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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Context: Credit-Based Financial Instruments

@ Valuation of financial products: price = f(7), vector of
N > 1 default times 7 = (74,...,7n)

@ Example: CDS, CDO, FtD, NtD.,. ..
@ We need a tractable default model for the joint CDF F of 7

A =
ING S
Frédéric Vrins ING - Financial Markets



Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Context: Credit-Based Financial Instruments

@ Valuation of financial products: price = f(7), vector of
N > 1 default times 7 = (74,...,7n)
@ Example: CDS, CDO, FtD, NtiD,...
@ We need a tractable default model for the joint CDF F of 7

e speed (computationally attractive)
o flexible (calibration capabilities)
@ sparse (not too many parameters)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Context: Credit-Based Financial Instruments

@ Valuation of financial products: price = f(7), vector of
N > 1 default times 7 = (74,...,7n)
@ Example: CDS, CDO, FtD, NtiD,...
@ We need a tractable default model for the joint CDF F of 7

e speed (computationally attractive)
o flexible (calibration capabilities)
@ sparse (not too many parameters)

@ Two-step (bottom-up) approach to create a multivariate
model:

@ model the univariate distributions Fi(x) = Pr[r; < {|
© couple the F’s to create the joint distribution F
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Outline

o Model Setup
@ Univariate Models (margins)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Default Model (N = 1): Standard set up

@ Intensity process : \;(t) > 0 (vt > 0)
@ Probabilities : let A;(t) = [I, \;(s)ds, then

s=0""
Si(t) = Prir > f] = e Joo M(S)ds — g=Ni(D)

Fi(t) = Prlr < f] = 1 - S(t)

@ Meaning :
@ \(t) ~default rate @ t (= lima_o Pr[r; <t + A1 > {]/A)
@ )\(t) ~ deterministic : piecewise constant bw tenors
e 7; ~ 150 jump of Poisson process with intensity \;(t)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Default Model (N > 1): Intensity set up

Multivariate : N underlying entities are gathered in a portfolio
@ Intensities \;(t) calibrated on CDS market = S;(t)
@ Information about coupling is lacking
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Default Model (N > 1): Intensity set up

Multivariate : N underlying entities are gathered in a portfolio
@ Intensities \;(t) calibrated on CDS market = S;(t)

@ Information about coupling is lacking
@ Default model aims at modeling this dependency :
@ with random variables (static: e.g. factor-copulae)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Default Model (N > 1): Intensity set up

Multivariate : N underlying entities are gathered in a portfolio
@ Intensities \;(t) calibrated on CDS market = S;(t)

@ Information about coupling is lacking
@ Default model aims at modeling this dependency :

@ with random variables (static: e.g. factor-copulae)
@ with random processes (dynamic)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Outline

o Model Setup

@ Multivariate Model (stochastic intensity)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [1/2]

@ Link bw entities : A;(t) become stochastic: A;(t) = A;(1)
@ 7; ~ 15! jump of Cox process
@ Si(t) =Pr[Pi(t) > U], Uy,..., Uy are 4(0,1) rv
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Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [1/2]

@ Link bw entities : A;(t) become stochastic: A;(t) = A;(1)
@ 7; ~ 15! jump of Cox process
@ Si(t) =Pr[Pi(t) > U], Uy,..., Uy are 4(0,1) rv

Examples: (U; L U; and P;(t) = e Ni(D)

i(t) Mai~Scherer € o Ni(t), &(t) =Lévy subordinator
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Model . .
odel Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [1/2]

@ Link bw entities : A;(t) become stochastic: A;(t) = A;(1)
@ 7; ~ 15! jump of Cox process
@ Si(t) =Pr[Pi(t) > U], Uy,..., Uy are 4(0,1) rv

Examples: (U; L U; and P;(t) = e Ni(D)

i(t) Mai~Scherer € o Ni(t), &(t) =Lévy subordinator

, t
Hull—White / O”’( s)ds + ZJt H(j)
S—=

j=1
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [1/2]

@ Link bw entities : A;(t) become stochastic: A;(t) = A;(1)
@ 7; ~ 15! jump of Cox process
@ Si(t) =Pr[Pi(t) > U], Uy,..., Uy are 4(0,1) rv

Examples: (U; 1 U; and Py(t) = e~ (D)

i(t) Mai—Scherer € o Ni(t), &(t) =Lévy subordinator

. t
Hull—White / Li(s)ds + ZJt H(j)
o M(t) = fs o 1i(S)ds is a cumulative deterministic intensity
@ J; is a inhomogeneous Poisson process with intensity A(t)
® H(j) > 0 defines size of j jump of -7, H(j) ING &0
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [2/2]

@ Define ¢x(u) the CF of X: ¢x(u) = E[e~"X]
@ Observe that S;(t) = E[e~M(1] = Pxy(—1)
@ Calibration to CDS mkt :

Ele M| = e MO
— ~——
S;(t) model Si(t) CDS mkt
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [2/2]

@ Define ¢x(u) the CF of X: ¢x(u) = E[e~"X]
@ Observe that S;(t) = E[e~M(1] = Pxy(—1)
@ Calibration to CDS mkt :

Ele M| = e MO
— ~——
S;(t) model Si(t) CDS mkt
T
Ni(t) = —log o5 (—)
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [2/2]

@ Define ¢x(u) the CF of X: ¢x(u) = E[e~"X]
@ Observe that S;(t) = E[e~M(1] = Pxy(—1)
@ Calibration to CDS mkt :

Ele M| = e MO
— ~——
S;(t) model Si(t) CDS mkt
T
Ni(t) = —log o5 (—)

@ if H(j) = H, then ok in closed-form. Indeed:
ING B
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Hull & White : Calibration to CDS

Survival probability of entity / as given by model:
E [e—M,-m—z,Jn HU)} _ e~ MO g H]

_ e—Mi(t)qut(,'H)

NO=[ig MS)O5 (1) A(t)(eH-1)

So, calibration to CDS probs is achieved provided that

Vs<t

ui(s) "= Ai(s) = A(s)(1 — e ")
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling probabilities vs Modeling events

@ So far, we have required Pr[r; > t] = Prle=M(® > ]
@ This is not the same as requiring {7; > t} = {e‘f‘f(f) > U,}

@ Proper modelization requires modeling events
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling probabilities vs Modeling events

@ So far, we have required Pr[r; > t] = Prle=M(® > ]

@ This is not the same as requiring {7; > t} = {e‘f‘f(f) > U,}
@ Proper modelization requires modeling events

@ Ex: if we want to model 1.4 via 1I{e4\f<f>>u,-} we need to

further require that A;(t) a.s. increasing
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Model Setup Univariate Models (margins)

Multivariate Model (stochastic intensity)

Modeling probabilities vs Modeling events

@ So far, we have required Pr[r; > t] = Prle=M(® > ]

@ This is not the same as requiring {7; > t} = {e‘f‘f(f) > U,}
@ Proper modelization requires modeling events

@ Ex: if we want to model 1.4 via 1I{e4\f<f>>u,-} we need to

further require that A;(t) a.s. increasing

@ Therefore, we need the additional constraint y;(s) > 0,
which defines a range for (\(s), H).

@ Condition p(s) > 0 is not needed to fit S;(t), but
necessary to get proper conditional and joint distributions
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Outline

9 Main Analytical Results
@ Survival and jointure functions
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Hull & White : Jointure function

Let ¢/(N, H,A(t)) be the jointure function :
YN, H, A(t)) = eNO((e "' =D=N(e"-1)

It holds that
¥(N,0,A(t)) = (N, H,0) = 1

andif N >1,H>0,A >0, then

(N, H,A) > 1
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Hull & White : Survival function

If H(j) = Hand A(t) = A :

S(t1,...,t[\/) = Pr[7'1>t1,...,7'N>TN]
N
= HSi(fi)w(N— i+1,H, (i — f(i_1))>\)
=1
. ~ N
S(t) = SL(t)Hi/J<N—I'+1,H,(t(,’) — t(,',1))/\>
=1

where 0 = f(o) < {(1) < ... < {n) is @ permutation of {t,..., In}
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Survival and jointure functions
Application: Pricing of First-to-Default swaps

Main Analytical Results Playing with (H, \)

Dealing with k!-to-Default, 1 < k < N

Hull & White : First to default distribution

Let 7(1) = min; 7; :

S(t)

I
-
—_
\l\
V
i

where
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Survival and jointure functions
Application: Pricing of First-to-Default swaps

Main Analytical Results Playing with (H, \)

Dealing with k"'-to-Default, 1 < k < N

Impact of jointure function (N = 2)

@ Becausey >1:PQD=p>0
@ Bad news propagation effect:

Priry < x| < y]
Priry < x]

1+ ((2, H A1) = DE(Si(x). S(¥))
@ Pearson’s correlation coefficient of A;(t) = 1, <x:

Corr(A;(t), Ai(t)) = pi(t) = (¥ (2, H,A(1))=1)4/F(Si(1), S;(1))

@ Short-term default correlation p;;(0) = lim¢ g pji(t) :

_ log (2, H, \(0T))

pii(0) 007 (for GC :p;(0) = 0)
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Outline

9 Main Analytical Results

@ Application: Pricing of First-to-Default swaps
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

First-to-Default (FtD)

@ Consider a basket of N companies and vector of default
times 7 and a contract maturity time T

@ Protection buyer pays upfront + premium up to (7 A min; 7;)

@ Protection pays of
firstly defaulted entity iff (min; 7; < T)

Buyer’s flows

T NSRRI

T T T, T

Buyer's flows
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Case : First-to-Default [1/3]

If all the entities have the same recovery rate R; = R. Then
T

cL = E[u_R)a(T“))ﬂ{TUKT}} =(1=R) | a0t

FL = 325 t)E {tk/\ (tk— 1\/7'( ))—Z‘kq}

= SZ(S(tk) <(tk — tk_1)S(Tk) + /tk (t — tk_1)f(1)(t)dl'>
k=1 =t

with §(t) (disc. fact. at t), s (spread), {t} (payment dates) and
T (maturity)
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Case : First-to-Default [2/3]

In terms of S(t) = Pr[r(V) > #], with R, = R :

oL = —(1-R [ sndsw
=0
K ttk

FL = Skz_;&(tk)/t—tk_1 S(t)at
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Survival and jointure functions
Application: Pricing of First-to-Default swaps

Main Analytical Results Playing with (H, \)

Dealing with k"'-to-Default, 1 < k < N

Hull & White : FtD priced as a CDS with intensity

= If Rj= R, FtD =CDS:

N
S(t)y=e M0, A(t) = " Ai(t) — log (N, H,A(1))

= =Xo(t)

= FtD could be priced & calibrated with a HR-CDS pricer
= FtD price range :

@ 35p (highest price ): A\o(f) = 0 (independence)
@ sp (smallest price): A\o(t) = Z, A2 (A=0=sp=0)
@ Actually, sp > 0 as one must have \o(t) < Z,:1 Ai(t)
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Outline

9 Main Analytical Results

@ Playing with (H, \)
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X)

Dealing with k!-to-Default, 1 < k < N

Main Analytical Results

Playing with (H, \) = playing with tails [2/4]

Assume :
@ r(t) = 0 (or equivalently, §(t) = 1, ie no interest rates)
@ S;(t) = e~ (one-tenor or one avg intensity up to maturity)
@ R; = R (homogeneous recoveries)

Then, the iso-FtD curve (H, A\(H, sp*)) yielding a same fair
spread s* for FtD is given by

Z/ 1)‘1_ = R)

MH-S) = o o iNH.1)

, (H>0)

Indeed, in that case A = \* where \* = gy is the “fair

intensity”, ie the intensity such that CDS has a zero MtM when
priced with s* (when r(t) = 0). o
= Handy to calibrate KtD given FtD ING 50
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Survival and jointure functions
Application: Pricing of First-to-Default swaps

Main Analytical Results Playing with (H, A)

Dealing with k"'-to-Default, 1 < k < N

Playing with (H, \) = playing with tails [1/4]

@ Couples (H, \) fitting a same FtD price (= survival curve)

At A
\
\
\ .
D\
> (H) AMB(1-e* (FtD)
\;\ min;, A(t)/(1-e*) ‘ Vax(ND)
S < \
—— S N N
ming A pasaciannn L oL LoTE e o ‘,____/741 ,,,,,,,,,,,,, e
JH ~ .
Max(FtD) e H
(ND)

@ Increase H s.t. FtD price is constant means

e increase probability of catastrophe scenario
e decrease implied jump intensity A
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k-to-Default, 1 < k < N

Main Analytical Results
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@ Dealing with k"-to-Default, 1 < k < N
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Survival and jointure functions
Application: Pricing of First-to-Default swaps

Main Analytical Results Playing with (H, \)

Dealing with k!-to-Default, 1 < k < N

Hull & White : k-to-Default pricing [1/2]

@ Pr[N(t) = k] is tractable for medium baskets
@ Combinatorial but analytically tractable
@ No approximation, no numerical integration, no recursion

PrIN(t) = k] = 3 Hs,k, { (N — k)
1<ii<-<ik <N KkK'=1
{i17'7ik7j17'7jN k}:{17'7N}

/
+Z DeN+1—k) HS,-mZ(t)}

1<my <-<my<k z=1
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Survival and jointure functions

Application: Pricing of First-to-Default swaps
Playing with (H, X\)

Dealing with k-to-Default, 1 < k < N

Hull & White : kth to default pricing [2/2]

Main Analytical Results

@ Example : N=5

1.0

=k]
0.6
1

PrIN(ty

0.2

‘ ING )
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Conclusion

Summary : Dynamic Models

@ Standard copula models are static

@ Dynamic copula difficult to work out (time-dependent
barrier : no closed from solution for CDS calibration,. . .)

@ Idea : Modeling multi-dimensional “intensity” processes
with jumps to obtain sufficiently high default correlation

@ Recent examples: Mai & Scherer, Hull & White

A =
ING S
Frédéric Vrins ING - Financial Markets



Conclusion

Summary : Jump models

+) Analytical results : not more difficult than static copula

)
)

+) Default correlations # 0 as t — 0 (more stable)

+) Have the “fat tail effect”

° (
° (
° (
@ (+/-) Handling various R;’s requires approximations due to
simultaneous defaults
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Conclusion
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