Mutually Catalytic Branching Processes and their Relatives ${ }^{1}$

Leif Döring

Paris 6 and Fondation Mathématique de Paris

March 17, 2011

[^0]
Symbiotic Branching SDE

$$
\left\{\begin{array}{l}
d u_{t}=\sqrt{\gamma u_{t} v_{t}} d B_{t}^{1} \\
d v_{t}=\sqrt{\gamma u_{t} v_{t}} d B_{t}^{2}
\end{array}\right.
$$

B_{t}^{1}, B_{t}^{2} are ϱ-correlated Brownian motions, i.e. $\left\langle B^{1}, B^{2}\right\rangle_{t}=\varrho t$. The model has two parameters:

- $\gamma>0$ is called branching rate
- $\varrho \in[-1,1]$ is called correlation parameter

Symbiotic Branching SDE

$$
\left\{\begin{array}{l}
d u_{t}=\sqrt{\gamma u_{t} v_{t}} d B_{t}^{1} \\
d v_{t}=\sqrt{\gamma u_{t} v_{t}} d B_{t}^{2}
\end{array}\right.
$$

B_{t}^{1}, B_{t}^{2} are ϱ-correlated Brownian motions, i.e. $\left\langle B^{1}, B^{2}\right\rangle_{t}=\varrho t$. The model has two parameters:

- $\gamma>0$ is called branching rate
- $\varrho \in[-1,1]$ is called correlation parameter
\rightarrow solutions interpolate between
- Neutral Wright-Fisher diffusion $(\varrho=-1)$

$$
d u_{t}=\sqrt{\gamma u_{t}\left(1-u_{t}\right)} d B_{t}
$$

- Linear SDE $(\varrho=1)$

$$
d u_{t}=\gamma u_{t} d B_{t}
$$

Symbiotic Branching SDE

Theorem (Blath, D., Etheridge '11)

Suppose $\varrho \in(-1,1)$ and $\gamma>0$, then
a) $\lim _{t \rightarrow \infty}\left(u_{t}, v_{t}\right) \stackrel{\text { a.s. }}{=}\left(u_{\infty}, v_{\infty}\right) \stackrel{\mathcal{L}}{=}\left(B_{\tau}^{1}, B_{\tau}^{2}\right)$, where

$$
\begin{gathered}
\tau=\inf \left\{t: B_{t}^{1} B_{t}^{2}=0\right\} \\
\text { "convergence to trivial states" }
\end{gathered}
$$

b)

$$
\begin{gathered}
\mathbb{E}\left[u_{t}^{p}\right] \text { is bounded in } t \geq 0 \quad \Longleftrightarrow \quad p<p(\varrho) \\
\text { "critical moment curve" }
\end{gathered}
$$

Results do NOT crucially depend on γ, only on ϱ !

Symbiotic Branching SPDE

Take indep. baby symbiotic branching SDEs for each point $k \in \mathbb{Z}^{d}$ + interaction (smoothing) between neighbors

$$
\left\{\begin{array}{l}
d u_{t}(k)=\Delta u_{t}(k) d t+\sqrt{\gamma u_{t}(k) v_{t}(k)} d B_{t}^{1}(k) \\
d v_{t}(k)=\Delta v_{t}(k) d t+\sqrt{\gamma u_{t}(k) v_{t}(k)} d B_{t}^{2}(k) \\
u_{0}(k) \geq 0 \\
v_{0}(k) \geq 0
\end{array}\right.
$$

Symbiotic Branching SPDE

Take indep. baby symbiotic branching SDEs for each point $k \in \mathbb{Z}^{d}$ + interaction (smoothing) between neighbors

$$
\left\{\begin{array}{l}
d u_{t}(k)=\Delta u_{t}(k) d t+\sqrt{\gamma u_{t}(k) v_{t}(k)} d B_{t}^{1}(k) \\
d v_{t}(k)=\Delta v_{t}(k) d t+\sqrt{\gamma u_{t}(k) v_{t}(k)} d B_{t}^{2}(k) \\
u_{0}(k) \geq 0 \\
v_{0}(k) \geq 0
\end{array}\right.
$$

\rightarrow solutions interpolate between

- "The" neutral stepping stone model $(\varrho=-1)$
- mutually catalytic super processes $(\varrho=0)$
- parabolic Anderson model with Brownian potential $(\varrho=1)$
- voter process ($\varrho=-1$ and $\gamma=\infty)$

Symbiotic Branching SPDE

Theorem (spatial version)

$$
d=1,2
$$

a) holds in law but NOT almost surely
b) holds equally
$d \geq 3$
a) does NOT hold (conjecture: only if $\varrho>0$ and γ large)
b) does NOT hold (depends on γ)

Symbiotic Branching SPDE

Theorem (spatial version)

$d=1,2$
a) holds in law but NOT almost surely
b) holds equally
$d \geq 3$
a) does NOT hold (conjecture: only if $\varrho>0$ and γ large)
b) does NOT hold (depends on γ)

Observation

- Theorem unifies classical results for boundary cases.
- Dependence on d, ϱ and γ.

How about sending γ to infinity? \rightarrow Mytnik/Klenke for $\varrho=0$

Symbiotic Branching SPDE with $\gamma=\infty$

Suppose E is the boundary of the first quadrant. Then the $\gamma=\infty$ limiting processes solve

$$
\binom{u_{t}(k)}{v_{t}(k)}=\binom{u_{0}(k)}{v_{0}(k)}+\binom{\int_{0}^{t} \Delta u_{s}(k) d s}{\int_{0}^{t} \Delta v_{s}(k) d s}+\int_{0}^{t} \int_{E}\left[y_{2}\binom{v_{s-}(k)}{u_{s-}(k)}+\left(y_{1}-1\right)\binom{u_{s-}(k)}{v_{s-}(k)}\right]\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(\{k\}, d s, d y)
$$

where \mathcal{N} is a point process on $\mathbb{Z}^{d} \times \mathbb{R}^{+} \times E$ with intensity measure

$$
\mathcal{N}^{\prime}(\{k\}, d s, d y)=I_{s}(k) d s \nu^{\varrho}(d y)
$$

with jump measure ("Lévy measure")

$$
\nu^{\varrho}\left(d\left(y_{1}, y_{2}\right)\right)= \begin{cases}C_{\varrho} \frac{y_{1}^{p(\varrho)-1}}{\left(y_{1}^{p(\varrho)}-1\right)^{2}} d y_{1} & : y_{2}=0 \\ C_{\varrho} \frac{y_{2}^{p(\varrho)-1}}{\left(y_{2}^{p(\varrho)}+1\right)^{2}} d y_{2} & : y_{1}=0\end{cases}
$$

and time inhomogeneous jump intensity

$$
I_{s}(k)=\left\{\begin{array}{ll}
\frac{\Delta v_{s-}(k)}{u_{s-}(k)} & : u_{s-}(k)>0 \\
\frac{\Delta u_{s-}(k)}{v_{s-}(k)} & : v_{s-}(k)>0
\end{array} .\right.
$$

$p(\varrho)$ is as in the theorem and $p(\varrho)>2$ precisely for $\varrho<0$

Symbiotic Branching SPDE with $\gamma=\infty(\varrho=-1)$

Step 1: Replace ν^{ϱ} by ν^{-1}

$$
\binom{u_{t}(k)}{v_{t}(k)}=\binom{u_{0}(k)}{v_{0}(k)}+\binom{\int_{0}^{t} \Delta u_{s}(k) d s}{\int_{0}^{t} \Delta v_{s}(k) d s}+\int_{0}^{t} \int_{E}\left[\begin{array}{c}
\left.\left.y_{2}\binom{v_{s-}(k)}{u_{s-}(k)}+\left(y_{1}-1\right)\binom{u_{s-}(k)}{v_{s-}(k)}\right]\left(\mathcal{N}-\mathcal{N}^{\prime}\right)(\{k\}, d s, d y),{ }^{2}\right) \\
v_{s}
\end{array}\right.
$$

where \mathcal{N} is a point process on $\mathbb{Z}^{d} \times \mathbb{R}^{+} \times E$ with intensity measure

$$
\mathcal{N}^{\prime}(\{k\}, d s, d y)=I_{s}(k) d s \nu^{-1}(d y)
$$

with jump measure ("Lévy measure")

$$
\nu^{-1}\left(d\left(y_{1}, y_{2}\right)\right)=\delta_{(0,1)}+\infty \delta_{(1,0)}
$$

and time inhomogeneous jump intensity

$$
I_{s}(k)=\left\{\begin{array}{ll}
\frac{\Delta v_{s-}(k)}{u_{s-}(k)} & : u_{s-}(k)>0 \\
\frac{\Delta u_{s-}(k)}{v_{s-}(k)} & : v_{s-}(k)>0
\end{array} .\right.
$$

Symbiotic Branching SPDE with $\gamma=\infty(\varrho=-1)$

Step 2: skip the infinite atom and cancel the compensation

$$
\binom{u_{t}(k)}{v_{t}(k)}=\binom{u_{0}(k)}{v_{0}(k)}+\int_{0}^{t} \int_{E} y_{2}\binom{v_{s-}(k)}{u_{s-}(k)} \mathcal{N}(\{k\}, d s, d y)
$$

where \mathcal{N} is a point process on $\mathbb{Z}^{d} \times \mathbb{R}^{+} \times E$ with intensity measure

$$
\mathcal{N}^{\prime}(\{k\}, d s, d y)=I_{s}(k) d s \nu^{-1}(d y)
$$

with jump measure ("Lévy measure")

$$
\nu^{-1}\left(d\left(y_{1}, y_{2}\right)\right)=\delta_{(0,1)}
$$

and time inhomogeneous jump intensity

$$
I_{s}(k)=\left\{\begin{array}{ll}
\frac{\Delta v_{s-}(k)}{u_{s-}(k)} & : u_{s-}(k)>0 \\
\frac{\Delta u_{s-}(k)}{u_{s-}(k)} & : v_{s-}(k)>0
\end{array} .\right.
$$

Symbiotic Branching SPDE with $\gamma=\infty(\varrho=-1)$

Step 3: assume all initial weights are 1

$$
\binom{u_{t}(k)}{v_{t}(k)}=\binom{u_{0}(k)}{v_{0}(k)}+\int_{0}^{t} \int_{E} y_{2}\binom{v_{s-}(k)}{u_{s-}(k)} \mathcal{N}(\{k\}, d s, d y)
$$

where \mathcal{N} is a point process on $\mathbb{Z}^{d} \times \mathbb{R}^{+} \times E$ with intensity measure

$$
\mathcal{N}^{\prime}(\{k\}, d s, d y)=I_{s}(k) d s \nu^{-1}(d y)
$$

with jump measure ("Lévy measure")

$$
\nu^{-1}\left(d\left(y_{1}, y_{2}\right)\right)=\delta_{(0,1)}
$$

and time inhomogeneous jump intensity

$$
\begin{aligned}
I_{s}(k) & = \begin{cases}\frac{\Delta v_{s-}(k)}{\Delta u_{s-}(k)} & : u_{s-}(k)>0 \\
\frac{1}{1} & : v_{s-}(k)>0\end{cases} \\
& =\frac{1}{2 d} \text { number of neighbors of different opinion. }
\end{aligned}
$$

By Itô's formula this is the standard "compound" voter process.

Symbiotic Branching SPDE with $\gamma=\infty$

Results? Not many... only

- coexistence for $\varrho \leq 0$
- rescaling for complete graph migration for $\varrho \leq 0$

References

Dawson, Perkins: "Long-time behavior in a mutually catalytic branching model", Ann. of Prob. '98

Blath, Döring, Etheridge: "On the Moments and the Interface of Symbiotic Branching", Ann. of Prob. '11
Etheridge, Fleischmann: "Compact interface property for symbiotic branching", SPA '04
Klenke, Mytnik: "Longtime Behavior of Mutually Catalytic Branching", Ann. of Prob. '11
Klenke, Mytnik: "Infinite Rate Mutually Catalytic Branching", Ann. of Prob. '10
Klenke, Mytnik: "Construction of Inf. Rate Mutually Catalytic Branching", '11
Klenke, Oehler: "Trotter Approach to Infinite Rate Mutually Catalytic Branching", Ann. of Prob. '10

[^0]: ${ }^{1}$ Keywords: Super Processes, "The" Stepping Stone Model, Generalized Voter Models, Parabolic Anderson Model

