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A Moran-type Population Model

N — population size;
each individual has a type (a number ∈ [0, 1])

Markov dynamics in discrete time;
at each step happens one of the events:

1 For each pair of individuals — reproduction:

(A,B) −−−−→ (A,A) or (B ,B)

each event with probability proportional to 1

2 For each individual — mutation:

A −−−−→ new type not present in population

with probability proportional to θ > 0
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Partition Representation

Population of size N −−−−→ allele partition λ = (λ1, . . . , λ`):

λ1 + · · ·+ λ` = N

λ1 ≥ · · · ≥ λ` > 0

λi = # of individuals with the ith most common type

Example.

(A,B ,A,C ,D,D,D,A,D,E ,B ,B ,E ,F ,D)
↓

λ = (5, 3, 3, 2, 1, 1)
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Partition Representation

Moran-type model (population size = N)

−−−−→ Markov chain T
(N)
θ on Part(N) (partitions of N) with

transition probabilities:

(λ1, . . . , λ`)→ (λ1, . . . , λi − 1, . . . , λj + 1, . . . λ`)

with probability 1
Z
λiλj, i , j = 1, . . . , `, i 6= j ;

(λ1, . . . , λ`)→ (λ1, . . . , λ`)

with probability 1
Z

∑`
k=1λk(λk − 1),

(λ1, . . . , λ`)→ (λ1, . . . , λi − 1, . . . λ`, 1)

with probability 1
Z
θλi, i = 1, . . . , `.

Z = N(N − 1 + θ) — normalizing constant.
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Limit N → +∞

Scale time:
one step of the Nth Markov chain corresponds to
time interval ∆t ≈ 1/N2

Scale space:
embed all sets Part(N) into the infinite-dimensional simplex

∇∞ =

{
x = (x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi ≤ 1

}
as

Part(N) 3 λ = (λ1, . . . , λ`) 7→
(
λ1
N
, . . . ,

λ`
N
, 0, 0, . . .

)
∈ ∇∞.
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Limit N → +∞

Theorem [Ethier–Kurtz 1981]

1 As N → +∞ under the above space and time scalings,
the Markov chains T

(N)
θ on partitions converge to a

continuous-time Markov process (Xθ(t))t≥0 on ∇∞.
It has continuous sample paths and can start from any
point of ∇∞ (= infinite-dimensional diffusion).

2 The process Xθ(t) has a unique invariant probability
distribution on ∇∞ — the Poisson-Dirichlet distribution
PD(θ). The process Xθ(t) is reversible and ergodic with
respect to PD(θ).

3 The generator of Xθ(t) is explicitly computed (see below).

Xθ(t) is called the
Infinitely Many Neutral Alleles Diffusion Model (IMNA)
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Scheme of proof

Approximate infinite-dimensional diffusions Xθ(t) on ∇∞ by
finite-dimensional Wright-Fisher diffusions on simplices{

x1 ≥ 0, . . . , xK ≥ 0:
∑K

i=1 xi = 1
}

of growing dimension

The Markov chains T
(N)
θ have the same limit as these finite-

dimensional diffusions

On finite-dimensional simplices the invariant distribution is the
symmetric Dirichlet distribution (= “multivariate Beta distribu-
tion”) with density

Γ(Kγ)

Γ(γ)K
xγ−11 . . . xγ−1K dx1 . . . dxK−1, γ =

θ

K − 1

These distributions converge to PD(θ) as K → +∞
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Scheme of proof

The finite-dimensional generators are

K∑
i ,j=1

xi(δij − xj)
∂2

∂xi∂xj
− θ

K − 1

K∑
i=1

(Kxi − 1)
∂

∂xi

The infinite-dimensional generator is

∞∑
i ,j=1

xi(δij − xj)
∂2

∂xi∂xj
− θ

∞∑
i=1

xi
∂

∂xi
.

It acts on continuous symmetric polynomials in the coordinates
x1, x2, . . . (= polynomials in pr (x) :=

∑∞
i=1 x r

i , r = 2, 3, . . . ).
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Two-parameter generalization

Two-parameter Poisson-Dirichlet distribution [Pitman 1992],
[Pitman-Yor 1997]

PD(α,θ) (0 ≤ α < 1, θ > −α)
— probability measures on the infinite-dimensional simplex ∇∞

PD(θ) ≡ PD(0, θ)

Program

1 Construct Markov chains T
(N)
α,θ on Part(N)

2 Study their limit as N → +∞

3 Thus obtain infinite-dimensional diffusions Xα,θ(t) on ∇∞
preserving PD(α, θ).
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Markov chains T
(N)
θ as two-step processes

Partitions = Young diagrams

λ = (6, 3, 1) :

One step of the chain T
(N)
θ = move a box from one place to

another:

−

−−−−→
+

move a box = delete then add
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Markov chains T
(N)
θ as two-step processes

Delete a box

Choose any box uniformly, delete it; then rearrange

Add a box: “Chinese restaurant”

Add a box next to m other boxes with probability
m

N + θ
;

then rearrange

Or add a new row with probability
θ

N + θ

The Markov chain T
(N)
θ = delete-add process
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Two-parameter Markov chains T
(N)
α,θ

Modified “add a box”: Two-parameter “Chinese restaurant”

Add a box next to m other boxes with probability
m − α
N + θ

;

then rearrange

Or add a new row with probability
θ + `(λ) · α

N + θ

Two-parameter Markov chains T
(N)
α,θ (here Z = N(N − 1 + θ))

(λ1, . . . , λ`)→ (λ1, . . . , λi − 1, . . . , λj + 1, . . . λ`)

with probability 1
Z
λi(λj −α), i , j = 1, . . . , `, i 6= j ;

(λ1, . . . , λ`)→ (λ1, . . . , λ`)

with probability 1
Z

∑`
k=1λk(λk − 1−α),

(λ1, . . . , λ`)→ (λ1, . . . , λi − 1, . . . λ`, 1)

with probability 1
Z

(θ + `α)λi, i = 1, . . . , `.
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The Poisson-Dirichlet distributions PD(α, θ)

Start from the empty diagram and add N boxes according to
the Chinese restaurant.

∅
addα,θ−−−−→

addα,θ−−−−→
addα,θ−−−−→ . . .

addα,θ−−−−→
Probability

measure M
(N)
α,θ

on Part(N)

M
(N)
α,θ ←−−−→ Ewens-Pitman sampling formula:

M
(N)
α,θ (λ) =

N!

(θ)N
·θ(θ + α) . . . (θ + (`(λ)− 1)α)∏

λi !
∏

[λ : k]!
·
`(λ)∏
i=1

λi∏
j=2

(j−1−α)

PD(α, θ) is the limit of M
(N)
α,θ as N → +∞
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The processes Xα,θ on ∇∞
Theorem [P.]

1 As N → +∞, under the space and time scalings, the
Markov chains T

(N)
α,θ converge to an infinite-dimensional

diffusion process (Xα,θ(t))t≥0 on ∇∞.

2 The Poisson-Dirichlet distribution PD(α, θ) is the unique
invariant probability distribution for Xα,θ(t). The process
is reversible and ergodic with respect to PD(α, θ).

3 The generator of Xα,θ is explicitly computed:

∞∑
i ,j=1

xi(δij − xj)
∂2

∂xi∂xj
−
∞∑
i=1

(θxi + α)
∂

∂xi
.

It acts on continuous symmetric polynomials in the
coordinates x1, x2, . . . .
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Scheme of proof

No finite-dimensional approximating diffusions!

1 The transition operators of the Markov chains T
(N)
α,θ act

on symmetric functions in the coordinates λ1, . . . , λ` of a
partition λ ∈ Part(N).

2 Write the operators T
(N)
θ in a suitable basis (monomial

symmetric functions).

3 Pass to N → +∞ limit of generators (this is done in a
purely algebraic way)

4 Use general technique of Trotter-Kurtz to deduce
convergence of the processes
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Thank you for your attention
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Figure: x1(t) ≥ x2(t) ≥ x3(t) ≥ x4(t)


