Convergence of Rescaled Competing Species Processes to a Class of SPDEs

Sandra Kliem

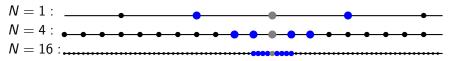
EURANDOM

YEP - March 17, 2011

A class of rescaled competing species processes

We define a sequence ξ_t^N , $N \in \mathbb{N}$ of rescaled competing species models, which can be described as perturbations of rescaled voter models. In the N^{th} model:

- space: \mathbb{Z}/N ,
- neighbours of x: $y \sim x$ iff $0 < |x y| \le N^{-1/2}$



Each x has $2c(N)N^{1/2}$, $c(N) \stackrel{N \to \infty}{\to} 1$ neighbours.

Long-range interaction takes into account the densities of the neighbours of $x \in \mathbb{Z}/N$ at long-range, i.e.

$$f_i^{(N)}(x,\xi) \equiv \frac{1}{|y:y \sim x|} \sum_{y:y \sim x} 1(\xi^N(y) = i), \quad i = 0, 1.$$

Note in particular:

•
$$0 \le f_i^{(N)} \le 1$$
 and
• $f_0^{(N)} + f_1^{(N)} = 1.$

Recall:

• Flip rates of the unscaled biased voter process:

$$egin{array}{ll} 0
ightarrow 1 ext{ at rate } c(x,\xi) = (1+ au) f_1(x,\xi), \ 1
ightarrow 0 ext{ at rate } c(x,\xi) = f_0(x,\xi). \end{array}$$

• Rescaling for the biased voter process::

$$0 \rightarrow 1 \text{ at rate } c(x,\xi) = N\left(1 + \frac{\tau}{N}\right) f_1^{(N)}(x,\xi)$$
$$= Nf_1^{(N)}(x,\xi) + f_1^{(N)}(x,\xi)\tau,$$
$$1 \rightarrow 0 \text{ at rate } c(x,\xi) = Nf_0^{(N)}(x,\xi).$$

• Adding more general perturbations:

$$\begin{split} 0 &\to 1 \text{ at rate } Nf_1^{(N)} + f_1^{(N)}G_0^{(N)}\Big(f_1^{(N)}\Big), \\ 1 &\to 0 \text{ at rate } Nf_0^{(N)} + f_0^{(N)}G_1^{(N)}\Big(f_0^{(N)}\Big), \end{split}$$

where $G_i^{(N)}$, i = 0, 1 are power series on [0, 1],

Sandra Kliem (EURANDOM)

Convergence of Rescaled Competing Species Processes YEP - March 2011

i.e.

$$G_i^{(N)}(x) = \sum_{m=0}^{\infty} \alpha_i^{(m+1,N)} x^m, \quad i = 0, 1, x \in [0,1]$$

with $\alpha_i^{(m+1,N)}$ satisfying certain summability and convergence conditions, uniformly in $N \ge N_0$. Define

$$G_i(x) \equiv \lim_{N \to \infty} G_i^{(N)}(x) = \sum_{m=0}^{\infty} \alpha_i^{(m+1)} x^m, \quad x \in [0,1]$$

The object of interest

Approximate density $A(\xi_t^N)$ for the configurations ξ_t^N :

$$A(\xi_t^N)(x) = rac{1}{|y:y\sim x|} \sum_{y\sim x} \xi_t^N(y), \qquad x\in \mathbb{Z}/N.$$

Note: $A(\xi_t^N)(x) = f_1^{(N)}(x, \xi_t^N).$

By linearly interpolating between sites we obtain approximate densities $A(\xi_t^N)(x) \in [0, 1]$ for all $x \in \mathbb{R}$.

Notation

Set $C_1 \equiv \{f : \mathbb{R} \to [0, 1] \text{ continuous}\}$ and let C_1 be equipped with the topology of uniform convergence on compact sets.

We obtain that $t \mapsto A(\xi_t^N)$ is cadlag \mathcal{C}_1 -valued, i.e. $A(\xi_{\cdot}^N) \in D(\mathcal{C}_1)$.

Theorem

Suppose that $A(\xi_0^N) \to u_0$ in C_1 and that $G_i^{(N)}$, i = 0, 1 satisfy appropriate Hypotheses. Then

- $(A(\xi_t^N) : t \ge 0)$ are *C*-tight as cadlag C_1 -valued processes.
- The limit points of A(ξ^N_t) are continuous C₁-valued processes u_t which solve

$$\frac{\partial u}{\partial t} = \frac{\Delta u}{6} + (1-u)u\left\{G_0(u) - G_1(1-u)\right\} + \sqrt{2u(1-u)}\dot{W}$$

with initial condition u_0 .

• If we assume additionally $\int u_0(x)dx < \infty$, then u_t is the unique in law [0, 1]-valued solution to the above SPDE.

Example

Consider a sequence of rescaled Lotka-Volterra models with rates of change

$$\begin{split} 0 &\to 1 \text{ at rate } \mathsf{N} f_1^{(N)} \left(f_0^{(N)} + a_{01}^{(N)} f_1^{(N)} \right), \\ 1 &\to 0 \text{ at rate } \mathsf{N} f_0^{(N)} \left(f_1^{(N)} + a_{10}^{(N)} f_0^{(N)} \right). \end{split}$$

For i = 0, 1 choose

$$a_{i(1-i)}^{(N)} - 1 \equiv rac{ heta_i^{(N)}}{N} ext{ with } heta_i^{(N)} \stackrel{N o \infty}{ o} heta_i$$

and rewrite

$$0 \to 1 \text{ at rate } Nf_1^{(N)} + \theta_0^{(N)} \left(f_1^{(N)}\right)^2 = Nf_1^{(N)} + f_1^{(N)} \theta_0^{(N)} f_1^{(N)},$$

$$1 \to 0 \text{ at rate } Nf_0^{(N)} + \theta_1^{(N)} \left(f_0^{(N)}\right)^2 = Nf_0^{(N)} + f_0^{(N)} \theta_1^{(N)} f_0^{(N)}.$$

The Theorem yields that the sequence of approximate densities $A(\xi_t^N)$ is tight and every solution solves

$$\frac{\partial u}{\partial t} = \frac{\Delta u}{6} + (1-u)u\left\{\frac{\theta_0 u}{\theta_0 u} - \theta_1(1-u)\right\} + \sqrt{2u(1-u)}\dot{W}$$

with initial condition u_0 . Uniqueness in law holds for initial conditions of finite mass.

Literature Review

- This paper is an extension of results of Mueller and Tribe [3]
 (d = 1, voter processes with nonnegative bias).
- In Cox and Perkins [1] it was shown that rescaled Lotka-Volterra models with long-range interaction converge weakly to super-Brownian motion with linear drift. They consider
 - low density regime
 - weak limits for measure-valued processes

$$X_t^N = rac{1}{N} \sum_{x \in \mathbb{Z}/(M_N\sqrt{N})} \xi_t^N(x) \delta_x$$

with $M_N/\sqrt{N} \to \infty$ (for d=1)

• We consider $M_N = \sqrt{N}$ (we get X_t^N converges to $u_t dt$ in the **vague** topology).

Ideas used in the Proof

Part 1: "How to get positive perturbations only" Rewrite the rates in a form, where all resulting coefficients are non-negative by using

$$-x^m = (1-x)\sum_{l=1}^{m-1} x^l - x$$
 and $1 - f_1 = f_0$.

Part 2: Tightness Graphical construction

Suppose

$$0
ightarrow 1$$
 at rate $\ \cdots + q_j^{(0,m)} f_j f_1^{m-1} + \cdots$

with
$$j \in \{0, 1\}$$
, $q_j^{(0,m)} > 0$.
Recall: $|y : y \sim x| = 2c(N)\sqrt{N}$ and
 $f_i^{(N)}(x,\xi) \equiv \frac{1}{2c(N)\sqrt{N}} \sum_{y:y \sim x} 1(\xi^N(y) = i), i = 0, 1.$

The graphical construction uses independent families of i.i.d. Poisson processes: E.g.,

$$\begin{pmatrix} Q_t^{m,j,0}(x;y_1,\ldots,y_m):x,y_1,\ldots,y_m\in N^{-1}\mathbb{Z} \end{pmatrix}$$

i.i.d. Poisson processes of rate $\frac{q_j^{(0,m)}}{2c(N)\sqrt{N}(2c(N)\sqrt{N})^{m-1}}.$

At a jump of $Q_t^{m,j,0}(x; y_1, \ldots, y_m)$ the voter at x adopts the opinion 1 provided that y_1, \ldots, y_m are neighbours of x, y_1 has opinion j and all of y_2, \ldots, y_m have opinion 1.

• Graphical construction

 \Rightarrow stochastic integral equation for ξ_t^N

- integrate against test-function $\phi_t(x)$
 - \Rightarrow an approximate semimartingale decomposition
- choose "clever" test function
 - \Rightarrow approximate Green's function representation for $A(\xi_t)$.

Tightness estimates

Derive estimates on p^{th} -moment differences, i.e. bound (I omit some details here)

$$\mathbb{E}\Big[\Big|A(\xi_t^N)(z) - A(\xi_s^N)(y)\Big|^p\Big] \le Ce^{\lambda p|z|} \left(|t-s|^{p/24} + |z-y|^{p/24} + N^{-p/24}\right)$$

Then use Kolmogorov's continuity theorem and the Arzelà-Ascoli theorem.

Part 3: Uniqueness in law Apply a version of Dawson's Girsanov theorem.

Sandra Kliem (EURANDOM) Convergence of Rescaled Competing Species Processes YEP - March 2011 13 / 15

References

- COX, J.T. and PERKINS, E.A. Rescaled Lotka-Volterra models converge to super-Brownian motion. *Ann. Probab.* (2005)
- COX, J.T. and PERKINS, E.A. Survival and coexistence in stochastic spatial Lotka-Volterra models. *Probab. Theory Related Fields* (2007)
- MUELLER, C. and TRIBE, R. Stochastic p.d.e.'s arising from the long range contact and long range voter processes. *Probab. Theory Related Fields* (1995)

thank you