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The problem

Counterparty Risk

This is the exposure of a bank to a counterparty in some contract
should the counterparty default at some specific time in the future.

Note: Exposure = max(value, 0) [No exposure if we owe them!]

‘EXposure’ can be gquantified using various risk-measures:

® Quantile of loss distribution (VAR)

® Expected shortfall (ES)

® Expected Positive Exposure (EPE)

These are all functions of the post-default distribution of contract
value.

Counterparty Valuation Adjustment  (CVA)

the ‘fair amount to be charged for counterparty risk
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The problem

Right-way/Wrong-way risk

To quantify the counterparty risk the connection between exposure
and the assumed counterparty default at ¢t needs to be taken into
account, i.e. the conditional distribution of the value of the contract
given that the default event occurs at time t¢.

Right-way risk: Negative correlation between default and exposure.

Wrong-way risk: Positive correlation.
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Problem

The problem of quantification/measurement of counterparty risk is
split into two steps:

® Develop a dynamical credit risk model for the timing of default
of the counterparty that matches exactly given CDS quotes.

® Develop a joint asset price-credit risk model
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Dynamical credit index model

® Following the approach of John Hull we model the default time
Ty Of the counterparty by the first passage time below zero

7y =inf{t >0:Y; <0}

of a credit-index process Y.

® Given a (risk-neutral) default time distribution H and a family )
of stochastic processes, the model for the credit index process
Y € Y should be such that

forall ¢t > 0.
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A drifted BM model

Given a distribution function H on R* U {oco} with density function

h, can we find a distribution function 7 on R* such that 7* has

distribution H where
Xt — A + vt + Bt

where A ~ F and A is independent of the Brownian motionB;?
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A drifted BM model

Given a distribution function H on R* U {oco} with density function

h, can we find a distribution function 7 on R* such that 7* has

distribution H where
Xt — A + vt + Bt

where A ~ F and A is independent of the Brownian motion B;?

Answer: Necessary condition is that there exists an distribution
function F' s.t.

LH()(0)) =LF@O)|  (+)

where
1
»(0) = 592 — v

The equation (x) does not always admit a solution as the left-hand
side may not be a Laplace transform of a probability distribution.
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A drifted BM model

Let ¢ > 0 be fixed and

Xt =a+ vt + Bt.
The moment generating function is given by

Ea[e_qTf’X] _ €—a<1>(q), g>0,

where ®(q) = v + 1/v2 + 2q.
The corresponding distribution function is K, with density

(1) = L -3/2 —(avt)2/20

V2T

It is also known that:

P, (T(‘)X < o0) = exp ((2va)-),
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A drifted BM model

We are looking for F' that satisfies
Ht) = Pl < 1] = / P, < {]F(da).
0
Taking the Laplace-Stieltjes transform in ¢ gives

LH(q) = /OOO E,[e~ 7 |F(da) = /OOO e D F(da).

We know ® has inverse ¢ = 1(0) = 102 — v0 so if F exists it must

2
satisfy the stated relation (x).
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Key example: exponential distribution

Here the left-hand side of (x) is

A 2) 11
VO + X 0. —0_\0-06. 60-0_)

This is the LT of a distribution on R™ if and only if ¢(6) > —\ for all

6 > 0 and v* — X > 0. We obtain the following solutions for the
density fy(x) = (d/dx)F(x).

® U< —V/2)\: folzx) = 9+2_)‘0_ (69”" — 69—"").

® v=—v2\: filz)= 2\pe TV,
Other examples that are explicitly solvable are

® mixtures of exponentials and
#® convolutions of exponentials
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A linear Gaussian process

Take a deterministic non-negative function o(¢) and a BM B, and
define the process Y; by

dY; = vo?(t)dt + o(t)dB:, Yy = A. (1)

Theorem. Let A > 0 and A ~ f,. Let H be a distribution on R* with
density h and hazard function

___h®) K
I RV TRT A T}
Define Y; by (1) with
(@)
o(t) = B

Then 7y ~ H where 7y =inf{t:Y; <0}.
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A linear Gaussian process

The process Y; is equal in law to X (I;) where X (t) = A + vt + By
as above and
t
I = / o?(s)ds.
0
Since h/H = —(d/dt) log H we have
1.
I, = ——log H(t).
A
Since Y; = X (I;) and 75* has exponential distribution, we see that

Plry >t] =Plrg > ] = e M = elog H(t) — H(t).
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A linear Gaussian process

Assume again
dY; = vo?(t)dt + o(t)dB;, Yy = A. 2)

but now let A be a fixed positive constant. In that case there also
exists a solution:

Theorem. Letrv <0and A =a > 0. Let H be a cdf on R, with
density i, with H(0) = 0 and set sg := inf{s: H(s) > 0}. For s > 0
define

o?(s) = | h(s)
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A linear Gaussian process

The proof is similar. Note that now

t 5 B t 1
= /Sog(s)ds‘/o ke (o ()%
— K, \(H(®))

where k, denotes the Brownian first passage density to zero
starting from a.

Since the processes Y; and X (I;) are equal in law and 75* follows
distribution K, under IP,, we see that

Pulry <t]=Pufrg < 1] = Kuo(K; ' (H(1))) = H(1).

a
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Calibrating Risk-neutral default-time distributions

For CDS contracts written on an underlying name ABC, we assume
that premium payments are made at times ¢; and the available
maturities are T; = t;),j = 1,...,n. For contract j there is an

upfront premium w;? and a running premium rate 7r]1- (with accrual

factors ¢;). The recovery rate is R € (0,1). The ‘fair premium’
(79, 7}) then satisfies

J7?7)
k()1 B k() B B
m)+m; Y 6ip(0,t)H(ti) = (1— R) > _p(0,t:)(H (ti1) — H(t:))-
i=0 i=1

We take the default distribution to have piecewise-constant hazard

rate, i.e.
10 = ew (- [ 1()0s)

where v(s) = v; for T; < s < T;4+1 (with Ty = 0.) 10032



Calibrating Risk-neutral default-time distributions

We then back out v, 71, . .. given the market data

(m}, 1), (73, 73), - -

The model Y that probability of hitting O exactly given by H is then
given by

dY; = vo?(t)dt + o(t)dBy, Yy = A,

where o2(t) = ~(t)/), i.e. Y; has piecewise-constant coefficients.
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Calibrating Risk-neutral default-time distributions

Example: Southwest Airlines.
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We have 12 CDS quote for maturities ranging from 6m to 16y.
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Models conditioned on default time

To evaluate counterparty risk, we condition on default at a specific
time s > 0. For path-dependent contracts we need the conditional

law of the default risk process Y; conditioned on the event (1 = s).
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Models conditioned on default time: Bessel bridge

The law of X; = a + vt + B; conditioned to hit O for the first time at
75t = s is equal to that of the 3-dimensional Bessel Bridge from

a — 0 on [0, s]. We apply the Doob h-transform with A given by
h(t,z) = Pulrg € [s—dt,s]]/dt = ky(s —t).

This means applying a change of measure
dQ/dP|r = h(t, X:)/h(0,a). By Girsanov, the change of drift is
(with b’ = Oh/0x)

h/

1
= (log h) = (logaz -

2(s — t)
Thus under Q, X; satisfies the SDE

(m+u(3—t))2>/:—— — .

1 Xt
dX: = — dt +dBy, t 3
= (g -t dB e (o) €
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Models conditioned on default time: Bessel bridge

The Brownian bridge Z; from Zy = a to Z; = 0 satisfies

dZ; = —

70 = a.
1— 0=4

It can also be represented as

s—1

Zt_ a—i—Bt——B

S

where B; is ordinary Brownian motion.

A result of Bertoin and Pitman states that

=lc y/la(s =) + X102 + X3, + X3,

where X;, ¢ = 1,2, 3 are independent 0 — 0 Brownian Bridges.

This provides us with an efficient simulation method.
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Models conditioned on default: general case

Recall that 77 is the first hitting time of O by the process

dY; = vo?(t)dt + o(t)dB;, Yy = A.

Proposition. Conditioned on 7y = s > 0, the process Y; satisfies

dYy

1 Y: 2 o () dE S
(?t _ Ik 02(u)du> o“(t)dt + o(t)dB:, te€(0,s)

YO:A7

where B is Brownian motion and A ~ F is independent of B.

The (---) term can alternatively be expressed as

(% - 1og(ﬁ(?)/;ﬁ(s))) |
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Case study: Oil swaps and counterparty risk

Oil swaps in the Schwartz & Smith model
In the Schwartz & Smith model the evolution of the risk-adjusted oil
spot price S; is modelled by the SDE

d.St

— = (ry — 6)dt + odW4, (4)
St

where r; Is the risk-free interest rate, o a volatility parameter, W; a
Wiener process, and ¢; Is a stochastic convenience yield given by

dor = (0(t) — udt)dt + BdZt, (5)

where 6(-) is the time-dependent reversion level, . > 0 is the rate of
mean reversion, ( a volatility parameter, and Z a Wiener process
that is correlated with W, with (W, Z); = pw #t.
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Case study: Oil swaps and counterparty risk

The value G(t,T) at time t < T of a contract for the delivery of one
unit of oil at 7" is equal to

G(t,T) =B [e I e sp] 7]

where F; denote the standard filtration generated by (Ss,s < t) and
(rs,s < t).

As a consequence of the ‘affine’ nature of the Schwarz-Smith
model,

G(t,T) = Stexp(A(t,T) — 6:B,(t,T)) =: Gt 7(St,0t),
where

Bu(u,t) = —(1 — e#=w),
L
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Case study: Oil swaps and counterparty risk

In an oil swap the parties exchange a fixed-rate payment ¢; K for a
floating payment ¢,S7, at coupon dates 11,,...,T, where ¢; is the
accrual factor and St is the oil spot price at T;. The (payer’s) swap
value at any time t is

Vi= Y &GHT)-K Y optT)

i>k(t) i>k(t)

where p(t,T;) is the price at time ¢ < T; of a zero-coupon risk-free
bond with maturity 7; (i.e. a contract that pays £1 at time 7T;) and
k(t) is the next coupon date after ¢.
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Case study: Oil swaps and counterparty risk

The swap rate R; is the value of K such that V; = 0, i.e.

Ry (6)
Zz>k(t) p(t, Ty) Zz>k(t) p(t, T;)

AT ~

e ]
e

O is ___-——~——""—__~~: ________ }\;’\;'— Tn

\]:L\ ______________ -

\!\ ____________ -
| Quantiles of swap value

Counterparty risk problem: Calculate swap value distribution at
t > 0 conditional on counterparty default at .
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Case study: Oil swaps and counterparty risk

The essential problem is to get the distribution of (S(s),d(s)) given
that default happens at s. Recall

dSt = (’I“t — 5t)Stdt —+ O'Stth, (7)
d5t — (H(t) — ,LL(St)dt + ﬁdZt. (8)

We take the counterparty risk model developed above, i.e. the
default time is 7 where Y is the process

dY; = vo?(t)dt + o(t)dB;, Yy = A. 9)

Here Z, W, B are Brownian motions with correlations pgw, paz,
and ppz and py .

Calibration: 6(-) is specified such that the forward curve is matched
exactly, (u, o, 8, pwz) are calibrated from the ATM oil futures option
quotes, and o (-) from the counterparty CDS quotes.
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Case study: Oil swaps and counterparty risk

The solution of (7)-(8) IS

log S5/Sy =
0y =

1(s) + lopBw + Bprz] Q1(s) (10)
2(s) + Bppz Qa2(s). (11)

[1]x [I]:

Here, fox fixed s, (Z1(s),Za(s)) ~ N (a, ¥2), independent of Y, for
some vector o, and covariance matrix 2, and

((s), 2a(s)) = (fy Zefislay,, [ <rtav, ) (12)

If we condition on default at time s then Y; satisfies the SDE

1 Y, ; ]
Y = — B
dY; (Yt I az(u)du) o“(t)dt + o(t)dBs, te (0,s) (13)
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Case study: Oil swaps and counterparty risk

® By Monte Carlo simulation of (10) — (13) we can obtain the
empirical distribution of (S(s),d(s)) at the assumed default
time s.

® Since the oil swap rate V; at time s is a deterministic function of
(S(s),d(s)), we can hence obtain the distribution of the value of
the swap conditional on default at time s.
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Case study: Oil swaps and counterparty risk

Example: s = 2.5 years in a 5-year oil swap with counterparty
Southwest Airlines, with pgy = 0 and different values of pg .
pBz = O

ppz = —0.6, +0.6
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Conclusion

We developed a joint model for asset values and counterparty
default risk.

The present approach could be extended and developed in various
directions:

More efficient computational methods need to be developed.
Multi-asset problems
Inclusion of credit assets (CDOs,...)

© o o o

A consistent procedure would be needed for calibrating these
correlation parameters.
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Paper

The paper can be downloaded at

http://ssrn.com/abstract=1722604
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