Asymptotic behavior of the survival probability for a critical branching process in markovian environments

YE Yinna

Abstract

Let $X=\left(X_{n}\right)_{n \geq 0}$ be an irreducible and aperiodic Markov chain on a finite space E with transition matrix P. We denote by G the set of generating functions of probability measures on \mathbb{N}, equipped with the topology of simple convergence on $[0,1] . \mathcal{B}(G)$ is the Borel σ-algebra on G. Define a Markov chain $\left(M_{n}\right)_{n \geq 0}=\left(g_{n}, X_{n}\right)_{n \geq 0}$ with values in $G \times E$ and with transition probability Q defined by $$
Q\{(g, i),(A \times\{j\})\}=P(i, j) \bar{F}(i, j, A), \text { for }(g, i) \in G \times E, A \in \mathcal{B}(G),
$$ where \bar{F} is a transition probability from $E \times E$ in the set of probabilities on G. Let $\Omega=(G \times E)^{\mathbb{N}}$ and $\mathcal{F}=\otimes^{\mathbb{N}}(\mathcal{B}(G) \otimes \mathcal{P}(E))$. We denote by $\mathbb{P}_{(g, i)}$ the unique probability on (Ω, \mathcal{F}), such that for any $(g, i) \in G \times E$, any $n \geq 1$ and any bounded measurable function $f:(G \times E)^{n} \rightarrow \mathbb{R}$, we get $$
\begin{aligned} & \int_{\Omega} f\left(M_{0}(\omega), M_{1}(\omega), \cdots, M_{n}(\omega)\right) \mathbb{P}_{(g, i)}(\mathrm{d} \omega) \\ = & \sum_{\left(j_{1}, j_{2}, \cdots, j_{n}\right) \in E^{n}} P\left(i, j_{1}\right) \cdots P\left(j_{n-1}, j_{n}\right) \int_{G^{n}} f\left((g, i),\left(g_{1}, j_{1}\right), \cdots,\left(g_{n}, j_{n}\right)\right) \bar{F}\left(i, j_{1}, \mathrm{~d} g_{1}\right) \cdots \bar{F}\left(j_{n-1}, j_{n}, \mathrm{~d} g_{n}\right) . \end{aligned}
$$

To simplify the notations, $\mathbb{P}_{(I d, i)}$ will be denoted by \mathbb{P}_{i}. Given $\left(M_{n}\right)_{n \geq 0}$, consider the branching process $\left(Z_{n}\right)_{n \geq 0}$ such that $Z_{0}=1$ and the generating function of Z_{n} is $g_{0} \circ g_{1} \circ \cdots \circ g_{n-1}(s), 0 \leq s<1$. The aim of this study is to determine the asymptotic behavior of the survival probability of $\left(Z_{n}\right)$, as $n \rightarrow+\infty$. The branching processes in markovian random environment has been developed by several authors, in particular by K. B. Athreya and S. Karlin [1]. However, the asymptotic behavior of the survival probability of such a process is not yet known. Consider the function $h: G \rightarrow \overline{\mathbb{R}}_{+}, g \mapsto h(g):=g^{\prime}(1)$. The image of the probability $\bar{F}(i, j, \mathrm{~d} x)$ by the map h is denoted by $F(i, j, \mathrm{~d} x)$. Assume in this paper the following hypotheses (H) :

H1) there exist $\alpha>0$, such that for all $\lambda \in \mathbb{C}$ satisfying $|\operatorname{Re} \lambda| \leq \alpha$, we have

$$
\sup _{(i, j) \in E \times E}|\widehat{F}(i, j, \lambda)|<+\infty, \quad \text { where } \widehat{F}(i, j, \lambda)=\int_{\mathbb{R}} e^{\lambda t} F(i, j, \mathrm{~d} t) ;
$$

H2) there exist $n_{1} \geq 1$ and $\left(i_{0}, j_{0}\right) \in E \times E$, such that the measure $\mathbb{P}_{i_{0}}\left(X_{n_{1}}=j, S_{n_{1}} \in \mathrm{~d} x\right)$ has an absolutely continuous component with respect to the Lebesgue measure on \mathbb{R};
H3) $\sum_{(i, j) \in E \times E} \nu(i) P(i, j) \int_{\mathbb{R}} t F(i, j, \mathrm{~d} t)=0$.
We have
Theorem 1 Under hypotheses (H), for any $(i, j) \in E \times E$, there exists a constant $\beta_{i, j}>0$, such that

$$
\lim _{n \rightarrow+\infty} \sqrt{n} \mathbb{P}_{i}\left(Z_{n}>0, X_{n}=j\right)=\beta_{i, j} .
$$

To prove this result, we first prove a local limit theorem for a semi-Markov chain.

References

[1] K. B. Athreya, S. Karlin, On branching processes with random environments: I and II, Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858.
[2] A. A. Borovkov, New limit theorems in boundary problems for sums of independent terms, Sibirsk. Mat. Zh. 3 (1962) 645-694; English transl. in Selected Transl. Math. Stat. and Probab. 5 Amer. Math. Soc, Providence, R.I., (1965) 315-372.
[3] E. L. Presman, Boundary problems for sums of lattice random varialbles defined on a finite regular Markov chain, Ther. Veroyatnost. i Primenen 12 (2) (1967) 373-380; English transl. in Theory Proba. Appl. 12 (1967) 323-328.
[4] E. L. Presman, Factorization methods and a boundary value problem for sum of random variables defined on a Markov chain, Math. USSR-Izv. 3 (4) (1969), 815-852.
[5] E. Le Page, Y. Ye, The survival probability of a critical branching process in a Markovian random environment, Comptes Rendus Math., 348 (5) (2009), 301-304.

