Infinite-dimensional Diffusions Related to the Two-parameter Poisson-Dirichlet Distributions

Leonid Petrov
Institute for Information Transmission Problems (Moscow, Russia)

March 14, 2011

A Moran-type Population Model

N - population size; each individual has a type (a number $\in[0,1]$)

A Moran-type Population Model

N - population size;
each individual has a type (a number $\in[0,1]$)
Markov dynamics in discrete time; at each step happens one of the events:

A Moran-type Population Model

N - population size;
each individual has a type (a number $\in[0,1]$)
Markov dynamics in discrete time; at each step happens one of the events:
(1) For each pair of individuals - reproduction:

$$
(A, B) \longrightarrow(A, A) \text { or }(B, B)
$$

each event with probability proportional to 1

A Moran-type Population Model

N - population size;
each individual has a type (a number $\in[0,1]$)
Markov dynamics in discrete time; at each step happens one of the events:
(1) For each pair of individuals - reproduction:

$$
(A, B) \longrightarrow(A, A) \text { or }(B, B)
$$

each event with probability proportional to 1
(2) For each individual - mutation:
$A \longrightarrow$ new type not present in population with probability proportional to $\theta>0$

Partition Representation

Population of size $N \longrightarrow$ allele partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$:

$$
\lambda_{1}+\cdots+\lambda_{\ell}=N
$$

$$
\lambda_{1} \geq \cdots \geq \lambda_{\ell}>0
$$

$\lambda_{i}=\#$ of individuals with the i th most common type

Partition Representation

Population of size $N \longrightarrow$ allele partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$:

$$
\begin{aligned}
& \lambda_{1}+\cdots+\lambda_{\ell}=N \\
& \lambda_{1} \geq \cdots \geq \lambda_{\ell}>0
\end{aligned}
$$

$\lambda_{i}=\#$ of individuals with the i th most common type

Example.

$$
\begin{gathered}
(A, B, A, C, D, D, D, A, D, E, B, B, E, F, D) \\
\downarrow \\
\lambda=(5,3,3,2,1,1)
\end{gathered}
$$

Partition Representation

Moran-type model (population size $=N$)
\longrightarrow Markov chain $T_{\theta}^{(N)}$ on $\operatorname{Part}(N)$ (partitions of N) with transition probabilities:

Partition Representation

Moran-type model (population size $=N$)
\longrightarrow Markov chain $T_{\theta}^{(N)}$ on $\operatorname{Part}(N)$ (partitions of N) with transition probabilities:

- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{j}+1, \ldots \lambda_{\ell}\right)$ with probability $\frac{1}{\mathbf{z}} \boldsymbol{\lambda}_{\mathbf{i}} \boldsymbol{\lambda}_{\mathbf{j}}, i, j=1, \ldots, \ell, i \neq j$;

Partition Representation

Moran-type model (population size $=N$)
\longrightarrow Markov chain $T_{\theta}^{(N)}$ on $\operatorname{Part}(N)$ (partitions of N) with transition probabilities:

- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{j}+1, \ldots \lambda_{\ell}\right)$ with probability $\frac{1}{\mathbf{Z}} \boldsymbol{\lambda}_{\mathbf{i}} \boldsymbol{\lambda}_{\mathbf{j}}, i, j=1, \ldots, \ell, i \neq j$;
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$
with probability $\frac{1}{\mathrm{Z}} \sum_{\mathrm{k}=1}^{\ell} \boldsymbol{\lambda}_{\mathrm{k}}\left(\boldsymbol{\lambda}_{\mathrm{k}}-1\right)$,

Partition Representation

Moran-type model (population size $=N$)
\longrightarrow Markov chain $T_{\theta}^{(N)}$ on $\operatorname{Part}(N)$ (partitions of N) with transition probabilities:

- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{j}+1, \ldots \lambda_{\ell}\right)$ with probability $\frac{1}{\mathbf{Z}} \boldsymbol{\lambda}_{\mathbf{i}} \boldsymbol{\lambda}_{\mathbf{j}}, i, j=1, \ldots, \ell, i \neq j$;
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$
with probability $\frac{\mathbf{1}}{\mathbf{Z}} \sum_{\mathbf{k}=1}^{\boldsymbol{\ell}} \boldsymbol{\lambda}_{\mathbf{k}}\left(\boldsymbol{\lambda}_{\mathbf{k}}-\mathbf{1}\right)$,
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots \lambda_{\ell}, 1\right)$
with probability $\frac{1}{\mathbf{Z}} \boldsymbol{\theta} \boldsymbol{\lambda}_{\mathbf{i}}, i=1, \ldots, \ell$.
$Z=N(N-1+\theta)-$ normalizing constant.

Limit $N \rightarrow+\infty$

Scale time: one step of the N th Markov chain corresponds to time interval $\Delta t \approx 1 / N^{2}$

Limit $N \rightarrow+\infty$

Scale time: one step of the N th Markov chain corresponds to time interval $\Delta t \approx 1 / N^{2}$

Scale space: embed all sets $\operatorname{Part}(N)$ into the infinite-dimensional simplex

$$
\bar{\nabla}_{\infty}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{1} \geq x_{2} \geq \cdots \geq 0, \sum_{i=1}^{\infty} x_{i} \leq 1\right\}
$$

as
$\operatorname{Part}(N) \ni \lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \mapsto\left(\frac{\lambda_{1}}{N}, \ldots, \frac{\lambda_{\ell}}{N}, 0,0, \ldots\right) \in \bar{\nabla}_{\infty}$.

Limit $N \rightarrow+\infty$

Theorem [Ethier-Kurtz 1981]

(1) As $N \rightarrow+\infty$ under the above space and time scalings, the Markov chains $T_{\theta}^{(N)}$ on partitions converge to a continuous-time Markov process $\left(X_{\theta}(t)\right)_{t \geq 0}$ on $\bar{\nabla}_{\infty}$. It has continuous sample paths and can start from any point of $\bar{\nabla}_{\infty}$ ($=$ infinite-dimensional diffusion).

Limit $N \rightarrow+\infty$

Theorem [Ethier-Kurtz 1981]

(1) As $N \rightarrow+\infty$ under the above space and time scalings, the Markov chains $T_{\theta}^{(N)}$ on partitions converge to a continuous-time Markov process $\left(X_{\theta}(t)\right)_{t \geq 0}$ on $\bar{\nabla}_{\infty}$. It has continuous sample paths and can start from any point of $\bar{\nabla}_{\infty}$ ($=$ infinite-dimensional diffusion).
(2) The process $X_{\theta}(t)$ has a unique invariant probability distribution on $\bar{\nabla}_{\infty}$ - the Poisson-Dirichlet distribution $P D(\theta)$. The process $X_{\theta}(t)$ is reversible and ergodic with respect to $P D(\theta)$.

Limit $N \rightarrow+\infty$

Theorem [Ethier-Kurtz 1981]

(1) As $N \rightarrow+\infty$ under the above space and time scalings, the Markov chains $T_{\theta}^{(N)}$ on partitions converge to a continuous-time Markov process $\left(X_{\theta}(t)\right)_{t \geq 0}$ on $\bar{\nabla}_{\infty}$. It has continuous sample paths and can start from any point of $\bar{\nabla}_{\infty}$ ($=$ infinite-dimensional diffusion).
(2) The process $X_{\theta}(t)$ has a unique invariant probability distribution on $\bar{\nabla}_{\infty}$ - the Poisson-Dirichlet distribution $P D(\theta)$. The process $X_{\theta}(t)$ is reversible and ergodic with respect to $P D(\theta)$.
(3) The generator of $X_{\theta}(t)$ is explicitly computed (see below).
$X_{\theta}(t)$ is called the Infinitely Many Neutral Alleles Diffusion Model (IMNA)

Scheme of proof

Approximate infinite-dimensional diffusions $X_{\theta}(t)$ on $\bar{\nabla}_{\infty}$ by finite-dimensional Wright-Fisher diffusions on simplices

$$
\left\{x_{1} \geq 0, \ldots, x_{K} \geq 0: \sum_{i=1}^{K} x_{i}=1\right\} \text { of growing dimension }
$$

Scheme of proof

Approximate infinite-dimensional diffusions $X_{\theta}(t)$ on $\bar{\nabla}_{\infty}$ by finite-dimensional Wright-Fisher diffusions on simplices

$$
\left\{x_{1} \geq 0, \ldots, x_{K} \geq 0: \sum_{i=1}^{K} x_{i}=1\right\} \text { of growing dimension }
$$

The Markov chains $T_{\theta}^{(N)}$ have the same limit as these finitedimensional diffusions

Scheme of proof

Approximate infinite-dimensional diffusions $X_{\theta}(t)$ on $\bar{\nabla}_{\infty}$ by finite-dimensional Wright-Fisher diffusions on simplices
$\left\{x_{1} \geq 0, \ldots, x_{K} \geq 0: \sum_{i=1}^{K} x_{i}=1\right\}$ of growing dimension
The Markov chains $T_{\theta}^{(N)}$ have the same limit as these finitedimensional diffusions

On finite-dimensional simplices the invariant distribution is the symmetric Dirichlet distribution ($=$ "multivariate Beta distribution") with density

$$
\frac{\Gamma(K \gamma)}{\Gamma(\gamma)^{K}} x_{1}^{\gamma-1} \ldots x_{K}^{\gamma-1} d x_{1} \ldots d x_{K-1}, \quad \gamma=\frac{\theta}{K-1}
$$

These distributions converge to $P D(\theta)$ as $K \rightarrow+\infty$

Scheme of proof

The finite-dimensional generators are

$$
\sum_{i, j=1}^{K} x_{i}\left(\delta_{i j}-x_{j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\frac{\theta}{K-1} \sum_{i=1}^{K}\left(K x_{i}-1\right) \frac{\partial}{\partial x_{i}}
$$

Scheme of proof

The finite-dimensional generators are

$$
\sum_{i, j=1}^{K} x_{i}\left(\delta_{i j}-x_{j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\frac{\theta}{K-1} \sum_{i=1}^{K}\left(K x_{i}-1\right) \frac{\partial}{\partial x_{i}}
$$

The infinite-dimensional generator is

$$
\sum_{i, j=1}^{\infty} x_{i}\left(\delta_{i j}-x_{j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\theta \sum_{i=1}^{\infty} x_{i} \frac{\partial}{\partial x_{i}}
$$

It acts on continuous symmetric polynomials in the coordinates $x_{1}, x_{2}, \ldots\left(=\right.$ polynomials in $\left.p_{r}(x):=\sum_{i=1}^{\infty} x_{i}^{r}, r=2,3, \ldots\right)$.

Two-parameter generalization

Two-parameter Poisson-Dirichlet distribution [Pitman 1992], [Pitman-Yor 1997]
$\mathbf{P D}(\boldsymbol{\alpha}, \boldsymbol{\theta})(0 \leq \alpha<1, \theta>-\alpha)$
— probability measures on the infinite-dimensional simplex $\bar{\nabla}_{\infty}$
$P D(\theta) \equiv P D(0, \theta)$

Two-parameter generalization

Two-parameter Poisson-Dirichlet distribution [Pitman 1992], [Pitman-Yor 1997]
$\mathbf{P D}(\boldsymbol{\alpha}, \boldsymbol{\theta})(0 \leq \alpha<1, \theta>-\alpha)$

- probability measures on the infinite-dimensional simplex $\bar{\nabla}_{\infty}$
$P D(\theta) \equiv P D(0, \theta)$

Program

(1) Construct Markov chains $T_{\alpha, \theta}^{(N)}$ on $\operatorname{Part}(N)$
(2) Study their limit as $N \rightarrow+\infty$
(3) Thus obtain infinite-dimensional diffusions $X_{\alpha, \theta}(t)$ on $\bar{\nabla}_{\infty}$ preserving $P D(\alpha, \theta)$.

Markov chains $T_{\theta}^{(N)}$ as two-step processes

Partitions $=$ Young diagrams

$$
\lambda=(6,3,1):
$$

Markov chains $T_{\theta}^{(N)}$ as two-step processes

Partitions $=$ Young diagrams

$\lambda=(6,3,1):$

One step of the chain $T_{\theta}^{(N)}=$ move a box from one place to another:

Markov chains $T_{\theta}^{(N)}$ as two-step processes

Partitions $=$ Young diagrams

$\lambda=(6,3,1):$

One step of the chain $T_{\theta}^{(N)}=$ move a box from one place to another:

move a box $=$ delete then add

Markov chains $T_{\theta}^{(N)}$ as two-step processes

Delete a box
Choose any box uniformly, delete it; then rearrange

Markov chains $T_{\theta}^{(N)}$ as two-step processes

Delete a box
Choose any box uniformly, delete it; then rearrange
Add a box: "Chinese restaurant"

- Add a box next to m other boxes with probability $\frac{m}{N+\theta}$; then rearrange
- Or add a new row with probability $\frac{\theta}{N+\theta}$

Markov chains $T_{\theta}^{(N)}$ as two-step processes

Delete a box
Choose any box uniformly, delete it; then rearrange
Add a box: "Chinese restaurant"

- Add a box next to m other boxes with probability $\frac{m}{N+\theta}$; then rearrange
- Or add a new row with probability $\frac{\theta}{N+\theta}$

The Markov chain $T_{\theta}^{(N)}=$ delete-add process

Two-parameter Markov chains $T_{\alpha, \theta}^{(N)}$

Modified "add a box": Two-parameter "Chinese restaurant"

- Add a box next to m other boxes with probability $\frac{m-\alpha}{N+\theta}$; then rearrange
- Or add a new row with probability $\frac{\theta+\ell(\lambda) \cdot \alpha}{N+\theta}$

Two-parameter Markov chains $T_{\alpha, \theta}^{(N)}$

Modified "add a box": Two-parameter "Chinese restaurant"

- Add a box next to m other boxes with probability $\frac{m-\alpha}{N+\theta}$; then rearrange
- Or add a new row with probability $\frac{\theta+\ell(\lambda) \cdot \alpha}{N+\theta}$

Two-parameter Markov chains $T_{\alpha, \theta}^{(N)}$ (here $\left.Z=N(N-1+\theta)\right)$

- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{j}+1, \ldots \lambda_{\ell}\right)$ with probability $\frac{1}{\mathbf{z}} \lambda_{\mathbf{i}}\left(\lambda_{\mathbf{j}}-\alpha\right), i, j=1, \ldots, \ell, i \neq j$;
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$
with probability $\frac{1}{\mathbf{z}} \sum_{k=1}^{\ell} \lambda_{\mathbf{k}}\left(\lambda_{\mathrm{k}}-\mathbf{1}-\alpha\right)$,
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \rightarrow\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots \lambda_{\ell}, 1\right)$
with probability $\frac{1}{\mathbf{z}}(\boldsymbol{\theta}+\ell \alpha) \boldsymbol{\lambda}_{\mathbf{i}}, i=1, \ldots, \ell$.

The Poisson-Dirichlet distributions $\operatorname{PD}(\alpha, \theta)$

Start from the empty diagram and add N boxes according to the Chinese restaurant.

The Poisson-Dirichlet distributions $\operatorname{PD}(\alpha, \theta)$

Start from the empty diagram and add N boxes according to the Chinese restaurant.

$M_{\alpha, \theta}^{(N)} \longleftrightarrow$ Ewens-Pitman sampling formula:

$$
M_{\alpha, \theta}^{(N)}(\lambda)=\frac{N!}{(\theta)_{N}} \cdot \frac{\theta(\theta+\alpha) \ldots(\theta+(\ell(\lambda)-1) \alpha)}{\prod \lambda_{i}!\Pi[\lambda: k]!} \cdot \prod_{i=1}^{\ell(\lambda)} \prod_{j=2}^{\lambda_{i}}(j-1-\alpha)
$$

The Poisson-Dirichlet distributions $\operatorname{PD}(\alpha, \theta)$

Start from the empty diagram and add N boxes according to the Chinese restaurant.

$M_{\alpha, \theta}^{(N)} \longleftrightarrow$ Ewens-Pitman sampling formula:

$$
M_{\alpha, \theta}^{(N)}(\lambda)=\frac{N!}{(\theta)_{N}} \cdot \frac{\theta(\theta+\alpha) \ldots(\theta+(\ell(\lambda)-1) \alpha)}{\prod \lambda_{i}!\Pi[\lambda: k]!} \cdot \prod_{i=1}^{\ell(\lambda)} \prod_{j=2}^{\lambda_{i}}(j-1-\alpha)
$$

$P D(\alpha, \theta)$ is the limit of $M_{\alpha, \theta}^{(N)}$ as $N \rightarrow+\infty$

The processes $X_{\alpha, \theta}$ on $\bar{\nabla}_{\infty}$

Theorem [P.]

(1) As $N \rightarrow+\infty$, under the space and time scalings, the Markov chains $T_{\alpha, \theta}^{(N)}$ converge to an infinite-dimensional diffusion process $\left(X_{\alpha, \theta}(t)\right)_{t \geq 0}$ on $\bar{\nabla}_{\infty}$.

The processes $X_{\alpha, \theta}$ on $\bar{\nabla}_{\infty}$

Theorem [P.]

(1) As $N \rightarrow+\infty$, under the space and time scalings, the Markov chains $T_{\alpha, \theta}^{(N)}$ converge to an infinite-dimensional diffusion process $\left(X_{\alpha, \theta}(t)\right)_{t \geq 0}$ on $\bar{\nabla}_{\infty}$.
(2) The Poisson-Dirichlet distribution $\operatorname{PD}(\alpha, \theta)$ is the unique invariant probability distribution for $X_{\alpha, \theta}(t)$. The process is reversible and ergodic with respect to $P D(\alpha, \theta)$.

The processes $X_{\alpha, \theta}$ on $\bar{\nabla}_{\infty}$

Theorem [P.]

(1) As $N \rightarrow+\infty$, under the space and time scalings, the Markov chains $T_{\alpha, \theta}^{(N)}$ converge to an infinite-dimensional diffusion process $\left(X_{\alpha, \theta}(t)\right)_{t \geq 0}$ on $\bar{\nabla}_{\infty}$.
(2) The Poisson-Dirichlet distribution $\operatorname{PD}(\alpha, \theta)$ is the unique invariant probability distribution for $X_{\alpha, \theta}(t)$. The process is reversible and ergodic with respect to $P D(\alpha, \theta)$.
(3) The generator of $X_{\alpha, \theta}$ is explicitly computed:

$$
\sum_{i, j=1}^{\infty} x_{i}\left(\delta_{i j}-x_{j}\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\sum_{i=1}^{\infty}\left(\theta x_{i}+\alpha\right) \frac{\partial}{\partial x_{i}}
$$

It acts on continuous symmetric polynomials in the coordinates x_{1}, x_{2}, \ldots.

Scheme of proof

No finite-dimensional approximating diffusions!

Scheme of proof

No finite-dimensional approximating diffusions!
(1) The transition operators of the Markov chains $T_{\alpha, \theta}^{(N)}$ act on symmetric functions in the coordinates $\lambda_{1}, \ldots, \lambda_{\ell}$ of a partition $\lambda \in \operatorname{Part}(N)$.

Scheme of proof

No finite-dimensional approximating diffusions!
(1) The transition operators of the Markov chains $T_{\alpha, \theta}^{(N)}$ act on symmetric functions in the coordinates $\lambda_{1}, \ldots, \lambda_{\ell}$ of a partition $\lambda \in \operatorname{Part}(N)$.
(2) Write the operators $T_{\theta}^{(N)}$ in a suitable basis (monomial symmetric functions).

Scheme of proof

No finite-dimensional approximating diffusions!
(1) The transition operators of the Markov chains $T_{\alpha, \theta}^{(N)}$ act on symmetric functions in the coordinates $\lambda_{1}, \ldots, \lambda_{\ell}$ of a partition $\lambda \in \operatorname{Part}(N)$.
(2) Write the operators $T_{\theta}^{(N)}$ in a suitable basis (monomial symmetric functions).
(3) Pass to $N \rightarrow+\infty$ limit of generators (this is done in a purely algebraic way)

Scheme of proof

No finite-dimensional approximating diffusions!
(1) The transition operators of the Markov chains $T_{\alpha, \theta}^{(N)}$ act on symmetric functions in the coordinates $\lambda_{1}, \ldots, \lambda_{\ell}$ of a partition $\lambda \in \operatorname{Part}(N)$.
(2) Write the operators $T_{\theta}^{(N)}$ in a suitable basis (monomial symmetric functions).
(3) Pass to $N \rightarrow+\infty$ limit of generators (this is done in a purely algebraic way)
(4) Use general technique of Trotter-Kurtz to deduce convergence of the processes

Thank you for your attention

Figure: $x_{1}(t) \geq x_{2}(t) \geq x_{3}(t) \geq x_{4}(t)$

