Ancestry in the face of competition: Directed random walk on the directed percolation cluster

Andrej Depperschmidt
work in progress with M. Birkner, J. Černý and N. Gantert

Eindhoven, 15/03/2011

Discrete time contact process on \mathbb{Z}^{d}

- $\left\{\omega(x, n):(x, n) \in \mathbb{Z}^{d} \times \mathbb{Z}\right\}$ - family of iid $\operatorname{Ber}(p) \mathrm{rv}$
- For $m \leq n$ write $(y, m) \rightarrow(x, n)$ if there are $\left(x_{m}, m\right), \ldots,\left(x_{n}, n\right)$ s. th. $x_{m}=y, x_{n}=x,\left\|x_{k}-x_{k-1}\right\| \leq 1, \omega\left(x_{k}, k\right)=1$.

Discrete time contact process on \mathbb{Z}^{d}

- $\left\{\omega(x, n):(x, n) \in \mathbb{Z}^{d} \times \mathbb{Z}\right\}$ - family of iid $\operatorname{Ber}(p) \mathrm{rv}$
- For $m \leq n$ write $(y, m) \rightarrow(x, n)$ if there are $\left(x_{m}, m\right), \ldots,\left(x_{n}, n\right)$ s. th. $x_{m}=y, x_{n}=x,\left\|x_{k}-x_{k-1}\right\| \leq 1, \omega\left(x_{k}, k\right)=1$.
- Define $\left(\eta_{n}\right)_{n \in \mathbb{Z}}$ by $\eta_{n}(x)=1 \Longleftrightarrow \exists y \in \mathbb{Z}^{d}:(y,-\infty) \rightarrow(x, n)$
- $p>p_{c} \Rightarrow \mathcal{L}\left(\eta_{0}\right)=\nu$, where ν is the upper invariant measure and

$$
\nu\left(\eta_{0}(x)=1\right)=\mathbf{P}\left(\exists y \in \mathbb{Z}^{d}:(y,-\infty) \rightarrow(x, 0)\right)
$$

Discrete time contact process on \mathbb{Z}^{d}

- $\left\{\omega(x, n):(x, n) \in \mathbb{Z}^{d} \times \mathbb{Z}\right\}$ - family of iid $\operatorname{Ber}(p) \mathrm{rv}$
- For $m \leq n$ write $(y, m) \rightarrow(x, n)$ if there are $\left(x_{m}, m\right), \ldots,\left(x_{n}, n\right)$ s. th. $x_{m}=y, x_{n}=x,\left\|x_{k}-x_{k-1}\right\| \leq 1, \omega\left(x_{k}, k\right)=1$.
- Define $\left(\eta_{n}\right)_{n \in \mathbb{Z}}$ by $\eta_{n}(x)=1 \Longleftrightarrow \exists y \in \mathbb{Z}^{d}:(y,-\infty) \rightarrow(x, n)$
- $p>p_{c} \Rightarrow \mathcal{L}\left(\eta_{0}\right)=\nu$, where ν is the upper invariant measure and

$$
\nu\left(\eta_{0}(x)=1\right)=\mathbf{P}\left(\exists y \in \mathbb{Z}^{d}:(y,-\infty) \rightarrow(x, 0)\right)
$$

Random walk on the cluster

- $\mathcal{C}=\left\{(x, n) \in \mathbb{Z}^{d} \times \mathbb{Z}: \eta_{n}(x)=1\right\}$
- for $(x, n) \in \mathcal{C}$ define $U(x, n)=\{(y, n-1) \in \mathcal{C}:\|x-y\| \leq 1\}$
- On $\mathcal{A}_{0}=\left\{\eta_{0}(0)=1\right\}$ set

$$
\begin{aligned}
X_{0} & =0, \text { and for } n \geq 1 \\
\mathbf{P}\left(X_{n+1}=y \mid X_{n}=x\right) & =\frac{1}{\# U(x,-n)}, \quad(y,-(n+1)) \in U(x,-n) .
\end{aligned}
$$

Strong LLN and annealed CLT

Theorem

We have

$$
\mathbf{P}\left(\left.\frac{1}{n} X_{n} \rightarrow 0 \right\rvert\, \omega\right)=1 \quad \text { for } \quad \mathbf{P}\left(\cdot \mid \mathcal{A}_{0}\right) \text {-a.a. } \omega
$$

and for all $x \in \mathbb{R}^{d}$

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left.\frac{1}{\sqrt{n}} X_{n} \leq x \right\rvert\, \mathcal{A}_{0}\right)=\Phi(x)
$$

where Φ is df of a non-trivial d-dimensional normal distribution.

Strong LLN and annealed CLT

Theorem

We have

$$
\mathbf{P}\left(\left.\frac{1}{n} X_{n} \rightarrow 0 \right\rvert\, \omega\right)=1 \quad \text { for } \quad \mathbf{P}\left(\cdot \mid \mathcal{A}_{0}\right) \text {-a.a. } \omega
$$

and for all $x \in \mathbb{R}^{d}$

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left.\frac{1}{\sqrt{n}} X_{n} \leq x \right\rvert\, \mathcal{A}_{0}\right)=\Phi(x)
$$

where Φ is df of a non-trivial d-dimensional normal distribution.
For the proof: Find suitable regeneration structure with finite second moments of the distance between regeneration times.

Previous work

RWRE

- Dolgopyat, Keller and Liverani (2008)
- Markovian environment, restrictive conditions
- Avena, den Hollander, Redig (2009)
- LLN, CLT under the cone mixing condition, which does not hold for the contact process (in discrete and in continuous time)

Previous work

RWRE

- Dolgopyat, Keller and Liverani (2008)
- Markovian environment, restrictive conditions
- Avena, den Hollander, Redig (2009)
- LLN, CLT under the cone mixing condition, which does not hold for the contact process (in discrete and in continuous time)

Contact process, based on arguments from Kuczek (1989)

- Neuhauser (1992)
- Ergodic properties of multitype contact process
- Valesin (2010)
- Coexistence and extinction of one type for multitype contact process

The process of potential ancestors of $(0,0)$

- On \mathcal{A}_{0} let

$$
A_{1}^{(1)}=\left(x_{1}, 1\right), \ldots, A_{1}^{\left(k_{1}\right)}=\left(x_{k_{1}}, 1\right)
$$

be the randomly ordered set of potential ancestors (PA) of $(0,0)$, i.e.

$$
(0,0) \rightarrow\left(x_{i}, 1\right), i=1, \ldots, k_{1} .
$$

- Given $A_{n}^{(1)}, \ldots, A_{n}^{\left(k_{n}\right)}$:
- Let $\widetilde{A}_{n+1}^{(1)}(i), \ldots, \widetilde{A}_{n+1}^{\left(m_{i}\right)}(i)$ be the PA of $A_{n}^{(i)}$ ordered randomly.
- Concatenate them to get

$$
\widetilde{A}_{n+1}^{(1)}(1), \ldots, \widetilde{A}_{n+1}^{\left(m_{1}\right)}(1), \ldots, \widetilde{A}_{n+1}^{(1)}\left(k_{n}\right), \ldots, \widetilde{A}_{n+1}^{\left(m_{k_{n}}\right)}\left(k_{n}\right)
$$

From left to right discard PA appearing for the second, third etc. time. Renumbering the remaining set of PA we get

$$
A_{n+1}^{(1)}, \ldots, A_{n+1}^{\left(k_{n+1}\right)}
$$

Regeneration times

- On \mathcal{A}_{0} define

$$
\begin{aligned}
T_{0} & :=0, & T_{i+1} & :=\inf \left\{n>T_{i}:\left(A_{n}^{(1)}, n\right) \rightarrow \infty\right\}, i \geq 0 \\
\tau_{i} & :=T_{i}-T_{i-1}, & Y_{i} & :=X_{T_{i}}-X_{T_{i-1}}, i \geq 1 .
\end{aligned}
$$

Between T_{i} and $T_{i+1},\left(X_{n}, n\right)$ takes the paths from $\left(A_{T_{i}}^{(1)}, T_{i}\right)$ to $\left(A_{T_{i+1}}^{(1)}, T_{i+1}\right)$.

Regeneration times

- On \mathcal{A}_{0} define

$$
\begin{aligned}
T_{0} & :=0, & T_{i+1} & :=\inf \left\{n>T_{i}:\left(A_{n}^{(1)}, n\right) \rightarrow \infty\right\}, i \geq 0 \\
\tau_{i} & :=T_{i}-T_{i-1}, & Y_{i} & :=X_{T_{i}}-X_{T_{i-1}}, i \geq 1 .
\end{aligned}
$$

Between T_{i} and $T_{i+1},\left(X_{n}, n\right)$ takes the paths from $\left(A_{T_{i}}^{(1)}, T_{i}\right)$ to $\left(A_{T_{i+1}}^{(1)}, T_{i+1}\right)$.

Proposition

Conditioned on \mathcal{A}_{0}, the sequence $\left(\left(Y_{i}, \tau_{i}\right)\right)_{i \geq 1}$ is iid, $\mathbf{E}\left[Y_{1} \mid \mathcal{A}_{0}\right]=0$ and there are $C, \gamma \in(0, \infty)$ s.th.

$$
\mathbf{P}\left(\left|Y_{1}\right|>n \mid \mathcal{A}_{0}\right), \mathbf{P}\left(\tau_{1}>n \mid \mathcal{A}_{0}\right) \leq C e^{-\gamma n} .
$$

Regeneration times - steps of proof

- Symmetry of Y_{1} follows from the construction
- Roughly, independence of $\left(\left(Y_{i}, \tau_{i}\right)\right)_{i \geq 1}$ follows from the fact that the components depend on different time slices of the ω 's
- For exponentially decaying tales show (without conditioning on \mathcal{A}_{0})
$\tau_{1} \leq \sum_{k=1}^{N} \rho_{k}+\sum_{k=1}^{N-1} \sigma_{k}$, where
$\rho_{k}=$ time that a space-time RW needs to find an open site
$\sigma_{k}=$ depth of cluster started in an open site
N geometrically distributed

