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Multivariate Model (stochastic intensity)

Context: Credit-Based Financial Instruments

Valuation of financial products: price = f (~τ), vector of
N > 1 default times ~τ .

= (τ1, . . . , τN)

Example: CDS, CDO, FtD, NtD,. . .
We need a tractable default model for the joint CDF F of ~τ

speed (computationally attractive)
flexible (calibration capabilities)
sparse (not too many parameters)

Two-step (bottom-up) approach to create a multivariate
model:

1 model the univariate distributions Fi(x)
.
= Pr[τi 6 t ]

2 couple the Fi ’s to create the joint distribution F
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Default Model (N = 1): Standard set up

Intensity process : λi(t) > 0 (∀t > 0)

Probabilities : let Λi(t)
.
=
∫ t

s=0 λi(s)ds, then

Si(t)
.
= Pr[τi > t ] = e−

R t
s=0 λi (s)ds = e−Λi (t)

Fi(t)
.
= Pr[τi 6 t ] = 1− Si(t)

Meaning :
λi(t) ∼ default rate @ t (= lim∆→0 Pr[τi 6 t + ∆|τi > t ]/∆)
λi(t) ∼ deterministic : piecewise constant bw tenors
τi ∼ 1st jump of Poisson process with intensity λi(t)
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Default Model (N > 1): Intensity set up

Multivariate : N underlying entities are gathered in a portfolio
Intensities λi(t) calibrated on CDS market ⇒ Si(t)
Information about coupling is lacking

Default model aims at modeling this dependency :
1 with random variables (static: e.g. factor-copulae)
2 with random processes (dynamic)
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Modeling Intensities : Hull & White [1/2]

Link bw entities : Λi(t) become stochastic: Λi(t) ⇒ Λ̃i(t)
τi ∼ 1st jump of Cox process
Si(t) = Pr[Pi(t) > Ui ], U1, . . . ,UN are U(0,1) rv

Examples: (Ui ⊥ Uj and Pi(t) = e−Λ̃i (t))

Λ̃i(t)
Mai−Scherer

= ξ ◦ Λi(t), ξ(t) = Lévy subordinator

Hull−White
=

∫ t

s=0
µi(s)ds +

∑
j=1

Jt H(j)

Mi(t)
.
=
∫ t

s=0 µi(s)ds is a cumulative deterministic intensity
Jt is a inhomogeneous Poisson process with intensity λ(t)
H(j) > 0 defines size of j th jump of

∑Jt
j=1 H(j)
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Multivariate Model (stochastic intensity)

Modeling Intensities : Hull & White [2/2]

Define φX (u) the CF of X : φX (u)
.
= E[e−iuX ]

Observe that Si(t) = E[e−Λ̃i (t)] = φΛ̃i (t)
(−i)

Calibration to CDS mkt :

E[e−Λ̃i (t)]︸ ︷︷ ︸
Si (t) model

= e−Λi (t)︸ ︷︷ ︸
Si (t) CDS mkt

m
Λi(t) = − logφΛ̃i (t)

(−i)

if H(j) = H, then ok in closed-form. Indeed:
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Hull & White : Calibration to CDS

Survival probability of entity i as given by model:

E
[
e−Mi (t)−

PJt
j=1 H(j)

]
= e−Mi (t)E[e−Jt H ]

= e−Mi (t)φJt (iH)

Λ(t) .=
R t

s=0 λ(s)ds
= e−Mi (t)eΛ(t)(e−H−1)

So, calibration to CDS probs is achieved provided that

µi(s)
∀s6t
= λi(s)− λ(s)(1− e−H)
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Modeling probabilities vs Modeling events

So far, we have required Pr[τi > t ] = Pr[e−Λ̃i (t) > Ui ]

This is not the same as requiring {τi > t} =
{

e−Λ̃i (t) > Ui

}
Proper modelization requires modeling events

Ex: if we want to model 1I{τi>t} via 1In
e−Λ̃i (t)>Ui

o we need to

further require that Λ̃i(t) a.s. increasing
Therefore, we need the additional constraint µi(s) > 0,
which defines a range for (λ(s),H).
Condition µi(s) > 0 is not needed to fit Si(t), but
necessary to get proper conditional and joint distributions
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Hull & White : Jointure function

Let ψ(N,H,Λ(t)) be the jointure function :

ψ(N,H,Λ(t)) .
= eΛ(t)((e−NH−1)−N(e−H−1))

It holds that
ψ(N,0,Λ(t)) = ψ(N,H,0) = 1

and if N > 1,H > 0,Λ > 0, then

ψ(N,H,Λ) > 1
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Hull & White : Survival function

If H(j) = H and λ(t) = λ :

S(t1, . . . , tN)
.
= Pr[τ1 > t1, . . . , τN > tN ]

=
N∏

i=1

Si(ti)ψ
(

N − i + 1,H, (t(i) − t(i−1))λ
)

S(~t) = S⊥(~t)
N∏

i=1

ψ
(

N − i + 1,H, (t(i) − t(i−1))λ
)

where 0 = t(0) 6 t(1) 6 . . . 6 t(N) is a permutation of {t1, . . . , tN}
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Hull & White : First to default distribution

Let τ (1) .= minj τj :

S(t) .
= Pr[τ (1) > t ]
= S(t , . . . , t)

= ψ
(

N,H,Λ(t)
)

S⊥(t)

where

S⊥(t) .
=

N∏
i=1

Si(t)
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Impact of jointure function (N = 2)

Because ψ > 1 : PQD ⇒ ρ > 0
Bad news propagation effect:

Pr[τ1 6 x |τ2 6 y ]

Pr[τ1 6 x ]
= 1 + (ψ(2,H,Λ(t))− 1)f (Si(x),Sj(y))

Pearson’s correlation coefficient of Ai(t)
.
= 1I{τi6t}:

Corr(Ai(t),Aj(t)) = ρij(t) = (ψ(2,H,Λ(t))−1)
√

f (Si(t),Sj(t))

Short-term default correlation ρij(0)
.
= limt↓0 ρij(t) :

ρij(0) =
logψ(2,H, λ(0+))√

λi(0+)λj(0+)
(for GC :ρij(0) = 0)
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

First-to-Default (FtD)

Consider a basket of N companies and vector of default
times ~τ and a contract maturity time T
Protection buyer pays upfront + premium up to (T ∧mini τi)

Protection seller pays non-recovered part of notional of
firstly defaulted entity iff (mini τi < T )
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Case : First-to-Default [1/3]

If all the entities have the same recovery rate Ri = R. Then

CL .
= E

[
(1− R)δ(τ (1)) 1I{τ (1)6T}

]
= (1− R)

∫ T

t=0
δ(t)f(1)(t)dt

FL .
= s

K∑
k=1

δ(tk )E
[
tk ∧ (tk−1 ∨ τ (1))− tk−1

]

= s
K∑

k=1

δ(tk )

(
(tk − tk−1)S(tk ) +

∫ tk

t=tk−1

(t − tk−1)f(1)(t)dt

)

with δ(t) (disc. fact. at t), s (spread), {tk} (payment dates) and
T (maturity)
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Case : First-to-Default [2/3]

In terms of S(t) .
= Pr[τ (1) > t ], with Ri = R :

CL .
= −(1− R)

∫ T

t=0
δ(t)dS(t)

FL .
= s

K∑
k=1

δ(tk )

∫ tk

t=tk−1

S(t)dt

Frédéric Vrins ING - Financial Markets



Model Setup
Main Analytical Results

Conclusion

Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Hull & White : FtD priced as a CDS with intensity

⇒ If Ri = R, FtD = CDS :

S(t) = e−Λ̃(t), Λ̃(t) .
=

N∑
i=1

Λi(t)− logψ(N,H,Λ(t))︸ ︷︷ ︸
.
=λ0(t)

⇒ FtD could be priced & calibrated with a HR-CDS pricer
⇒ FtD price range :

sp (highest price ): λ0(t) = 0 (independence)
sp (smallest price): λ0(t) =

∑N
i=1 λi(t) ? (λ̃ = 0 ⇒ sp = 0)

Actually, sp > 0 as one must have λ0(t) <
∑N

i=1 λi(t)
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Playing with (H, λ) = playing with tails [2/4]

Assume :
r(t) = 0 (or equivalently, δ(t) = 1, ie no interest rates)
Si(t) = e−λi t (one-tenor or one avg intensity up to maturity)
Ri = R (homogeneous recoveries)

Then, the iso-FtD curve (H, λ(H, sp?)) yielding a same fair
spread s? for FtD is given by

λ(H, s?) =

∑N
i=1 λi − sp?

(1−R)

logψ(N,H,1)
, (H > 0)

Indeed, in that case λ̃ = λ? where λ? .
= s?

(1−R) is the “fair
intensity”, ie the intensity such that CDS has a zero MtM when
priced with s? (when r(t) = 0).
⇒ Handy to calibrate KtD given FtD
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Playing with (H, λ) = playing with tails [1/4]

Couples (H, λ) fitting a same FtD price (= survival curve)

Increase H s.t. FtD price is constant means
increase probability of catastrophe scenario
decrease implied jump intensity λ
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Hull & White : k th-to-Default pricing [1/2]

Pr[N(t) = k ] is tractable for medium baskets
Combinatorial but analytically tractable
No approximation, no numerical integration, no recursion

Pr [N(t) = k ] =
∑

16i1<·<ik 6N
{i1,·,ik ,j1,·,jN−k}={1,·,N}

N−k∏
k ′=1

Sjk′ (t)×
{
ψ(N − k)

+
k∑

l=1

(−1)lψ(N + l − k)
∑

16m1<·<ml6k

l∏
z=1

Simz
(t)
}
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Survival and jointure functions
Application: Pricing of First-to-Default swaps
Playing with (H, λ)

Dealing with k th-to-Default, 1 < k 6 N

Hull & White : k th to default pricing [2/2]

Example : N=5
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Summary : Dynamic Models

Standard copula models are static
Dynamic copula difficult to work out (time-dependent
barrier : no closed from solution for CDS calibration,. . . )
Idea : Modeling multi-dimensional “intensity” processes
with jumps to obtain sufficiently high default correlation
Recent examples: Mai & Scherer, Hull & White
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Summary : Jump models

(+) Analytical results : not more difficult than static copula
(+) Have the “fat tail effect”
(+) Default correlations 6= 0 as t → 0 (more stable)
(+/-) Handling various Ri ’s requires approximations due to
simultaneous defaults
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