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A class of rescaled competing species processes

We define a sequence ξNt ,N ∈ N of rescaled competing species models,
which can be described as perturbations of rescaled voter models.

In the Nth model:

space: Z/N,

neighbours of x : y ∼ x iff 0 < |x − y | ≤ N−1/2

N = 1 : s u u u s
N = 4 : s s s s s s s s s u u u u u s s s s s s
N = 16 : q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q sssssssssq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

Each x has 2c(N)N1/2, c(N)
N→∞→ 1 neighbours.
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Long-range interaction takes into account the densities of the neighbours
of x ∈ Z/N at long-range, i.e.

f
(N)
i (x , ξ) ≡ 1

|y : y ∼ x |
∑

y :y∼x

1(ξN(y) = i), i = 0, 1.

s u u u ss s s s s s s s s u u u u u s s s s s sq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q sssssssssq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
Note in particular:

0 ≤ f
(N)
i ≤ 1 and

f
(N)
0 + f

(N)
1 = 1.
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Recall:

Flip rates of the unscaled biased voter process:

0→ 1 at rate c(x , ξ) = (1 + τ)f1(x , ξ),

1→ 0 at rate c(x , ξ) = f0(x , ξ).

Rescaling for the biased voter process::

0→ 1 at rate c(x , ξ) = N
(

1 +
τ

N

)
f

(N)
1 (x , ξ)

= Nf
(N)
1 (x , ξ) + f

(N)
1 (x , ξ)τ ,

1→ 0 at rate c(x , ξ) = Nf
(N)
0 (x , ξ).

Adding more general perturbations:

0→ 1 at rate Nf
(N)
1 + f

(N)
1 G

(N)
0

(
f

(N)
1

)
,

1→ 0 at rate Nf
(N)
0 + f

(N)
0 G

(N)
1

(
f

(N)
0

)
,

where G
(N)
i , i = 0, 1 are power series on [0, 1],
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i.e.

G
(N)
i (x) =

∞∑
m=0

α
(m+1,N)
i xm, i = 0, 1, x ∈ [0, 1]

with α
(m+1,N)
i satisfying certain summability and convergence conditions,

uniformly in N ≥ N0. Define

Gi (x) ≡ lim
N→∞

G
(N)
i (x) =

∞∑
m=0

α
(m+1)
i xm, x ∈ [0, 1].
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The object of interest

Approximate density A(ξNt ) for the configurations ξNt :

A(ξNt )(x) =
1

|y : y ∼ x |
∑
y∼x

ξNt (y), x ∈ Z/N.

Note: A(ξNt )(x) = f
(N)
1

(
x , ξNt

)
.

By linearly interpolating between sites we obtain approximate densities
A(ξNt )(x) ∈ [0, 1] for all x ∈ R.

Notation
Set C1 ≡ {f : R→ [0, 1] continuous} and let C1 be equipped with the
topology of uniform convergence on compact sets.

We obtain that t 7→ A(ξNt ) is cadlag C1-valued, i.e. A(ξN· ) ∈ D(C1).
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Theorem
Suppose that A(ξN0 )→ u0 in C1 and that G

(N)
i , i = 0, 1 satisfy appropriate

Hypotheses. Then(
A(ξNt ) : t ≥ 0

)
are C-tight as cadlag C1-valued processes.

The limit points of A(ξNt ) are continuous C1-valued processes ut

which solve

∂u

∂t
=

∆u

6
+ (1− u)u {G0(u)− G1(1− u)}+

√
2u(1− u)Ẇ

with initial condition u0.

If we assume additionally
∫

u0(x)dx <∞, then ut is the unique in
law [0, 1]-valued solution to the above SPDE.
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Example

Consider a sequence of rescaled Lotka-Volterra models with rates of
change

0→ 1 at rate Nf
(N)
1

(
f

(N)
0 + a

(N)
01 f

(N)
1

)
,

1→ 0 at rate Nf
(N)
0

(
f

(N)
1 + a

(N)
10 f

(N)
0

)
.

For i = 0, 1 choose

a
(N)
i(1−i) − 1 ≡

θ
(N)
i

N
with θ

(N)
i

N→∞→ θi

and rewrite

0→ 1 at rate Nf
(N)
1 + θ

(N)
0

(
f

(N)
1

)2
= Nf

(N)
1 + f

(N)
1 θ

(N)
0 f

(N)
1 ,

1→ 0 at rate Nf
(N)
0 + θ

(N)
1

(
f

(N)
0

)2
= Nf

(N)
0 + f

(N)
0 θ

(N)
1 f

(N)
0 .
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The Theorem yields that the sequence of approximate densities A(ξNt ) is
tight and every solution solves

∂u

∂t
=

∆u

6
+ (1− u)u {θ0u − θ1(1− u)}+

√
2u(1− u)Ẇ

with initial condition u0. Uniqueness in law holds for initial conditions of
finite mass.
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Literature Review

This paper is an extension of results of Mueller and Tribe [3]
(d = 1, voter processes with nonnegative bias).

In Cox and Perkins [1] it was shown that rescaled Lotka-Volterra
models with long-range interaction converge weakly to
super-Brownian motion with linear drift. They consider

low density regime
weak limits for measure-valued processes

X N
t =

1

N

∑
x∈Z/(MN

√
N)

ξN
t (x)δx

with MN/
√

N →∞ (for d = 1)
We consider MN =

√
N (we get X N

t converges to utdt in the vague
topology).
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Ideas used in the Proof

Part 1: ”How to get positive perturbations only”
Rewrite the rates in a form, where all resulting coefficients are
non-negative by using

−xm = (1− x)
m−1∑
l=1

x l − x and 1− f1 = f0.
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Part 2: Tightness
Graphical construction
Suppose

0→ 1 at rate · · ·+ q
(0,m)
j fj f

m−1
1 + · · ·

with j ∈ {0, 1}, q
(0,m)
j > 0.

Recall: |y : y ∼ x | = 2c(N)
√

N and

f
(N)
i (x , ξ) ≡ 1

2c(N)
√

N

∑
y :y∼x 1(ξN(y) = i), i = 0, 1.

The graphical construction uses independent families of i.i.d. Poisson
processes: E.g.,(

Qm,j ,0
t (x ; y1, . . . , ym) : x , y1, . . . , ym ∈ N−1Z

)
i.i.d. Poisson processes of rate

q
(0,m)
j

2c(N)
√

N(2c(N)
√

N)m−1
.

At a jump of Qm,j ,0
t (x ; y1, . . . , ym) the voter at x adopts the opinion 1

provided that y1, . . . , ym are neighbours of x , y1 has opinion j and all of
y2 . . . , ym have opinion 1.
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Graphical construction
⇒ stochastic integral equation for ξNt

integrate against test-function φt(x)
⇒ an approximate semimartingale decomposition

choose ”clever” test function
⇒ approximate Green’s function representation for A(ξt).

Tightness estimates

Derive estimates on pth-moment differences, i.e. bound (I omit some
details here)

E
[∣∣∣A(ξNt )(z)− A(ξNs )(y)

∣∣∣p] ≤ Ceλp|z|
(
|t − s|p/24 + |z − y |p/24 + N−p/24

)
.

Then use Kolmogorov’s continuity theorem and the Arzelà-Ascoli theorem.

Part 3: Uniqueness in law
Apply a version of Dawson’s Girsanov theorem.
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thank you
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