Asymptotic behavior of the survival probability for a critical branching process in markovian environments

YE Yinna

Abstract

Let $X = (X_n)_{n\geq 0}$ be an irreducible and aperiodic Markov chain on a finite space E with transition matrix P. We denote by G the set of generating functions of probability measures on \mathbb{N} , equipped with the topology of simple convergence on [0,1]. $\mathcal{B}(G)$ is the Borel σ -algebra on G. Define a Markov chain $(M_n)_{n\geq 0} = (g_n, X_n)_{n\geq 0}$ with values in $G \times E$ and with transition probability Q defined by

 $Q\{(g, i), (A \times \{j\})\} = P(i, j) \overline{F}(i, j, A), \text{ for } (g, i) \in G \times E, A \in \mathcal{B}(G),$

where \overline{F} is a transition probability from $E \times E$ in the set of probabilities on G. Let $\Omega = (G \times E)^{\mathbb{N}}$ and $\mathcal{F} = \bigotimes^{\mathbb{N}} (\mathcal{B}(G) \bigotimes \mathcal{P}(E))$. We denote by $\mathbb{P}_{(g,i)}$ the unique probability on (Ω, \mathcal{F}) , such that for any $(g,i) \in G \times E$, any $n \ge 1$ and any bounded measurable function $f: (G \times E)^n \to \mathbb{R}$, we get

$$\int_{\Omega} f(M_0(\omega), M_1(\omega), \cdots, M_n(\omega)) \mathbb{P}_{(g,i)}(\mathrm{d}\omega)$$

=
$$\sum_{(j_1, j_2, \cdots, j_n) \in E^n} P(i, j_1) \cdots P(j_{n-1}, j_n) \int_{G^n} f((g, i), (g_1, j_1), \cdots, (g_n, j_n)) \overline{F}(i, j_1, \mathrm{d}g_1) \cdots \overline{F}(j_{n-1}, j_n, \mathrm{d}g_n).$$

To simplify the notations, $\mathbb{P}_{(Id,i)}$ will be denoted by \mathbb{P}_i .

Given $(M_n)_{n\geq 0}$, consider the branching process $(Z_n)_{n\geq 0}$ such that $Z_0 = 1$ and the generating function of Z_n is $g_0 \circ g_1 \circ \cdots \circ g_{n-1}(s), 0 \le s < 1$. The aim of this study is to determine the asymptotic behavior of the survival probability of (Z_n) , as $n \to +\infty$.

The branching processes in markovian random environment has been developed by several authors, in particular by K. B. Athreya and S. Karlin [1]. However, the asymptotic behavior of the survival probability of such a process is not yet known.

Consider the function $h: G \to \overline{\mathbb{R}}_+, g \mapsto h(g) := g'(1)$. The image of the probability $\overline{F}(i, j, dx)$ by the map h is denoted by F(i, j, dx). Assume in this paper the following hypotheses (H):

H1) there exist $\alpha > 0$, such that for all $\lambda \in \mathbb{C}$ satisfying $|\operatorname{Re}\lambda| \leq \alpha$, we have

$$\sup_{(i,j)\in E\times E} |\widehat{F}(i,j,\lambda)| < +\infty, \quad \text{where } \widehat{F}(i,j,\lambda) = \int_{\mathbb{R}} e^{\lambda t} F(i,j,\mathrm{d}t);$$

H2) there exist $n_1 \ge 1$ and $(i_0, j_0) \in E \times E$, such that the measure $\mathbb{P}_{i_0}(X_{n_1} = j, S_{n_1} \in dx)$ has an absolutely continuous component with respect to the Lebesgue measure on \mathbb{R} ;

H3) $\sum_{(i,j)\in E\times E} \nu(i)P(i,j) \int_{\mathbb{R}} tF(i,j,dt) = 0.$

We have

Theorem 1 Under hypotheses (H), for any $(i, j) \in E \times E$, there exists a constant $\beta_{i,j} > 0$, such that

$$\lim_{n \to +\infty} \sqrt{n} \, \mathbb{P}_i(Z_n > 0, X_n = j) = \beta_{i,j}.$$

To prove this result, we first prove a local limit theorem for a semi-Markov chain.

References

- K. B. Athreya, S. Karlin, On branching processes with random environments: I and II, Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858.
- [2] A. A. Borovkov, New limit theorems in boundary problems for sums of independent terms, Sibirsk. Mat. Zh. 3 (1962) 645-694; English transl. in Selected Transl. Math. Stat. and Probab. 5 Amer. Math. Soc, Providence, R.I., (1965) 315-372.
- [3] E. L. Presman, Boundary problems for sums of lattice random variables defined on a finite regular Markov chain, Ther. Veroyatnost. i Primenen 12 (2) (1967) 373-380; English transl. in Theory Proba. Appl. 12 (1967) 323-328.
- [4] E. L. Presman, Factorization methods and a boundary value problem for sum of random variables defined on a Markov chain, Math. USSR-Izv. 3 (4) (1969), 815-852.
- [5] E. Le Page, Y. Ye, The survival probability of a critical branching process in a Markovian random environment, Comptes Rendus Math., 348 (5) (2009), 301-304.