Limit Theorems for
 Voter Model Perturbations

Ted Cox
Syracuse University

YEP VIII, Eurandom, Eindhoven, March 2011

Joint work with Rick Durrett, Ed Perkins (and Mathieu Merle if we get that far)

In a nutshell, the goal is to study a class of interacting particle systems called voter model perturbations via:

- measure-valued limit approach
- hydrodynamic (pde) limit approach

In each case

- the rescaled particle systems converge to something
- the limit can be "inverted" to transfer information back to the particle systems

Plan to give an introduction to the basic tools and methods used.

Outline of talks

(1) spin-flip systems, voter model (graphical representation, duality, martingale problem), super-Brownian motion, convergence
(2) voter model perturbations, Lotka-Volterra model, super-Brownian limit, consequences (survival/coexistence)

3 voter model perturbations, hydrodyamic limit, consequences, cooperator/defector model, $d=2$ Lotka-Volterra model(?)

Outline la

(1) Spin-flip systems

- Basic questions
(2) The voter model
- Graphical construction/duality (first tool)
- Martingale problem (second tool)
- Measure-valued point of view
(3) References

Spin-flip systems

Let $\mathbb{Z}^{d}=d$-dimensional integer lattice.
Consider Feller processes $\xi_{t}, t \geq 0$ with state space $\{0,1\}^{\mathbb{Z}^{d}}$,

$$
\xi_{t}(x)=\operatorname{type}\left(0 \text { or } 1 \text {) of "individual" at site } x \in \mathbb{Z}^{d} \text { at time } t\right.
$$

Dynamics are determined by a translation invariant flip rate function $c(x, \xi): \mathbb{Z}^{d} \times\{0,1\}^{\mathbb{Z}^{d}} \rightarrow[0, \infty)$ via

$$
P\left(\xi_{t+h}(x) \neq \xi_{t}(x) \mid \xi_{t}\right)=h c\left(x, \xi_{t}\right)+o(h) \text { as } h \downarrow 0
$$

$c(x, \xi)$ is just the rate at which the coordinate at x flips

More formally, ...
$c(x, \xi)$ determines determines a (pre)generator

$$
G f(\xi)=\sum_{x} c(x, \xi)\left[f\left(\xi^{x}\right)-f(\xi)\right]
$$

where

- $f:\{0,1\}^{\mathbb{Z}^{d}} \rightarrow \mathbb{R}$ depends on only finitely many coordinates
- ξ^{x} equals ξ except at x, where $\xi^{x}(x)=1-\xi(x)$

Liggett (1972) gives conditions on rate functions $c(x, \xi)$ which guarantee existence/uniqueness of ξ_{t} with pregenerator G. All our examples satisfy his conditions.

Notation: let $|\xi|_{i}=\sum_{x} 1\{\xi(x)=i\}, i=0,1$

Some basic questions

Point of view: particle systems are competition models
For a given rate function $c(x, \xi)$, want to determine which if any of the following hold:

Some basic questions

Point of view: particle systems are competition models
For a given rate function $c(x, \xi)$, want to determine which if any of the following hold:

- Type i survives: $\left|\xi_{0}\right|_{i} \geq 1$ implies $P\left(\left|\xi_{t}\right|_{i} \geq 1 \forall t \geq 0\right)>0$

Some basic questions

Point of view: particle systems are competition models
For a given rate function $c(x, \xi)$, want to determine which if any of the following hold:

- Type i survives: $\left|\xi_{0}\right|_{i} \geq 1$ implies $P\left(\left|\xi_{t}\right|_{i} \geq 1 \forall t \geq 0\right)>0$
- Type i takes over: $\left|\xi_{0}\right|_{i}=\infty$ implies

$$
P\left(\xi_{t}(x)=i \text { for all large } t\right)=1 \quad \forall x \in \mathbb{Z}^{d}
$$

Some basic questions

Point of view: particle systems are competition models
For a given rate function $c(x, \xi)$, want to determine which if any of the following hold:

- Type i survives: $\left|\xi_{0}\right|_{i} \geq 1$ implies $P\left(\left|\xi_{t}\right|_{i} \geq 1 \forall t \geq 0\right)>0$
- Type i takes over: $\left|\xi_{0}\right|_{i}=\infty$ implies

$$
P\left(\xi_{t}(x)=i \text { for all large } t\right)=1 \quad \forall x \in \mathbb{Z}^{d}
$$

- Coexistence: \exists a stationary distribution $\boldsymbol{\mu}$ for ξ_{t} s.t.

$$
\mu\left(|\xi|_{1}=|\xi|_{0}=\infty\right)=1
$$

The voter model

Will use throughout:

- $p(x)=$ a symmetric step distribution of irreducible $r w$ on \mathbb{Z}^{d}, $p(0)=0$, covariance matrix $\sigma^{2} I$
- $f_{i}(x, \xi)=\sum_{y \in \mathbb{Z}^{d}} p(y-x) 1\{\xi(y)=i\}=$ frequency of type i near x in ξ.

The voter model

Will use throughout:

- $p(x)=$ a symmetric step distribution of irreducible $r w$ on \mathbb{Z}^{d}, $p(0)=0$, covariance matrix $\sigma^{2} I$
- $f_{i}(x, \boldsymbol{\xi})=\sum_{y \in \mathbb{Z}^{d}} p(y-x) 1\{\xi(y)=i\}=$ frequency of type i near x in ξ.

Voter model (neutral competition)

- Introduced independently: Clifford/Sudbury (1973), Holley/Liggett (1975)
- Flip rate function is $c_{v}(x, \xi)= \begin{cases}f_{1}(x, \xi) & \text { if } \xi(x)=0 \\ f_{0}(x, \xi) & \text { if } \xi(x)=1\end{cases}$
- The individual at x dies at rate 1 , is replaced by an individual of type i with probability $f_{i}(x, \xi)$.

Graphical construction I

- $\Lambda^{x, y}, x, y \in \mathbb{Z}^{d}$ are independent, rate $p(y-x)$ Poisson processes.
- $T_{n}^{x, y}, n \geq 1$ are the arrival times of $\Lambda^{x, y}$
- At each time $T_{n}^{x, y}$
- draw an arrow \rightarrow from \boldsymbol{y} to \boldsymbol{x}, and
- the voter at \boldsymbol{x} adopts the opinion of the voter at \boldsymbol{y}.
- Start with ξ_{0}, determine ξ_{t} for all $t>0$.

Note. More complicated $c(x, \xi)$ also have graphical constructions.

Graphical Construction II

Coalescing Random Walk Duality

Fix $t>0$. For each $x \in \mathbb{Z}^{d}$ let $B_{s}^{x, t}, 0 \leq s \leq t$ trace the path down and against the arrows from (x, t) to $\mathbb{Z}^{d} \times\{0\}$. Then

Coalescing Random Walk Duality

Fix $t>0$. For each $x \in \mathbb{Z}^{d}$ let $B_{s}^{x, t}, 0 \leq s \leq t$ trace the path down and against the arrows from (x, t) to $\mathbb{Z}^{d} \times\{0\}$. Then

- $B_{s}^{x, t}$ is a rate one random walk with step distribution $p(x)$, $B_{0}^{x, t}=x$.
- These walks are independent until they meet, at which time they coalesce and move together
- The duality equation is: for $0 \leq s \leq t$ and $x \in \mathbb{Z}^{d}$

$$
\xi_{t}(x)=\xi_{s}\left(B_{t-s}^{x, t}\right)
$$

Graphical construction III

Let $B_{s}^{x}, s \geq 0, x \in \mathbb{Z}^{d}$ be a CRW family (note all $s \geq 0$).

Sample Calculation I. Assume $d \leq 2$, so rw is recurrent. For any ξ_{0} and $x \neq y$,

$$
\begin{aligned}
P\left(\xi_{t}(x) \neq \xi_{t}(y)\right) & =P\left(\xi_{0}\left(B_{t}^{x}\right) \neq \xi_{0}\left(B_{t}^{y}\right)\right) \\
& \leq P\left(B_{t}^{x} \neq B_{t}^{y}\right) \\
& \rightarrow 0 \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

So no coexistence for $d \leq 2$.

Sample calculation 2. If $\xi_{0}^{u}(x)$ are iid $\operatorname{Bernoulli}(\boldsymbol{u})$, then $\xi_{t}^{u} \Rightarrow \xi_{\infty}^{u}$, whose law is a stationary distribution. \Rightarrow means: for all finite $A, B \subset \mathbb{Z}^{d}$,

$$
\lim _{t \rightarrow \infty} P\left(\xi_{t} \equiv 1 \text { on } A, \xi_{t} \equiv 0 \text { on } B\right) \text { exists }
$$

Sample calculation 2. If $\xi_{0}^{u}(x)$ are iid $\operatorname{Bernoulli}(\boldsymbol{u})$, then $\xi_{t}^{u} \Rightarrow \xi_{\infty}^{u}$, whose law is a stationary distribution. \Rightarrow means: for all finite $A, B \subset \mathbb{Z}^{d}$,

$$
\lim _{t \rightarrow \infty} P\left(\xi_{t} \equiv 1 \text { on } A, \xi_{t} \equiv 0 \text { on } B\right) \text { exists }
$$

Proof. Define the CRW probabilities

- $[x \mid y]_{t}=P\left(B_{t}^{x} \neq B_{t}^{y}\right)$
- $[x, y \mid z]_{t}=P\left(B_{t}^{x}=B_{t}^{y}\right.$ but $\left.\neq B_{t}^{z}\right)$, etc.

Sample calculation 2. If $\xi_{0}^{u}(x)$ are iid $\operatorname{Bernoulli}(\boldsymbol{u})$, then $\xi_{t}^{u} \Rightarrow \xi_{\infty}^{u}$, whose law is a stationary distribution. \Rightarrow means: for all finite $A, B \subset \mathbb{Z}^{d}$,

$$
\lim _{t \rightarrow \infty} P\left(\xi_{t} \equiv 1 \text { on } A, \xi_{t} \equiv 0 \text { on } B\right) \text { exists }
$$

Proof. Define the CRW probabilities

- $[x \mid y]_{t}=P\left(B_{t}^{x} \neq B_{t}^{y}\right)$
- $[x, y \mid z]_{t}=P\left(B_{t}^{x}=B_{t}^{y}\right.$ but $\left.\neq B_{t}^{z}\right)$, etc.

Now calculate

$$
\begin{aligned}
& P\left(\xi_{t}(x)=\xi_{t}(y)=1, \xi_{t}(z)=0\right) \\
& \quad=P\left(\xi_{0}\left(B_{t}^{x, t}\right)=\xi_{0}\left(B_{t}^{y, t}\right)=1, \xi_{0}\left(B_{t}^{z, t}\right)=0\right)
\end{aligned}
$$

Sample calculation 2. If $\xi_{0}^{u}(x)$ are iid $\operatorname{Bernoulli}(\boldsymbol{u})$, then $\xi_{t}^{u} \Rightarrow \xi_{\infty}^{u}$, whose law is a stationary distribution. \Rightarrow means: for all finite $A, B \subset \mathbb{Z}^{d}$,

$$
\lim _{t \rightarrow \infty} P\left(\xi_{t} \equiv 1 \text { on } A, \xi_{t} \equiv 0 \text { on } B\right) \text { exists }
$$

Proof. Define the CRW probabilities

- $[x \mid y]_{t}=P\left(B_{t}^{x} \neq B_{t}^{y}\right)$
- $[x, y \mid z]_{t}=P\left(B_{t}^{x}=B_{t}^{y}\right.$ but $\left.\neq B_{t}^{z}\right)$, etc.

Now calculate

$$
\begin{aligned}
P\left(\xi_{t}(x)=\right. & \left.\xi_{t}(y)=1, \xi_{t}(z)=0\right) \\
& =P\left(\xi_{0}\left(B_{t}^{x, t}\right)=\xi_{0}\left(B_{t}^{y, t}\right)=1, \xi_{0}\left(B_{t}^{z, t}\right)=0\right) \\
& =\boldsymbol{u}(\mathbf{1}-\boldsymbol{u})[\boldsymbol{x}, \boldsymbol{y} \mid \boldsymbol{z}]_{t}+\boldsymbol{u}^{2}(\mathbf{1}-\boldsymbol{u})[x|\boldsymbol{y}| \boldsymbol{z}]_{t} \\
& \rightarrow \boldsymbol{u}(\mathbf{1}-\boldsymbol{u})[\boldsymbol{x}, \boldsymbol{y} \mid \boldsymbol{z}]_{\infty}+\boldsymbol{u}^{2}(\mathbf{1}-\boldsymbol{u})[\boldsymbol{x}|\boldsymbol{y}| \boldsymbol{z}]_{\infty} \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

So, coexistence for $d \geq 3$.

Martingale problem

Recall

- $\Lambda^{x, y}, x, y \in \mathbb{Z}^{d}$ are independent, rate $p(y-x)$ Poisson processes.
- $T_{n}^{x, y}, n \geq 1$ are the arrival times of $\Lambda^{x, y}$
- At each time $T_{n}^{x, y}$
- draw an arrow from y to x
- the voter at x adopts the opinion of the voter at y.
and restrict to finitely many 1 's initially, $\left|\xi_{0}\right|_{1}<\infty$.

Martingale problem

Recall

- $\Lambda^{x, y}, x, y \in \mathbb{Z}^{d}$ are independent, rate $p(y-x)$ Poisson processes.
- $T_{n}^{x, y}, n \geq 1$ are the arrival times of $\Lambda^{x, y}$
- At each time $T_{n}^{x, y}$
- draw an arrow from y to \boldsymbol{x}
- the voter at \boldsymbol{x} adopts the opinion of the voter at y.
and restrict to finitely many 1's initially, $\left|\xi_{0}\right|_{1}<\infty$. Then

$$
\xi_{t}(x)=\xi_{0}(x)+\int_{0}^{t} \sum_{y}\left(\xi_{s-}(y)-\xi_{s-}(x)\right) \Lambda_{x, y}(d s)
$$

$$
\xi_{t}(x)=\xi_{0}(x)+\int_{0}^{t} \sum_{y}\left(\xi_{s-}(y)-\xi_{s-}(x)\right) \Lambda_{x, y}(d s)
$$

$$
\xi_{t}(x)=\xi_{0}(x)+\int_{0}^{t} \sum_{y}\left(\xi_{s-}(y)-\xi_{s-}(x)\right) \Lambda_{x, y}(d s)
$$

If $\tilde{\Lambda}_{x, y}(d s)=\Lambda_{x, y}(d s)-p(y-x) d s$, then

$$
\xi_{t}(x)=\xi_{0}(x)+D_{t}^{x}+M_{t}^{x}, \text { where }
$$

$$
\xi_{t}(x)=\xi_{0}(x)+\int_{0}^{t} \sum_{y}\left(\xi_{s-}(y)-\xi_{s-}(x)\right) \Lambda_{x, y}(d s)
$$

If $\tilde{\Lambda}_{x, y}(d s)=\Lambda_{x, y}(d s)-p(y-x) d s$, then

$$
\begin{aligned}
\xi_{t}(x) & =\xi_{0}(x)+D_{t}^{x}+M_{t}^{x}, \text { where } \\
D_{t}^{x} & =\int_{0}^{t} \sum_{y}\left(\xi_{s}(y)-\xi_{s}(x)\right) p(y-x) d s \\
M_{t}^{x} & =\int_{0}^{t} \sum_{y}\left(\xi_{s-}(y)-\xi_{s-}(x)\right) \tilde{\Lambda}_{x, y}(d s) \\
& =\text { a martingale with square function } \\
\left\langle M^{x}\right\rangle_{t} & =\int_{0}^{t} \sum_{y}\left(\xi_{s}(y)-\xi_{s}(x)\right)^{2} p(y-x) d s
\end{aligned}
$$

Measure-valued point of view

Put a unit mass at each 1 of ξ_{t} to get a measure on \mathbb{R}^{d}, $X_{t}=\sum_{x} \xi_{t}(x) \delta_{x}$
For $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ put

$$
X_{t}(\phi)=\sum_{x} \xi_{t}(x) \phi(x)=\boldsymbol{X}_{0}(\phi)+D_{t}(\phi)+M_{t}(\phi)
$$

Measure-valued point of view

Put a unit mass at each 1 of ξ_{t} to get a measure on \mathbb{R}^{d}, $X_{t}=\sum_{x} \xi_{t}(x) \delta_{x}$
For $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ put

$$
X_{t}(\phi)=\sum_{x} \xi_{t}(x) \phi(x)=X_{0}(\phi)+D_{t}(\phi)+M_{t}(\phi)
$$

where $M_{t}(\phi)$ is a martingale, and (sum by parts)

- $D_{t}(\phi)=\int_{0}^{t} \sum_{x} \xi_{s}(x)(p-I) \phi(x) d s=\int_{0}^{t} X_{s}((p-I) \phi) d s$
- $\langle M(\phi)\rangle_{t}=\int_{0}^{t} \sum_{x} \phi^{2}(x) \sum_{y} p(y-x) 1\left\{\xi_{x}(x) \neq \xi_{s}(y)\right\} d s$

Put $\phi \equiv 1$ to get $D_{t} \equiv 0$, so $\left|\xi_{t}\right|_{1}$ a nonnegative martingale. Thus no type survives.

References la

Spin-flip systems, voter model

- Liggett (1985). Interacting Particle Systems, Springer-Verlag, New York.

Super-Brownian Motion, measure-valued diffusions

- Perkins (2002) Measure-valued processes and interactions, in École d'Été de Probabilités de Saint Flour XXIX-1999, Lecture Notes Math. 1781, pages 125-329, Springer-Verlag, Berlin.
Voter models \Rightarrow super-Brownian motion
- C., Durrett, Perkins (2000) Rescaled voter models converge to super- Brownian motion. Ann. Probab. 28 185-234.
An application
- C, Perkins (2004) An application of the voter model/super-Brownian motion invariance principle (with E. Perkins). Ann. Inst. H. Poincaré Probab. Statist., 40 25-32.

Outline lb

(1) Super-Brownian motion

- Branching random walk
- Convergence to super-Brownian motion
(2) Voter model convergence to super-Brownian motion
- Voter model as branching random walk
- Convergence to super-Brownian motion, $d \geq 3$
- Sketch of proof

Branching Random Walk η_{t}

System of particles in \mathbb{Z}^{d}

- $p(x)$ as before
- allow multiple particles per site, $\eta_{t}(x)=$ the number of particles at x at time t
- particles at a given site x
- die at rate δ
- while alive, give birth at rate β to a particle which immediately jumps to site y with probability $p(y-x)$
- $\left|\eta_{t}\right|=\sum_{x} \eta_{t}(x)$ is a cont. time nonspatial branching process
- \dagger

Branching Random Walk η_{t}

System of particles in \mathbb{Z}^{d}

- $p(x)$ as before
- allow multiple particles per site, $\eta_{t}(x)=$ the number of particles at x at time t
- particles at a given site x
- die at rate δ
- while alive, give birth at rate β to a particle which immediately jumps to site y with probability $p(y-x)$
- $\left|\eta_{t}\right|=\sum_{x} \eta_{t}(x)$ is a cont. time nonspatial branching process
- \dagger

For a measure-valued point of view, let

- $\mathcal{M}_{F}=$ set of finite Borel measures on \mathbb{R}
- $\mu(\phi)=\int_{\mathbb{R}} \phi(x) \mu(d x)$ for $\mu \in \mathcal{M}_{F}$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$.

Branching Random Walk \Rightarrow Super-Brownian Motion

Scale space: $\quad p_{N}(x)=p(x \sqrt{N}), \quad x \in \mathbf{S}_{N}=\mathbb{Z}^{d} / \sqrt{N}$.
Scale time: $\quad \eta_{t}^{N}(x)$ has rates

- particles die at rate $N+\delta$
- particles give birth at rate $N+\beta$

Scale mass: $\quad \boldsymbol{m}_{\boldsymbol{N}}=N$ and

$$
X_{t}^{N}=\frac{1}{\boldsymbol{m}_{\boldsymbol{N}}} \sum_{x \in \mathbf{S}_{N}} \eta_{t}^{N}(x) \delta_{x} \in \mathcal{M}_{F}
$$

Branching Random Walk \Rightarrow Super-Brownian Motion

Scale space: $\quad p_{N}(x)=p(x \sqrt{N}), \quad x \in \mathbf{S}_{N}=\mathbb{Z}^{d} / \sqrt{N}$.
Scale time: $\quad \eta_{t}^{N}(x)$ has rates

- particles die at rate $N+\delta$
- particles give birth at rate $N+\beta$

Scale mass: $\quad \boldsymbol{m}_{\boldsymbol{N}}=N$ and

$$
X_{t}^{N}=\frac{1}{\boldsymbol{m}_{\boldsymbol{N}}} \sum_{x \in \mathbf{S}_{N}} \eta_{t}^{N}(x) \delta_{x} \in \mathcal{M}_{F}
$$

Expect $X^{N} \Rightarrow$ something as $N \rightarrow \infty$. One can check that

With $\boldsymbol{\Delta}_{\boldsymbol{N}}=N\left(p_{N}-I\right)$, smooth ϕ, and $g=\beta-\delta$.
$X_{t}^{N}(\phi)=X_{0}^{N}(\phi)+D_{t}^{N}(\phi)+M_{t}^{N}(\phi)$, where

With $\boldsymbol{\Delta}_{\boldsymbol{N}}=N\left(p_{N}-I\right)$, smooth ϕ, and $\boldsymbol{g}=\beta-\delta$.

$$
X_{t}^{N}(\phi)=X_{0}^{N}(\phi)+D_{t}^{N}(\phi)+M_{t}^{N}(\phi), \text { where }
$$

$$
\begin{aligned}
D_{t}^{N}(\phi) & =\int_{0}^{t} X_{s}^{N}\left(\boldsymbol{\Delta}_{\boldsymbol{N}} \phi\right) d s+\boldsymbol{g} \int_{0}^{t} X_{s}^{N}(\phi) d s \\
& \approx \frac{\sigma^{2}}{2} \int_{0}^{t} X_{s}^{N}(\boldsymbol{\Delta} \phi) d s+\boldsymbol{g} \int_{0}^{t} X_{s}^{N}(\phi) d s
\end{aligned}
$$

With $\boldsymbol{\Delta}_{\boldsymbol{N}}=N\left(p_{N}-I\right)$, smooth ϕ, and $\boldsymbol{g}=\beta-\delta$.

$$
\begin{aligned}
& \boldsymbol{X}_{t}^{N}(\phi)=\boldsymbol{X}_{0}^{N}(\phi)+\boldsymbol{D}_{t}^{N}(\phi)+\boldsymbol{M}_{t}^{N}(\phi), \text { where } \\
& D_{t}^{N}(\phi)=\int_{0}^{t} X_{s}^{N}\left(\boldsymbol{\Delta}_{\boldsymbol{N}} \phi\right) d s+\boldsymbol{g} \int_{0}^{t} X_{s}^{N}(\phi) d s \\
& \approx \frac{\sigma^{2}}{2} \int_{0}^{t} X_{s}^{N}(\boldsymbol{\Delta} \phi) d s+\boldsymbol{g} \int_{0}^{t} X_{s}^{N}(\phi) d s
\end{aligned}
$$

$$
\begin{aligned}
\left\langle M^{N}(\phi)\right\rangle_{t}= & \frac{1}{N} \int_{0}^{t} \sum_{y} \xi_{s}^{N}(y) \sum_{x} p_{N}(y-x)(\phi(y)-\phi(x))^{2} d s \\
& +\left(2+\frac{g}{N}\right) \int_{0}^{t} X_{s}^{N}\left(\phi^{2}\right) d s \\
\approx & 2 \int_{0}^{t} X_{s}^{N}\left(\phi^{2}\right) d s
\end{aligned}
$$

Theorem. If $X_{0}^{N} \rightarrow X_{0} \in \mathcal{M}_{F}$ then $X^{N} \Rightarrow X$. as $N \rightarrow \infty$, where X. is $\operatorname{SBM}\left(X_{0}, 2, \sigma^{2}, g\right)$, an \mathcal{M}_{F}-valued processes.

Theorem. If $X_{0}^{N} \rightarrow X_{0} \in \mathcal{M}_{F}$ then $X^{N} \Rightarrow X$. as $N \rightarrow \infty$, where X. is $\operatorname{SBM}\left(X_{0}, 2, \sigma^{2}, g\right)$, an \mathcal{M}_{F}-valued processes.
$\operatorname{SBM}\left(X_{0}, b, \sigma^{2}, g\right) X_{t}$ is characterized ${ }^{\dagger}$ by: for $\phi \in C_{b}^{3}(\mathbb{R})$,

- $X_{t}(\phi)=X_{0}(\phi)+\frac{\sigma^{2}}{2} \int_{0}^{t} X_{s}(\Delta \phi) d s+\boldsymbol{g} \int_{0}^{t} X_{s}(\phi)+M_{t}(\phi)$
- $M_{t}(\phi)$ is a continuous L^{2}-martingale, with

$$
\langle M(\phi)\rangle_{t}=b \int_{0}^{t} X_{s}\left(\phi^{2}\right) d s \text { and }
$$

- $b=$ "branching" rate
- $\sigma^{2}=$ "diffusion" rate
- $\boldsymbol{g}=$ "growth rate"

Measure-valued branching diffusions $X_{t}, t \geq 0$.

- Introduced independently: Watanabe (1968) and Dawson (1977). ("super-process" name is by Dynkin in 198?)
- Large (!) research literature.
- Many interesting properties, such as: for SBM,

For $d \geq 2, X_{t}$ is a.s. supported on a set of zero Lebesgue measure and uniformly spread on its support, in the sense of Hausdorff measure.

Measure-valued branching diffusions $X_{t}, t \geq 0$.

- Introduced independently: Watanabe (1968) and Dawson (1977). ("super-process" name is by Dynkin in 198?)
- Large (!) research literature.
- Many interesting properties, such as: for SBM,

For $d \geq 2, X_{t}$ is a.s. supported on a set of zero Lebesgue measure and uniformly spread on its support, in the sense of Hausdorff measure.

Voter model vs. super-Brownian motion?

- Voter model studied since 1975
- SBM studied since 1977
- Some general similarities between the two, but just how closely related can they be?

Voter model as BRW?

$\xi(x)=1 \Leftrightarrow$ particle at x
$\xi(x)=0 \Leftrightarrow$ no particle at x
Can rephrase the voter dynamics from the particle point of view
Recall $f_{0}(x, \xi)=\sum_{y} p(y-x) 1\left\{\xi_{t}(y)=0\right\}$.
A particle at x

- dies at rate $f_{0}(x, \xi)$
- gives birth at rate $f_{0}(x, \xi)$ to a particle, which jumps to y with probability $p(y-x) 1\{\xi(y)=0\} / f_{0}(x, \xi)$.
- per particle rates are random

Voter Model \Rightarrow SBM

- Let ξ_{t}^{N} be the rate N voter model on $\mathbf{S}_{N}=\mathbb{Z}^{d} / \sqrt{N}$.
- $\gamma_{e}=\sum_{y} p(y)[0 \mid y]_{\infty}$
- $X_{t}^{N}=\frac{1}{m_{N}} \sum_{x \in \mathbf{S}_{N}} \xi_{t}^{N}(x) \delta_{x}, \quad\left(m_{N}=N\right.$ for $\left.d \geq 3\right)$.

Voter Model \Rightarrow SBM

- Let ξ_{t}^{N} be the rate N voter model on $\mathbf{S}_{N}=\mathbb{Z}^{d} / \sqrt{N}$.
- $\gamma_{e}=\sum_{y} p(y)[0 \mid y]_{\infty}$
- $X_{t}^{N}=\frac{1}{m_{N}} \sum_{x \in \mathbf{S}_{N}} \xi_{t}^{N}(x) \delta_{x}, \quad\left(m_{N}=N\right.$ for $\left.d \geq 3\right)$.

Theorem (C,Durrett, Perkins 2000)
Assume $d \geq 3,\left|\xi_{0}^{N}\right| \leq C N$ and $X_{0}^{N} \rightarrow X_{0}$. Then $X^{N} \Rightarrow X$. as $N \rightarrow \infty$ where X. is $\operatorname{SBM}\left(X_{0}, 2 \gamma_{e}, \sigma^{2}, 0\right)$.

This is a low density result. It describes the behavior of the voter model when 1 's are relatively sparse.

- $\mathbb{Z}^{d} / \sqrt{N}$ has $N^{d / 2}$ sites/volume, but
- $\left|\xi_{t}^{N}\right|_{1}=O(N)(d \geq 3)$
- Consistent with behavior of $\operatorname{supp}(S B M)$.

This is a low density result. It describes the behavior of the voter model when 1 's are relatively sparse.

- $\mathbb{Z}^{d} / \sqrt{N}$ has $N^{d / 2}$ sites/volume, but
- $\left|\xi_{t}^{N}\right|_{1}=O(N)(d \geq 3)$
- Consistent with behavior of $\operatorname{supp}(S B M)$.

Application: can use this to give a "simpler" proof of a result of Sawyer (1977) (which has an amazing proof).

This is a low density result. It describes the behavior of the voter model when 1 's are relatively sparse.

- $\mathbb{Z}^{d} / \sqrt{N}$ has $N^{d / 2}$ sites/volume, but
- $\left|\xi_{t}^{N}\right|_{1}=O(N)(d \geq 3)$
- Consistent with behavior of $\operatorname{supp}(S B M)$.

Application: can use this to give a "simpler" proof of a result of Sawyer (1977) (which has an amazing proof).

Our proof of voter model \Rightarrow SBM:
(1) establish tightness by verifying Jakubowski's conditions (see Perkins (2002))
(2) show all subsequential limits of X^{N} satisfy SBM martingale problem with the claimed parameters.

In more detail ...

$$
\boldsymbol{A}_{\boldsymbol{N}} \approx \boldsymbol{B}_{\boldsymbol{N}} \text { means } \boldsymbol{E}\left|\boldsymbol{A}_{\boldsymbol{N}}-\boldsymbol{B}_{\boldsymbol{N}}\right|^{\boldsymbol{p}} \rightarrow \mathbf{0}, \text { some } p \geq 1
$$

Recall

$$
X_{t}^{N}(\phi)=\frac{1}{m_{N}} \sum_{x} \xi_{t}^{N}(x) \phi(x)=\boldsymbol{X}_{\mathbf{0}}^{\boldsymbol{N}}(\phi)+\boldsymbol{D}_{t}^{N}(\phi)+\boldsymbol{M}_{t}^{\boldsymbol{N}}(\phi)
$$

1. The drift term is: with $\Delta_{N}=N\left(p_{N}-I\right)$,

$$
\begin{aligned}
D_{t}^{N}(\phi) & =\frac{N}{m_{N}} \int_{0}^{t} \sum_{x} \xi_{s}^{N}(x) \sum_{y} p_{N}(y-x)(\phi(y)-\phi(x)) d s \\
& =\int_{0}^{t} X_{s}^{N}\left(\Delta_{N} \phi\right) d s \\
& \approx \frac{\sigma^{2}}{2} \int_{0}^{t} X_{s}^{N}(\Delta \phi) d s \quad \checkmark
\end{aligned}
$$

2. The martingale square function

$$
\begin{aligned}
\left\langle M^{N}(\phi)\right\rangle_{t} & \left.=\int_{0}^{t} \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x) 1\left\{\xi_{s}^{N}(x) \neq \xi_{s}^{N}(y)\right\}\right) d s \\
& \approx 2 \int_{0}^{t} \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x) \xi_{s}^{N}(x)\left(1-\xi_{s}^{N}(y)\right) d s \\
& =2 \int_{0}^{t} m_{N}(s) d s
\end{aligned}
$$

2. The martingale square function

$$
\begin{aligned}
\left\langle M^{N}(\phi)\right\rangle_{t} & \left.=\int_{0}^{t} \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x) 1\left\{\xi_{s}^{N}(x) \neq \xi_{s}^{N}(y)\right\}\right) d s \\
& \approx 2 \int_{0}^{t} \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x) \xi_{s}^{N}(x)\left(1-\xi_{s}^{N}(y)\right) d s \\
& =2 \int_{0}^{t} m_{N}(s) d s
\end{aligned}
$$

Let $t_{N} \downarrow 0$ with $N t_{N} \rightarrow \infty$, for $s>t_{N}$ put $s^{\prime}=s-t_{N}$. Let $\hat{\boldsymbol{E}}_{N}$ be law of rate N CRW's.
2. The martingale square function

$$
\begin{aligned}
\left\langle M^{N}(\phi)\right\rangle_{t} & \left.=\int_{0}^{t} \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x) 1\left\{\xi_{s}^{N}(x) \neq \xi_{s}^{N}(y)\right\}\right) d s \\
& \approx 2 \int_{0}^{t} \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x) \xi_{s}^{N}(x)\left(1-\xi_{s}^{N}(y)\right) d s \\
& =2 \int_{0}^{t} m_{N}(s) d s
\end{aligned}
$$

Let $t_{N} \downarrow 0$ with $N t_{N} \rightarrow \infty$, for $s>t_{N}$ put $s^{\prime}=s-t_{N}$. Let $\hat{\boldsymbol{E}}_{N}$ be law of rate N CRW's.

Step $1 \int_{0}^{t} \boldsymbol{m}_{N}(s) d s \approx \int_{t_{N}}^{t} \boldsymbol{E}\left(\boldsymbol{m}_{N}(s) \mid \mathcal{F}_{s^{\prime}}\right) d s$
Step $2 \boldsymbol{E}\left(\boldsymbol{m}_{N}(s) \mid \mathcal{F}_{s^{\prime}}\right) \approx \gamma_{e} X_{s^{\prime}}^{N}(\phi)$

$$
\begin{aligned}
& E\left(\xi_{s}^{N}(x)\left(1-\xi_{s}^{N}(y) \mid \mathcal{F}_{s^{\prime}}\right)\right) \\
& =\hat{E}^{N}\left(\xi_{s^{\prime}}^{N}\left(B_{t_{N}}^{x}\right)\left(1-\xi_{s^{\prime}}^{N}\left(B_{t_{N}}^{y}\right)\right)\right) \\
& \approx \hat{E}^{N}\left(\xi_{s^{\prime}}^{N}\left(B_{t_{N}}^{x}\right) \mathbf{1}\left\{B_{t_{N}}^{x} \neq B_{t_{N}}^{y}\right\}\right) \quad \text { sparse } 1^{\prime} s \text { in } \xi_{s^{\prime}}^{N}
\end{aligned}
$$

$$
\begin{array}{rlr}
E\left(\xi_{s}^{N}(x)\right. & \left.\left(1-\xi_{s}^{N}(y) \mid \mathcal{F}_{s^{\prime}}\right)\right) \\
& =\hat{E}^{N}\left(\xi_{s^{\prime}}^{N}\left(B_{t_{N}}^{x}\right)\left(1-\xi_{s^{\prime}}^{N}\left(B_{t_{N}}^{y}\right)\right)\right) & \text { duality } \\
& \approx \hat{E}^{N}\left(\xi_{s^{\prime}}^{N}\left(\boldsymbol{B}_{t_{N}}^{x}\right) \mathbf{1}\left\{\boldsymbol{B}_{t_{N}}^{x} \neq \boldsymbol{B}_{t_{N}}^{y}\right\}\right) & \text { sparse } 1^{\prime} s \text { in } \xi_{s^{\prime}}^{N}
\end{array}
$$

$$
\begin{aligned}
E & \left(m_{N}(s) \mid \mathcal{F}_{s^{\prime}}\right) \\
& \approx \frac{1}{N} \sum_{x} \phi^{2}(x) \sum_{y} p_{N}(y-x)[\downarrow] \\
& \approx \frac{1}{N} \sum_{x} \phi^{2}(x) \xi_{s^{\prime}}^{N}(x) \sum_{y} p(y-x)[x \mid y]_{N t_{N}} \quad \phi \text { cont., } B_{t_{N}}^{x} \approx x \\
& =\gamma_{e}^{N} X_{s^{\prime}}^{N}\left(\phi^{2}\right), \quad \text { where } \gamma_{e}=\sum_{e} p(e)[0 \mid e]_{\infty}
\end{aligned}
$$

