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{ω(x , n) : (x , n) ∈ Zd × Z} - family of iid Ber(p) rv

For m ≤ n write (y ,m)→ (x , n) if there are (xm,m), . . . , (xn, n)
s. th. xm = y , xn = x , ‖xk − xk−1‖ ≤ 1, ω(xk , k) = 1.
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s. th. xm = y , xn = x , ‖xk − xk−1‖ ≤ 1, ω(xk , k) = 1.

Define (ηn)n∈Z by ηn(x) = 1 ⇐⇒ ∃y ∈ Zd : (y ,−∞)→ (x , n)

p > pc ⇒ L(η0) = ν, where ν is the upper invariant measure and

ν
(
η0(x) = 1

)
= P

(
∃y ∈ Zd : (y ,−∞)→ (x , 0)

)
.
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Random walk on the cluster
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C = {(x , n) ∈ Zd × Z : ηn(x) = 1}
for (x , n) ∈ C define U(x , n) = {(y , n − 1) ∈ C : ‖x − y‖ ≤ 1}
On A0 = {η0(0) = 1} set

X0 = 0, and for n ≥ 1

P
(
Xn+1 = y |Xn = x

)
=

1

#U(x ,−n)
,
(
y ,−(n + 1)

)
∈ U(x ,−n).



Strong LLN and annealed CLT

Theorem
We have

P
(1

n
Xn → 0

∣∣∣ω) = 1 for P( · |A0)-a.a. ω

and for all x ∈ Rd

lim
n→∞

P
( 1√

n
Xn ≤ x

∣∣∣A0

)
= Φ(x),

where Φ is df of a non-trivial d-dimensional normal distribution.
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For the proof: Find suitable regeneration structure with finite second
moments of the distance between regeneration times.
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The process of potential ancestors of (0, 0)

On A0 let
A
(1)
1 = (x1, 1), . . . ,A

(k1)
1 = (xk1 , 1)

be the randomly ordered set of potential ancestors (PA) of (0, 0), i.e.

(0, 0)→ (xi , 1), i = 1, . . . , k1.

Given A
(1)
n , . . . ,A

(kn)
n :

Let Ã
(1)
n+1(i), . . . , Ã

(mi )
n+1 (i) be the PA of A

(i)
n ordered randomly.

Concatenate them to get

Ã
(1)
n+1(1), . . . , Ã

(m1)
n+1 (1), . . . , Ã

(1)
n+1(kn), . . . , Ã

(mkn )

n+1 (kn).

From left to right discard PA appearing for the second, third etc.
time. Renumbering the remaining set of PA we get

A
(1)
n+1, . . . ,A

(kn+1)
n+1 .



Regeneration times

On A0 define

T0 := 0, Ti+1 := inf{n > Ti : (A(1)
n , n)→∞}, i ≥ 0

τi := Ti − Ti−1, Yi := XTi − XTi−1 , i ≥ 1.

Between Ti and Ti+1, (Xn, n) takes the paths from (A
(1)
Ti
,Ti ) to

(A
(1)
Ti+1

,Ti+1).

Proposition

Conditioned on A0, the sequence
(
(Yi , τi )

)
i≥1 is iid, E[Y1|A0] = 0 and

there are C , γ ∈ (0,∞) s.th.

P(|Y1| > n|A0),P(τ1 > n|A0) ≤ Ce−γn.
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Regeneration times - steps of proof

Symmetry of Y1 follows from the construction

Roughly, independence of
(
(Yi , τi )

)
i≥1 follows from the fact that the

components depend on different time slices of the ω’s

For exponentially decaying tales show (without conditioning on A0)

τ1 ≤
N∑

k=1

ρk +
N−1∑
k=1

σk , where

ρk = time that a space-time RW needs to find an open site

σk = depth of cluster started in an open site

N geometrically distributed


