d/dx)F (x).

ν < −
√
2λ : fλ(x) =

2λ
θ+−θ−

(eθ+x − eθ−x).

ν = −
√
2λ : fλ(x) = 2λxe

−x
√
2λ.

Other examples that are explicitly solvable are

mixtures of exponentials and

convolutions of exponentials
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A linear Gaussian process

Take a deterministic non-negative function σ(t) and a BM B̃t and
define the process Yt by

dYt = νσ
2(t)dt+ σ(t)dB̃t, Y0 = A. (1)

Theorem. Let λ > 0 and A ∼ fλ. Let H be a distribution on R+ with
density h and hazard function

γ(t) =
h(t)

∫∞
t h(s)ds

=
h(t)

H(t)
.

Define Yt by (1) with

σ(t) =

√
γ(t)

λ
.

Then τY0 ∼ H where τY0 = inf{t : Yt ≤ 0}.
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A linear Gaussian process

The process Yt is equal in law to X(It) where X(t) = A+ νt+Bt
as above and

It =

∫ t

0
σ2(s)ds.

Since h/H = −(d/dt) logH we have

It = −
1

λ
logH(t).

Since Yt = X(It) and τX0 has exponential distribution, we see that

P[τY0 > t] = P[τX0 > It] = e
−λIt = elogH(t) = H(t).
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A linear Gaussian process

Assume again

dYt = νσ
2(t)dt+ σ(t)dB̃t, Y0 = A. (2)

but now let A be a fixed positive constant. In that case there also
exists a solution:

Theorem. Let ν < 0 and A = a > 0. Let H be a cdf on R+ with
density h, with H(0) = 0 and set s0 := inf{s : H(s) > 0}. For s ≥ 0
define

σ2(s) =






0 s ≤ s0
h(s)

ka
(
(K−1a (H(s))

) s > s0

Then it holds that Pa(τ0 ≤ t) = H(t), t ∈ R+.
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A linear Gaussian process

The proof is similar. Note that now

It =

∫ t

s0

σ2(s)ds =

∫ t

0

1

ka
(
(K−1a (H(s))

)h(s)ds

= K−1a (H(t))

where ka denotes the Brownian first passage density to zero
starting from a.
Since the processes Yt and X(It) are equal in law and τX0 follows
distribution Ka under Pa, we see that

Pa[τ
Y
0 ≤ t] = Pa[τ

X
0 ≤ It] = Ka(K

−1
a (H(t))) = H(t).
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Calibrating Risk-neutral default-time distributions

For CDS contracts written on an underlying name ABC, we assume
that premium payments are made at times ti and the available
maturities are Tj = tk(j), j = 1, . . . , n. For contract j there is an
upfront premium π0j and a running premium rate π1j (with accrual
factors δi). The recovery rate is R ∈ (0, 1). The ‘fair premium’
(π0j , π

1
j ) then satisfies

π0j + π
1
j

k(j)−1∑

i=0

δip(0, ti)H(ti) = (1−R)
k(j)∑

i=1

p(0, ti)(H(ti−1)−H(ti)).

We take the default distribution to have piecewise-constant hazard
rate, i.e.

H(t) = exp

(

−
∫ t

0
γ(s)ds

)

where γ(s) = γi for Ti ≤ s < Ti+1 (with T0 = 0.) – p. 16/32



Calibrating Risk-neutral default-time distributions

t1 T1t2 T3T2

γ
0

γ
2

γ
1

We then back out γ0, γ1, . . . given the market data
(π01, π

1
1), (π

0
2, π

1
2), . . .

The model Y that probability of hitting 0 exactly given by H is then
given by

dYt = νσ
2(t)dt+ σ(t)dB̃t, Y0 = A,

where σ2(t) = γ(t)/λ, i.e. Yt has piecewise-constant coefficients.
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Calibrating Risk-neutral default-time distributions

Example: Southwest Airlines.

We have 12 CDS quote for maturities ranging from 6m to 16y.
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Models conditioned on default time

To evaluate counterparty risk, we condition on default at a specific
time s > 0. For path-dependent contracts we need the conditional
law of the default risk process Yt conditioned on the event (τY0 = s).

Yt

τ0 = s

A

t
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Models conditioned on default time: Bessel bridge

The law of Xt = a+ νt+Bt conditioned to hit 0 for the first time at
τX0 = s is equal to that of the 3-dimensional Bessel Bridge from
a→ 0 on [0, s]. We apply the Doob h-transform with h given by

h(t, x) = Px[τ
X
0 ∈ [s− dt, s]]/dt = kx(s− t).

This means applying a change of measure
dQ/dP|Ft = h(t,Xt)/h(0, a). By Girsanov, the change of drift is
(with h′ = ∂h/∂x)

h′

h
= (log h)′ =

(

log x−
1

2(s− t)
(x+ ν(s− t))2

)′
=
1

x
−

x

s− t
− ν.

Thus under Q, Xt satisfies the SDE

dXt =

(
1

Xt
−

Xt

s− t

)

dt+ dBt, t ∈ [0, s) (3)
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Models conditioned on default time: Bessel bridge

The Brownian bridge Zt from Z0 = a to Z1 = 0 satisfies

dZt = −
Zt

1− t
dt+ dWt, Z0 = a.

It can also be represented as

Zt =
s− t
s

a+Bt −
t

s
Bs

where Bt is ordinary Brownian motion.

A result of Bertoin and Pitman states that

X = |L
√
(a(s− t) +X1,t)2 +X22,t +X

2
3,t

where Xi, i = 1, 2, 3 are independent 0→ 0 Brownian Bridges.

This provides us with an efficient simulation method.
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Models conditioned on default: general case

Recall that τY0 is the first hitting time of 0 by the process

dYt = νσ
2(t)dt+ σ(t)dBt, Y0 = A.

Proposition. Conditioned on τY0 = s > 0, the process Yt satisfies

dYt =

(
1

Yt
−

Yt∫ s
t σ
2(u)du

)

σ2(t)dt+ σ(t)dB̃t, t ∈ (0, s)

Y0 = A,

where B̃ is Brownian motion and A ∼ F is independent of B̃.

The (∙ ∙ ∙ ) term can alternatively be expressed as

(
1

Yt
−

λYt

log(H(t)/H(s))

)

.
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Case study: Oil swaps and counterparty risk

Oil swaps in the Schwartz & Smith model
In the Schwartz & Smith model the evolution of the risk-adjusted oil
spot price St is modelled by the SDE

dSt

St
= (rt − δt)dt+ σdWt, (4)

where rt is the risk-free interest rate, σ a volatility parameter, Wt a
Wiener process, and δt is a stochastic convenience yield given by

dδt = (θ(t)− μδt)dt+ βdZt, (5)

where θ(∙) is the time-dependent reversion level, μ > 0 is the rate of
mean reversion, β a volatility parameter, and Z a Wiener process
that is correlated with W , with 〈W,Z〉t = ρWZt.
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Case study: Oil swaps and counterparty risk

The value G(t, T ) at time t ≤ T of a contract for the delivery of one
unit of oil at T is equal to

G(t, T ) = E
[
e−
∫
T

t
r(s)dsST

∣
∣
∣Ft
]
,

where Ft denote the standard filtration generated by (Ss, s ≤ t) and
(rs, s ≤ t).

As a consequence of the ‘affine’ nature of the Schwarz-Smith
model,

G(t, T ) = St exp(A(t, T )− δtBμ(t, T )) =: Gt,T (St, δt),

where

Bμ(u, t) =
1

μ
(1− e−μ(t−u)).
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Case study: Oil swaps and counterparty risk

In an oil swap the parties exchange a fixed-rate payment δiK for a
floating payment δiSTi at coupon dates T1, , . . . , Tn where δi is the
accrual factor and STi is the oil spot price at Ti. The (payer’s) swap
value at any time t is

Vt =
∑

i≥k(t)

δiG(t, Ti)−K
∑

i≥k(t)

δip(t, Ti)

where p(t, Ti) is the price at time t < Ti of a zero-coupon risk-free
bond with maturity Ti (i.e. a contract that pays $1 at time Ti) and
k(t) is the next coupon date after t.
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Case study: Oil swaps and counterparty risk

The swap rate Rt is the value of K such that Vt = 0, i.e.

Rt =

∑
i≥k(t)G(t, Ti)∑
i≥k(t) p(t, Ti)

=

∑
i≥k(t)Gt,Ti(St, δt)∑
i≥k(t) p(t, Ti)

. (6)

Tn0

Quantiles of swap value

s

Counterparty risk problem: Calculate swap value distribution at
t > 0 conditional on counterparty default at t.
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Case study: Oil swaps and counterparty risk

The essential problem is to get the distribution of (S(s), δ(s)) given
that default happens at s. Recall

dSt = (rt − δt)Stdt+ σStdWt, (7)

dδt = (θ(t)− μδt)dt+ βdZt. (8)

We take the counterparty risk model developed above, i.e. the
default time is τY0 where Y is the process

dYt = νσ
2(t)dt+ σ(t)dBt, Y0 = A. (9)

Here Z,W,B are Brownian motions with correlations ρBW , ρBZ ,
and ρBZ and ρWZ .

Calibration: θ(∙) is specified such that the forward curve is matched
exactly, (μ, σ, β, ρWZ) are calibrated from the ATM oil futures option
quotes, and σ(∙) from the counterparty CDS quotes.
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Case study: Oil swaps and counterparty risk

The solution of (7)-(8) is

logSs/S0 = Ξ̃1(s) + [σρBW + βρBZ ] Ω1(s) (10)

δs = Ξ̃2(s) + βρBZ Ω2(s). (11)

Here, fox fixed s, (Ξ̃1(s), Ξ̃2(s)) ∼ N (αs,Σ2s), independent of Y , for
some vector αs and covariance matrix Σ2s, and

(Ω1(s),Ω2(s)) =
(∫ s
0
Bμ(u,s)
σ(u) dYu,

∫ s
0
eμ(u−s)

σ(u) dYu

)
(12)

If we condition on default at time s then Yt satisfies the SDE

dYt =

(
1

Yt
−

Yt∫ s
t σ
2(u)du

)

σ2(t)dt+ σ(t)dB̃t, t ∈ (0, s) (13)
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Case study: Oil swaps and counterparty risk

By Monte Carlo simulation of (10) — (13) we can obtain the
empirical distribution of (S(s), δ(s)) at the assumed default
time s.

Since the oil swap rate Vs at time s is a deterministic function of
(S(s), δ(s)), we can hence obtain the distribution of the value of
the swap conditional on default at time s.
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Case study: Oil swaps and counterparty risk

Example: s = 2.5 years in a 5-year oil swap with counterparty
Southwest Airlines, with ρBW = 0 and different values of ρBZ .
ρBZ = 0:

ρBZ = −0.6, +0.6
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Conclusion
We developed a joint model for asset values and counterparty
default risk.

The present approach could be extended and developed in various
directions:

More efficient computational methods need to be developed.

Multi-asset problems

Inclusion of credit assets (CDOs,...)

A consistent procedure would be needed for calibrating these
correlation parameters.
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Paper

The paper can be downloaded at

http://ssrn.com/abstract=1722604
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