# Random geometric graphs 

Tobias Müller<br>Centrum Wiskunde \& Informatica

YEP VIII, 18 March 2011

The random geometric graph (RGG)
We construct a random graph $G(n, r)$ as follows. We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. (independent, identically distributed) uniformly at random and we join $X_{i}, X_{j}(i \neq j)$ by an edge if $\left\|X_{i}-X_{j}\right\| \leq r$.


Computer generated example with $n=100, r=\frac{1}{4}$.

## Disclaimer

- Often the RGG is defined in arbitrary dimension $d$, with the points $X_{1}, \ldots, X_{n}$ i.i.d. according to some (general) probability measure on $\mathbb{R}^{d}$, and where the distance between points is measured by an arbitrary norm $\|$.$\| on \mathbb{R}^{d}$ (often the $\ell_{p}$-norm for some $p$ ).


## Disclaimer

- Often the RGG is defined in arbitrary dimension $d$, with the points $X_{1}, \ldots, X_{n}$ i.i.d. according to some (general) probability measure on $\mathbb{R}^{d}$, and where the distance between points is measured by an arbitrary norm $\|$.$\| on \mathbb{R}^{d}$ (often the $\ell_{p}$-norm for some $p$ ).
- To keep the presentation as light as possible I will state the results only when the dimension is 2 , the points are i.i.d. uniform on the unit square and we use the the Euclidean norm to measure distance between points.


## Disclaimer

- Often the RGG is defined in arbitrary dimension $d$, with the points $X_{1}, \ldots, X_{n}$ i.i.d. according to some (general) probability measure on $\mathbb{R}^{d}$, and where the distance between points is measured by an arbitrary norm $\|$.$\| on \mathbb{R}^{d}$ (often the $\ell_{p}$-norm for some $p$ ).
- To keep the presentation as light as possible I will state the results only when the dimension is 2 , the points are i.i.d. uniform on the unit square and we use the the Euclidean norm to measure distance between points.
- Feel free to ask me about generalizations.

More pictures: expected degree 1


Computer generated example with $n=500$ and $r$ such that $\pi n r^{2}=1$. (Note that $\pi n r^{2}$ is roughly the expected degree.)

## More pictures: expected degree 5



Computer generated example with $n=500$ and $r$ such that $\pi n r^{2}=5$. (Note that $\pi n r^{2}$ is roughly the expected degree.)

More pictures: expected degree 10


Computer generated example with $n=500$ and $r$ such that $\pi n r^{2}=10$. (Note that $\pi n r^{2}$ is roughly the expected degree.)

## More pictures: expected degree 25



Computer generated example with $n=500$ and $r$ such that $\pi n r^{2}=25$. (Note that $\pi n r^{2}$ is roughly the expected degree.)

## Connectedness of the RGG

Theorem.[Penrose 1997] Let $\left(r_{n}\right)_{n}$ be a sequence of nonnegative numbers, and write $x_{n}:=\pi n r_{n}^{2}-\ln n$. Then:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[G\left(n, r_{n}\right) \text { is connected }\right]=\left\{\begin{array}{cl}
0 & \text { if } x_{n} \rightarrow-\infty ; \\
e^{-e^{-x}} & \text { if } x_{n} \rightarrow x \in \mathbb{R} ; \\
1 & \text { if } x_{n} \rightarrow+\infty
\end{array}\right.
$$

Recall that $\pi n r_{n}^{2}$ is (roughly) the average/expected degree.

## Some notation

For a graph $G$, we let $L(G)$ denote the number of vertices of the largest component.

## Some notation

For a graph $G$, we let $L(G)$ denote the number of vertices of the largest component.

If $E$ is an event then $E$ holds almost surely (a.s.) means that $\mathbb{P}(E)=1$.

## Some notation

For a graph $G$, we let $L(G)$ denote the number of vertices of the largest component.

If $E$ is an event then $E$ holds almost surely (a.s.) means that $\mathbb{P}(E)=1$.

If $Z_{1}, Z_{2}, \ldots$ are random variables and $c \in \mathbb{R}$ a constant then we say that " $Z_{n}$ converges to $c$ almost surely", denoted:

$$
Z_{n} \rightarrow c \quad \text { a.s. }
$$

if $\mathbb{P}\left(Z_{n} \rightarrow c\right)=1$.

## The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous function $f:[0, \infty) \rightarrow[0,1)$ such that the following holds.

## The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous function $f:[0, \infty) \rightarrow[0,1)$ such that the following holds. Let the sequence $\left(r_{n}\right)_{n}$ be defined by $r_{n}:=\sqrt{\lambda / \pi n}$ with $\lambda \geq 0$ fixed (observe that $\pi n r_{n}^{2}=\lambda$ ).

## The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous function $f:[0, \infty) \rightarrow[0,1)$ such that the following holds. Let the sequence $\left(r_{n}\right)_{n}$ be defined by $r_{n}:=\sqrt{\lambda / \pi n}$ with $\lambda \geq 0$ fixed (observe that $\pi n r_{n}^{2}=\lambda$ ).
Then

$$
\frac{L\left(G\left(n, r_{n}\right)\right)}{n} \rightarrow f(\lambda) \text { a.s. }
$$

## The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous function $f:[0, \infty) \rightarrow[0,1)$ such that the following holds. Let the sequence $\left(r_{n}\right)_{n}$ be defined by $r_{n}:=\sqrt{\lambda / \pi n}$ with $\lambda \geq 0$ fixed (observe that $\pi n r_{n}^{2}=\lambda$ ).
Then

$$
\frac{L\left(G\left(n, r_{n}\right)\right)}{n} \rightarrow f(\lambda) \text { a.s. }
$$

Furthermore, there is a constant $\lambda_{\text {crit }}>0$ such that $f(\lambda)=0$ for $\lambda \leq \lambda_{\text {crit }}$, and $f(\lambda)>0$ for $\lambda>\lambda_{\text {crit }}$.

## The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous function $f:[0, \infty) \rightarrow[0,1)$ such that the following holds.
Let the sequence $\left(r_{n}\right)_{n}$ be defined by $r_{n}:=\sqrt{\lambda / \pi n}$ with $\lambda \geq 0$ fixed (observe that $\pi n r_{n}^{2}=\lambda$ ).
Then

$$
\frac{L\left(G\left(n, r_{n}\right)\right)}{n} \rightarrow f(\lambda) \text { a.s. }
$$

Furthermore, there is a constant $\lambda_{\text {crit }}>0$ such that $f(\lambda)=0$ for $\lambda \leq \lambda_{\text {crit }}$, and $f(\lambda)>0$ for $\lambda>\lambda_{\text {crit }}$.

A similar, but slightly weaker result was already obtained by E. N. Gilbert in 1961.

## The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous function $f:[0, \infty) \rightarrow[0,1)$ such that the following holds.
Let the sequence $\left(r_{n}\right)_{n}$ be defined by $r_{n}:=\sqrt{\lambda / \pi n}$ with $\lambda \geq 0$ fixed (observe that $\pi n r_{n}^{2}=\lambda$ ).
Then

$$
\frac{L\left(G\left(n, r_{n}\right)\right)}{n} \rightarrow f(\lambda) \text { a.s. }
$$

Furthermore, there is a constant $\lambda_{\text {crit }}>0$ such that $f(\lambda)=0$ for $\lambda \leq \lambda_{\text {crit }}$, and $f(\lambda)>0$ for $\lambda>\lambda_{\text {crit }}$.

A similar, but slightly weaker result was already obtained by E. N. Gilbert in 1961.

The precise values of the $\lambda_{\text {crit }}$ and $f(\lambda)$ for $\lambda>\lambda_{\text {crit }}$ are unknown, but experimentally $\lambda_{\text {crit }} \approx 4.51$.

## A cartoon plot of $f(\lambda)$



## Other aspects of the RGG that have been considered.

 (A selection)- Cover and mixing times of a random walk on the graph. [Avin+Ercal 07, Cooper+Frieze '09];
- Eigenvalues of the adjacency matrix [BEJ 06, Rai 09];
- Monotone properties [McColm 04, GRK 05];
- First order expressible properties [McColm 99, Agarwal+Spencer 05];
- Min and max bisection [DPPS 99, DGM 06];
- Graph diameter [CKE 05];
- Small components [Penrose 03, DPM 08];
- Broadcasting algorithms on the graph [BEFSS 09];
- Chromatic number [McDiarmid 03, Penrose 03, DSS 07, MM 07+, Müller 08];
- Hamilton cycles [Petit 01,DPM 07,BBMW 09+,MPW 09+].


## Part II: Colouring.

## chromatic number

Let $G=(V, E)$ be a graph.
A $k$-colouring of $G$ is a map $f: V \rightarrow\{1, \ldots, k\}$ that satisfies $f(v) \neq f(w)$ whenever $v w \in E$


The chromatic number $\chi(G)$ is the least $k$ such that $G$ is $k$-colourable.

## Why colour (random geometric) graphs?

- Graph colouring goes back to the famous four-colour conjecture by Francis Guthrie in 1852 (now a theorem by Appel+Haken 1976);


## Why colour (random geometric) graphs?

- Graph colouring goes back to the famous four-colour conjecture by Francis Guthrie in 1852 (now a theorem by Appel+Haken 1976);
- Many discrete optimization problems, such as scheduling, are ultimately graph colouring problems;


## Why colour (random geometric) graphs?

- Graph colouring goes back to the famous four-colour conjecture by Francis Guthrie in 1852 (now a theorem by Appel+Haken 1976);
- Many discrete optimization problems, such as scheduling, are ultimately graph colouring problems;
- Frequency assignment: A random geometric graph might model a network of radio transmitters.
- Each transmitter needs to transmit its signal on some frequency;
- But, if two transmitters use the same frequency and they are (too) close, then there is interference between the signals;
- We want to minimise the number of distinct frequencies used and keep the interference at an acceptable level.


## Why colour (random geometric) graphs?

- Graph colouring goes back to the famous four-colour conjecture by Francis Guthrie in 1852 (now a theorem by Appel+Haken 1976);
- Many discrete optimization problems, such as scheduling, are ultimately graph colouring problems;
- Frequency assignment: A random geometric graph might model a network of radio transmitters.
- Each transmitter needs to transmit its signal on some frequency;
- But, if two transmitters use the same frequency and they are (too) close, then there is interference between the signals;
- We want to minimise the number of distinct frequencies used and keep the interference at an acceptable level.
- Great fun.


## clique number

Let $G=(V, E)$ be a graph.
A clique in $G$ is a complete subgraph of $G$, ie. a set of vertices $C \subseteq V$ such that $v w \in E$ for all $v, w \in C$.


The clique number $\omega(G)$ is the cardinality of a largest clique.

## clique number

Let $G=(V, E)$ be a graph.
A clique in $G$ is a complete subgraph of $G$, ie. a set of vertices $C \subseteq V$ such that $v w \in E$ for all $v, w \in C$.


The clique number $\omega(G)$ is the cardinality of a largest clique.
Observe that $\chi(G) \geq \omega(G)$ for all $G$.

## clique number

Let $G=(V, E)$ be a graph.
A clique in $G$ is a complete subgraph of $G$, ie. a set of vertices
$C \subseteq V$ such that $v w \in E$ for all $v, w \in C$.


The clique number $\omega(G)$ is the cardinality of a largest clique.
Observe that $\chi(G) \geq \omega(G)$ for all $G$.
In general, the ratio $\chi(G) / \omega(G)$ can be arbitrarily large [Mycielski 1955].

## A result on the ratio $\chi / \omega$

Theorem.[McDiarmid+M 2007+] There exists a $t_{0}>0$ and a continuous, strictly increasing function $x:\left[t_{0}, \infty\right) \rightarrow[1,2 \sqrt{3} / \pi)$ such that, for any sequence $\left(r_{n}\right)_{n}$ :
(i) If $\pi n r_{n}^{2} \leq t_{0} \ln n$ then

$$
\chi\left(G\left(n, r_{n}\right)\right) / \omega\left(G\left(n, r_{n}\right)\right) \rightarrow 1 \quad \text { a.s. }
$$

## A result on the ratio $\chi / \omega$

Theorem.[McDiarmid+M 2007+] There exists a $t_{0}>0$ and a continuous, strictly increasing function $x:\left[t_{0}, \infty\right) \rightarrow[1,2 \sqrt{3} / \pi)$ such that, for any sequence $\left(r_{n}\right)_{n}$ :
(i) If $\pi n r_{n}^{2} \leq t_{0} \ln n$ then

$$
\chi\left(G\left(n, r_{n}\right)\right) / \omega\left(G\left(n, r_{n}\right)\right) \rightarrow 1 \quad \text { a.s. }
$$

(ii) If $\frac{\pi n r^{2}}{\ln n} \rightarrow t$ with $t_{0} \leq t<\infty$ then

$$
\chi\left(G\left(n, r_{n}\right)\right) / \omega\left(G\left(n, r_{n}\right)\right) \rightarrow x(t) \quad \text { a.s.; }
$$

## A result on the ratio $\chi / \omega$

Theorem.[McDiarmid +M 2007+] There exists a $t_{0}>0$ and a continuous, strictly increasing function $x:\left[t_{0}, \infty\right) \rightarrow[1,2 \sqrt{3} / \pi)$ such that, for any sequence $\left(r_{n}\right)_{n}$ :
(i) If $\pi n r_{n}^{2} \leq t_{0} \ln n$ then

$$
\chi\left(G\left(n, r_{n}\right)\right) / \omega\left(G\left(n, r_{n}\right)\right) \rightarrow 1 \quad \text { a.s. }
$$

(ii) If $\frac{\pi n r^{2}}{\ln n} \rightarrow t$ with $t_{0} \leq t<\infty$ then

$$
\chi\left(G\left(n, r_{n}\right)\right) / \omega\left(G\left(n, r_{n}\right)\right) \rightarrow x(t) \quad \text { a.s.; }
$$

(iii) If $\frac{\pi n r^{2}}{\ln n} \rightarrow \infty$ then

$$
\chi\left(G\left(n, r_{n}\right)\right) / \omega\left(G\left(n, r_{n}\right)\right) \rightarrow \frac{2 \sqrt{3}}{\pi} \quad \text { a.s. }
$$

## Another cartoon



Note : This is very different from other graph models

## Remarks

- The behaviour of $\omega\left(G\left(n, r_{n}\right)\right)$ and $\chi\left(G\left(n, r_{n}\right)\right)$ is also described separately in the paper but we skip this today;


## Remarks

- The behaviour of $\omega\left(G\left(n, r_{n}\right)\right)$ and $\chi\left(G\left(n, r_{n}\right)\right)$ is also described separately in the paper but we skip this today;
- The precise value of $t_{0}$ is not known;


## Remarks

- The behaviour of $\omega\left(G\left(n, r_{n}\right)\right)$ and $\chi\left(G\left(n, r_{n}\right)\right)$ is also described separately in the paper but we skip this today;
- The precise value of $t_{0}$ is not known;
- While we have an 'explicit' expression for $x(t)$, it is not easy to extract information it. It is not even clear how to numerically approximate $x(t)$;


## Remarks

- The behaviour of $\omega\left(G\left(n, r_{n}\right)\right)$ and $\chi\left(G\left(n, r_{n}\right)\right)$ is also described separately in the paper but we skip this today;
- The precise value of $t_{0}$ is not known;
- While we have an 'explicit' expression for $x(t)$, it is not easy to extract information it. It is not even clear how to numerically approximate $x(t)$;
- However, we know $x\left(t_{0}\right)=1$ and $\lim _{t \rightarrow \infty} x(t)=\frac{2 \sqrt{3}}{\pi}$.


## Remarks

- The behaviour of $\omega\left(G\left(n, r_{n}\right)\right)$ and $\chi\left(G\left(n, r_{n}\right)\right)$ is also described separately in the paper but we skip this today;
- The precise value of $t_{0}$ is not known;
- While we have an 'explicit' expression for $x(t)$, it is not easy to extract information it. It is not even clear how to numerically approximate $x(t)$;
- However, we know $x\left(t_{0}\right)=1$ and $\lim _{t \rightarrow \infty} x(t)=\frac{2 \sqrt{3}}{\pi}$.
- It takes several (technical) slides to state the definition of $x$ so I'll skip it today.


## Remarks

- The behaviour of $\omega\left(G\left(n, r_{n}\right)\right)$ and $\chi\left(G\left(n, r_{n}\right)\right)$ is also described separately in the paper but we skip this today;
- The precise value of $t_{0}$ is not known;
- While we have an 'explicit' expression for $x(t)$, it is not easy to extract information it. It is not even clear how to numerically approximate $x(t)$;
- However, we know $x\left(t_{0}\right)=1$ and $\lim _{t \rightarrow \infty} x(t)=\frac{2 \sqrt{3}}{\pi}$.
- It takes several (technical) slides to state the definition of $x$ so I'll skip it today.
- Where does the constant $2 \sqrt{3} / \pi$ come from? I will try to explain in the next few slides.


## The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If $\pi n r_{n}^{2} \gg \ln n$ then $\omega\left(G\left(n, r_{n}\right)\right) / n r_{n}^{2} \rightarrow \frac{\pi}{4}$ a.s.

Proof sketch:

- A clique is a set of points of diameter $\leq r_{n}$;


## The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If $\pi n r_{n}^{2} \gg \ln n$ then
$\omega\left(G\left(n, r_{n}\right)\right) / n r_{n}^{2} \rightarrow \frac{\pi}{4}$ a.s.
Proof sketch:

- A clique is a set of points of diameter $\leq r_{n}$;
- Fix a disk of radius $r_{n} / 2$ inside the unit square. The clique number is at least the number of points that fall inside this disk. We expect $\frac{\pi}{4} n r_{n}^{2}$ points to fall inside it.


## The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If $\pi n r_{n}^{2} \gg \ln n$ then
$\omega\left(G\left(n, r_{n}\right)\right) / n r_{n}^{2} \rightarrow \frac{\pi}{4}$ a.s.
Proof sketch:

- A clique is a set of points of diameter $\leq r_{n}$;
- Fix a disk of radius $r_{n} / 2$ inside the unit square. The clique number is at least the number of points that fall inside this disk. We expect $\frac{\pi}{4} n r_{n}^{2}$ points to fall inside it. When $\pi n r_{n}^{2} \gg \ln n$ then it contains at least $(1-\varepsilon) \frac{\pi}{4} n r_{n}^{2}$ points with probability tending to 1 ;


## The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If $\pi n r_{n}^{2} \gg \ln n$ then
$\omega\left(G\left(n, r_{n}\right)\right) / n r_{n}^{2} \rightarrow \frac{\pi}{4}$ a.s.
Proof sketch:

- A clique is a set of points of diameter $\leq r_{n}$;
- Fix a disk of radius $r_{n} / 2$ inside the unit square. The clique number is at least the number of points that fall inside this disk. We expect $\frac{\pi}{4} n r_{n}^{2}$ points to fall inside it. When $\pi n r_{n}^{2} \gg \ln n$ then it contains at least $(1-\varepsilon) \frac{\pi}{4} n r_{n}^{2}$ points with probability tending to 1 ;
- Isodiametric inequality: every set of diameter less than $r$ has area at most $\frac{\pi}{4} r^{2}$;


## The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If $\pi n r_{n}^{2} \gg \ln n$ then
$\omega\left(G\left(n, r_{n}\right)\right) / n r_{n}^{2} \rightarrow \frac{\pi}{4}$ a.s.
Proof sketch:

- A clique is a set of points of diameter $\leq r_{n}$;
- Fix a disk of radius $r_{n} / 2$ inside the unit square. The clique number is at least the number of points that fall inside this disk. We expect $\frac{\pi}{4} n r_{n}^{2}$ points to fall inside it. When $\pi n r_{n}^{2} \gg \ln n$ then it contains at least $(1-\varepsilon) \frac{\pi}{4} n r_{n}^{2}$ points with probability tending to 1 ;
- Isodiametric inequality: every set of diameter less than $r$ has area at most $\frac{\pi}{4} r^{2}$;
- When $n r_{n}^{2} \gg \ln n$ there is a "concentration phenomenon": (with probability tending to 1 ) every convex set $S \subseteq \mathbb{R}^{2}$ with diameter $\leq r_{n}$ contains less than $(1+\varepsilon) \frac{\pi}{4} n r^{2}$ points.


## The packing density

For $K>0$, let $N(K)$ denote the biggest number of points in $[0, K]^{2}$ that all have pairwise distance 2. (in other words they are the centers of disjoint disks of unit radius). The limit

$$
\delta:=\lim _{K \rightarrow \infty} \frac{\pi \cdot N(K)}{K^{2}} .
$$

exists and it equals

$$
\delta=\frac{\pi}{2 \sqrt{3}}
$$

by a theorem of Thue from 1892. The constant $\delta$ is the packing density of the unit disk and it can be interpreted as the biggest proportion of the plane that can be filled with disjoint unit disks.

## (Part of) an optimal packing



We can cover a proportion of $\delta=\pi / 2 \sqrt{3}$ of the plane with disks centered on the "hexagonal" lattice.

The circumscribed regular hexagon around a disk of radius 1 has area $2 \sqrt{3}$.

## independence number

Let $G=(V, E)$ be a graph.
A independent set in $G$ is a set of vertices $C \subseteq V$ such that $v w \notin E$ for all $v, w \in C$.


The independence number $\alpha(G)$ is the cardinality of a largest independent set.

## independence number

Let $G=(V, E)$ be a graph.
A independent set in $G$ is a set of vertices $C \subseteq V$ such that $v w \notin E$ for all $v, w \in C$.


The independence number $\alpha(G)$ is the cardinality of a largest independent set.
Observe that $\chi(G) \geq|V| / \alpha(G)$ for all $G$.
(A colouring is a partition into independent sets.)

Why is $\delta$ relevant for colouring the RGG - some intuition
Suppose that $X_{i_{1}}, \ldots, X_{i_{m}}$ form an independent set.

Why is $\delta$ relevant for colouring the RGG - some intuition
Suppose that $X_{i_{1}}, \ldots, X_{i_{m}}$ form an independent set.
Then $\left\|X_{i j}-X_{i_{j}}\right\| \geq r$ for all $1 \leq j<j^{\prime} \leq m$.

## Why is $\delta$ relevant for colouring the RGG - some intuition

Suppose that $X_{i_{1}}, \ldots, X_{i_{m}}$ form an independent set.
Then $\left\|X_{i_{j}}-X_{i_{j}}\right\| \geq r$ for all $1 \leq j<j^{\prime} \leq m$.
In other words, the disks $B\left(X_{i_{j}}, r / 2\right)$ are disjoint.

## Why is $\delta$ relevant for colouring the RGG - some intuition

Suppose that $X_{i_{1}}, \ldots, X_{i_{m}}$ form an independent set.
Then $\left\|X_{i_{j}}-X_{i_{j},}\right\| \geq r$ for all $1 \leq j<j^{\prime} \leq m$.
In other words, the disks $B\left(X_{i_{j}}, r / 2\right)$ are disjoint.
Since the $X_{i}$ lie in the unit square, a deterministic bound for the independence number is:

$$
\alpha(G(n, r)) \leq N(2 / r) \approx \frac{\delta(2 / r)^{2}}{\pi}=\frac{2}{\sqrt{3}} r^{-2}
$$

(for small $r$ ) by definition of $\delta$.

## Why is $\delta$ relevant for colouring the RGG - some intuition

Suppose that $X_{i_{1}}, \ldots, X_{i_{m}}$ form an independent set.
Then $\left\|X_{i_{j}}-X_{i_{j},}\right\| \geq r$ for all $1 \leq j<j^{\prime} \leq m$.
In other words, the disks $B\left(X_{i j}, r / 2\right)$ are disjoint.
Since the $X_{i}$ lie in the unit square, a deterministic bound for the independence number is:

$$
\alpha(G(n, r)) \leq N(2 / r) \approx \frac{\delta(2 / r)^{2}}{\pi}=\frac{2}{\sqrt{3}} r^{-2}
$$

(for small $r$ ) by definition of $\delta$.
As it turns out, when $n r^{2} \gg \ln n$, the deterministic lower bound

$$
\chi(G(n, r)) \geq \frac{n}{\alpha(G(n, r))} \geq \frac{n}{N(2 / r)} \approx \frac{\sqrt{3}}{2} n r^{2}
$$

gives (roughly) the right answer.

## How we ended up with $2 \sqrt{3} / \pi$.

When $\pi n r_{n}^{2} \gg \ln n$ then

$$
\frac{\omega\left(G\left(n, r_{n}\right)\right)}{n r_{n}^{2}} \rightarrow \frac{\pi}{4} \text { a.s. }
$$

and (although I only sketched the easy half of the proof):

$$
\frac{\chi\left(G\left(n, r_{n}\right)\right)}{n r_{n}^{2}} \rightarrow \frac{\sqrt{3}}{2} \text { a.s. }
$$

And hence

$$
\frac{\chi\left(G\left(n, r_{n}\right)\right)}{\omega\left(G\left(n, r_{n}\right)\right)} \rightarrow \frac{2 \sqrt{3}}{\pi} \text { a.s. }
$$

## The probability distribution: two-point concentration

When the "expected degree" $\pi n r_{n}^{2}$ is not too large then the clique and chromatic numbers are 'quasi-deterministic':

Theorem.[M, 2008] If $\frac{\pi n r_{n}^{2}}{\ln n} \rightarrow 0$ then there is a sequence $\left(k_{n}\right)_{n}$ such that:

$$
\mathbb{P}\left[\omega\left(G\left(n, r_{n}\right)\right) \in\left\{k_{n}, k_{n}+1\right\}\right] \rightarrow 1
$$

Theorem.[M, 2008] If $\frac{\pi n r_{n}^{2}}{\ln n} \rightarrow 0$ then there is a sequence $\left(m_{n}\right)_{n}$ such that:

$$
\mathbb{P}\left[\chi\left(G\left(n, r_{n}\right)\right) \in\left\{m_{n}, m_{n}+1\right\}\right] \rightarrow 1
$$

## The probability distribution: two-point concentration

When the "expected degree" $\pi n r_{n}^{2}$ is not too large then the clique and chromatic numbers are 'quasi-deterministic':

Theorem.[M, 2008] If $\frac{\pi n r_{n}^{2}}{\ln n} \rightarrow 0$ then there is a sequence $\left(k_{n}\right)_{n}$ such that:

$$
\mathbb{P}\left[\omega\left(G\left(n, r_{n}\right)\right) \in\left\{k_{n}, k_{n}+1\right\}\right] \rightarrow 1
$$

Theorem.[M, 2008] If $\frac{\pi n r_{n}^{2}}{\ln n} \rightarrow 0$ then there is a sequence $\left(m_{n}\right)_{n}$ such that:

$$
\mathbb{P}\left[\chi\left(G\left(n, r_{n}\right)\right) \in\left\{m_{n}, m_{n}+1\right\}\right] \rightarrow 1
$$

This proves and extends a conjecture of Penrose.

## The probability distribution: two-point concentration

When the "expected degree" $\pi n r_{n}^{2}$ is not too large then the clique and chromatic numbers are 'quasi-deterministic':

Theorem.[M, 2008] If $\frac{\pi n r_{n}^{2}}{\ln n} \rightarrow 0$ then there is a sequence $\left(k_{n}\right)_{n}$ such that:

$$
\mathbb{P}\left[\omega\left(G\left(n, r_{n}\right)\right) \in\left\{k_{n}, k_{n}+1\right\}\right] \rightarrow 1
$$

Theorem.[M, 2008] If $\frac{\pi n r_{n}^{2}}{\ln n} \rightarrow 0$ then there is a sequence $\left(m_{n}\right)_{n}$ such that:

$$
\mathbb{P}\left[\chi\left(G\left(n, r_{n}\right)\right) \in\left\{m_{n}, m_{n}+1\right\}\right] \rightarrow 1
$$

This proves and extends a conjecture of Penrose.
For other choices of $\left(r_{n}\right)_{n}$ the probability distribution of $\chi, \omega$ is an open problem.

## Part III: Hamilton cycles

## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## The RGG process

We pick vertices $X_{1}, \ldots, X_{n} \in[0,1]^{2}$ i.i.d. uniformly at random and add the edges one by one in order of increasing edge length.


## Definition : the hitting radius

Let $\mathcal{P}$ be an increasing graph property (adding edges cannot destroy the property - e.g. connected, non-planar). The hitting radius of $\mathcal{P}$ is defined as:

$$
\rho_{n}(\mathcal{P}):=\min \{r \geq 0: G(n, r) \text { satisfies } \mathcal{P}\} .
$$

Here we keep the positions of the points $X_{1}, \ldots, X_{n}$ fixed as we take the minimum.

## Definition : the hitting radius

Let $\mathcal{P}$ be an increasing graph property (adding edges cannot destroy the property - e.g. connected, non-planar). The hitting radius of $\mathcal{P}$ is defined as:

$$
\rho_{n}(\mathcal{P}):=\min \{r \geq 0: G(n, r) \text { satisfies } \mathcal{P}\} .
$$

Here we keep the positions of the points $X_{1}, \ldots, X_{n}$ fixed as we take the minimum. So $\rho_{n}(\mathcal{P})$ is a function of $X_{1}, \ldots, X_{n}$ (and hence a random variable).

## Definition : the hitting radius

Let $\mathcal{P}$ be an increasing graph property (adding edges cannot destroy the property - e.g. connected, non-planar). The hitting radius of $\mathcal{P}$ is defined as:

$$
\rho_{n}(\mathcal{P}):=\min \{r \geq 0: G(n, r) \text { satisfies } \mathcal{P}\} .
$$

Here we keep the positions of the points $X_{1}, \ldots, X_{n}$ fixed as we take the minimum. So $\rho_{n}(\mathcal{P})$ is a function of $X_{1}, \ldots, X_{n}$ (and hence a random variable).
In words, $\rho_{n}(\mathcal{P})$ is the least $r$ for which $G(n, r)$ satisfies the property $\mathcal{P}$.

## Definition : the hitting radius

Let $\mathcal{P}$ be an increasing graph property (adding edges cannot destroy the property - e.g. connected, non-planar). The hitting radius of $\mathcal{P}$ is defined as:

$$
\rho_{n}(\mathcal{P}):=\min \{r \geq 0: G(n, r) \text { satisfies } \mathcal{P}\} .
$$

Here we keep the positions of the points $X_{1}, \ldots, X_{n}$ fixed as we take the minimum. So $\rho_{n}(\mathcal{P})$ is a function of $X_{1}, \ldots, X_{n}$ (and hence a random variable).
In words, $\rho_{n}(\mathcal{P})$ is the least $r$ for which $G(n, r)$ satisfies the property $\mathcal{P}$.
In again other words, it is the length of the edge which makes the RGG process satisfy $\mathcal{P}$.

## Example: $\rho_{10}($ connected $)$



In the particular instance of the RGG process we had two slides ago $\rho_{10}$ (connected) $\approx 0.4513$.

## Example: $\rho_{10}($ connected $)$



In the particular instance of the RGG process we had two slides ago $\rho_{10}$ (connected) $\approx 0.4513$.

## Terminology: with high probability

Let $\left(A_{n}\right)_{n}$ be a sequence of events.
We say that $A_{n}$ holds with high probability (notation: $A_{n}$ w.h.p.) if

$$
\mathbb{P}\left(A_{n}\right) \rightarrow 1,
$$

as $n \rightarrow \infty$.

## A result of Penrose on the hitting radius for connectedness

## Theorem.[Penrose'97] $\rho_{n}($ connected $)=\rho_{n}(\min . \operatorname{deg} . \geq 1)$ w.h.p.

This implies the result stated on a earlier slide (I will explain how the corollary follows from the theorem on the next few slides)

Corollary. Let $\left(r_{n}\right)_{n}$ be a sequence of nonnegative numbers, and write $x_{n}:=\pi n r_{n}^{2}-\ln n$. Then:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[G\left(n, r_{n}\right) \text { is connected }\right]=\left\{\begin{array}{cl}
0 & \text { if } x_{n} \rightarrow-\infty \\
e^{-e^{-x}} & \text { if } x_{n} \rightarrow x \in \mathbb{R} \\
1 & \text { if } x_{n} \rightarrow+\infty
\end{array}\right.
$$

## Explanation: why the corollary is a corollary

Note that for any $n, r$ :

$$
\begin{gathered}
\mathbb{P}(G(n, r) \text { has min.deg. } \geq 1) \\
\geq \\
\mathbb{P}(G(n, r) \text { is connected })
\end{gathered}
$$

(Continued on next slide)

## Explanation: why the corollary is a corollary

Note that for any $n, r$ :

$$
\begin{gathered}
\mathbb{P}(G(n, r) \text { has min.deg. } \geq 1) \\
\geq \\
\mathbb{P}(G(n, r) \text { is connected }) \\
= \\
\mathbb{P}(G(n, r) \text { is connected and has min.deg } \geq 1)
\end{gathered}
$$

(Continued on next slide)

## Explanation: why the corollary is a corollary

Note that for any $n, r$ :

$$
\begin{gathered}
\mathbb{P}(G(n, r) \text { has min.deg. } \geq 1) \\
\geq \\
\mathbb{P}(G(n, r) \text { is connected }) \\
= \\
\mathbb{P}(G(n, r) \text { is connected and has min.deg } \geq 1) \\
= \\
\mathbb{P}(G(n, r) \text { has min.deg. } \geq 1)- \\
\mathbb{P}(G(n, r) \text { is not connected and has min.deg } \geq 1)
\end{gathered}
$$

(Continued on next slide)

## Explanation: why the corollary is a corollary

Note that for any $n, r$ :

$$
\begin{gathered}
\mathbb{P}(G(n, r) \text { has min.deg. } \geq 1) \\
\geq \\
\mathbb{P}(G(n, r) \text { is connected }) \\
=
\end{gathered}
$$

$\mathbb{P}(G(n, r)$ is connected and has min.deg $\geq 1)$

$$
=
$$

$\mathbb{P}(G(n, r)$ has min.deg. $\geq 1)-$
$\mathbb{P}(G(n, r)$ is not connected and has min.deg $\geq 1)$

$$
\begin{gathered}
\geq \\
\mathbb{P}(G(n, r) \text { has min.deg. } \geq 1)- \\
\mathbb{P}\left(\rho_{n}(\text { connected }) \neq \rho_{n}(\text { min. deg. } \geq 1)\right) .
\end{gathered}
$$

(Continued on next slide)

## Why the corollary is a corollary, continued

By inequalities on the previous slide and the hitting-radius result of Penrose, for any sequence $\left(r_{n}\right)_{n}$ :

$$
\mathbb{P}\left(G\left(n, r_{n}\right) \text { is connected }\right)=\mathbb{P}\left(G\left(n, r_{n}\right) \text { has min.deg. } \geq 1\right)-o(1)
$$

## Why the corollary is a corollary, continued

By inequalities on the previous slide and the hitting-radius result of Penrose, for any sequence $\left(r_{n}\right)_{n}$ :

$$
\mathbb{P}\left(G\left(n, r_{n}\right) \text { is connected }\right)=\mathbb{P}\left(G\left(n, r_{n}\right) \text { has min.deg. } \geq 1\right)-o(1)
$$

So the probability of being connected is about the same as the probability of having no isolated vertex ( $=$ a vertex of degree 0 ).
(Continued on next slide)

## Why the corollary is a corollary, continued

Suppose that $\left(r_{n}\right)_{n}$ is such that $\pi n r_{n}^{2}-\ln n \rightarrow x \in \mathbb{R}$.
Let $Z_{n}$ denote the number of isolated vertices in $G\left(n, r_{n}\right)$.

## Why the corollary is a corollary, continued

Suppose that $\left(r_{n}\right)_{n}$ is such that $\pi n r_{n}^{2}-\ln n \rightarrow x \in \mathbb{R}$.
Let $Z_{n}$ denote the number of isolated vertices in $G\left(n, r_{n}\right)$.
Observe that

$$
\mathbb{E} Z_{n} \approx n \cdot\left(1-\pi r_{n}^{2}\right)^{n-1}=n \cdot\left(1-\frac{\ln n+x}{n}\right)^{n-1} \rightarrow e^{-x}
$$

## Why the corollary is a corollary, continued

Suppose that $\left(r_{n}\right)_{n}$ is such that $\pi n r_{n}^{2}-\ln n \rightarrow x \in \mathbb{R}$.
Let $Z_{n}$ denote the number of isolated vertices in $G\left(n, r_{n}\right)$.
Observe that

$$
\mathbb{E} Z_{n} \approx n \cdot\left(1-\pi r_{n}^{2}\right)^{n-1}=n \cdot\left(1-\frac{\ln n+x}{n}\right)^{n-1} \rightarrow e^{-x}
$$

It is relatively straightforward to show that

$$
\mathbb{P}\left(Z_{n}=0\right) \rightarrow e^{-e^{-x}}
$$

In fact $Z_{n}$ is approximately distributed like a Poisson $\left(e^{-x}\right)$.

## Why the corollary is a corollary, continued

Suppose that $\left(r_{n}\right)_{n}$ is such that $\pi n r_{n}^{2}-\ln n \rightarrow x \in \mathbb{R}$.
Let $Z_{n}$ denote the number of isolated vertices in $G\left(n, r_{n}\right)$.
Observe that

$$
\mathbb{E} Z_{n} \approx n \cdot\left(1-\pi r_{n}^{2}\right)^{n-1}=n \cdot\left(1-\frac{\ln n+x}{n}\right)^{n-1} \rightarrow e^{-x}
$$

It is relatively straightforward to show that

$$
\mathbb{P}\left(Z_{n}=0\right) \rightarrow e^{-e^{-x}}
$$

In fact $Z_{n}$ is approximately distributed like a Poisson $\left(e^{-x}\right)$.
(By monotonicity we only need to consider the range when $\pi n r^{2}-\ln n$ is constant to prove the corollary.)

## Definition: Hamilton cycle

A Hamilton cycle in a graph $G=(V, E)$ is a closed walk that vists every vertex exactly once

$G$ is Hamiltonian $=G$ has a Hamilton cycle Hamiltonicity $=$ having a Hamilton cycle.

## Earlier work on Hamiltonicity

Theorem. [Petit'01] there exists a $C>0$ such that if $\pi n r_{n}^{2} \geq C \ln n$ then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G\left(n, r_{n}\right) \text { has a Hamilton cycle }\right)=1 .
$$

This was later improved to:

Theorem. [Diaz+Mitsche+Perez'07] For any fixed $\varepsilon>0$, if $\pi n r_{n}^{2} \geq(1+\varepsilon) \ln n$ then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G\left(n, r_{n}\right) \text { has a Hamilton cycle }\right)=1
$$

## An observation

Note that being connected is a necessary condition for having a Hamilton cycle.

## An observation

Note that being connected is a necessary condition for having a Hamilton cycle.

So by Penrose's result on connectivity $\mathbb{P}\left(G\left(n, r_{n}\right)\right.$ is Hamiltonian $) \rightarrow 0$ whenever $\pi n r_{n}^{2} \leq(1-\varepsilon) \ln n$ for some fixed $\varepsilon>0$.

## An observation

Note that being connected is a necessary condition for having a Hamilton cycle.

So by Penrose's result on connectivity $\mathbb{P}\left(G\left(n, r_{n}\right)\right.$ is Hamiltonian $) \rightarrow 0$ whenever $\pi n r_{n}^{2} \leq(1-\varepsilon) \ln n$ for some fixed $\varepsilon>0$.

In other words, the Diaz-Mitsche-Perez result shows that

$$
\frac{\rho_{n}(\text { Hamiltonian })}{\sqrt{\frac{\ln n}{\pi n}}} \rightarrow 1 \quad \text { in probability. }
$$

## Penrose's question

Penrose [2003] asked whether

$$
\rho_{n}(\text { Hamiltonian })=\rho_{n}(\min . \operatorname{deg} \geq 2) \quad \text { w.h.p. }
$$

This would establish an analogue of a celebrated theorem by Ajtai+Komlós+Szemerédi'85 and independently Bollobás'84 on the Erdős-Rényi random graph.

## The answer to Penrose's question is yes

Theorem. [KM, BBW, PW 09+] $\rho_{n}($ Hamiltonian $)=\rho_{n}($ min.deg. $\geq 2)$ w.h.p.

Corollary. Let $\left(r_{n}\right)_{n}$ be a sequence of nonnegative numbers, and write $x_{n}:=\pi n r_{n}^{2}-(\ln n+\ln \ln n)$. Then:
$\lim _{n \rightarrow \infty} \mathbb{P}\left[G\left(n, r_{n}\right)\right.$ is Hamiltonian $]=\left\{\begin{array}{cl}0 & \text { if } x_{n} \rightarrow-\infty ; \\ e^{-\sqrt{\pi e^{-x}}}-e^{-x} & \text { if } x_{n} \rightarrow x \in \mathbb{R} ; \\ 1 & \text { if } x_{n} \rightarrow+\infty .\end{array}\right.$

## An extension

Let us write
$k$-EDHs := there exist $k$ edge-disjoint Hamilton cycles.
Theorem. [M+Perez+Wormald, 09+] For each fixed $k$ we have:

$$
\left.\rho_{n}(k-\mathrm{EDHs})=\rho_{n} \text { (min.deg. } \geq 2 k\right) \quad \text { w.h.p. }
$$

## More extensions

pancyclic $:=\exists$ cycles of all lengths between 3 and $n$. Hamilton connected $:=$ between any two points $\exists$ a Hamilton path.

Theorem. $\rho_{n}($ pancyclic $)=\rho_{n}(\min . \operatorname{deg} . \geq 2)$ w.h.p.

Theorem. $\rho_{n}($ Hamilton connected $)=\rho_{n}(\min$. deg. $\geq 3)$ w.h.p.
All are analogues of classical results for the Erdős-Rényi random graph.

Part IV: the power of two choices.
(Work in progress)

## The power of two choices

There are $n$ rounds, and in each round two random points arrive.

## The power of two choices

There are $n$ rounds, and in each round two random points arrive. There is a player who has to decide which of the two points two points to keep. (He does not know the future).

## The power of two choices

There are $n$ rounds, and in each round two random points arrive. There is a player who has to decide which of the two points two points to keep. (He does not know the future).
The player wants to delay or speed up some property / event, such as having a linear size component.

## The birth of a "giant component"

Let us denote by $G(n, r, S)$ the (random geometric) graph we end up after $n$ rounds, when the player plays strategy $S$.

## The birth of a "giant component"

Let us denote by $G(n, r, S)$ the (random geometric) graph we end up after $n$ rounds, when the player plays strategy $S$.

Suppose the player plays randomly.
If $\left(r_{n}\right)_{n}$ is such that $\pi n r_{n}^{2} \geq \lambda_{\text {crit }}+\varepsilon$ then there is a linear size component, i.e.

$$
L\left(G\left(n, r_{n}, S\right) \geq c \cdot n \quad\right. \text { w.h.p. }
$$

(This follows from a result of Penrose.)

## The birth of a "giant component"

Let us denote by $G(n, r, S)$ the (random geometric) graph we end up after $n$ rounds, when the player plays strategy $S$.
Suppose the player plays randomly.
If $\left(r_{n}\right)_{n}$ is such that $\pi n r_{n}^{2} \geq \lambda_{\text {crit }}+\varepsilon$ then there is a linear size component, i.e.

$$
L\left(G\left(n, r_{n}, S\right) \geq c \cdot n \quad\right. \text { w.h.p. }
$$

(This follows from a result of Penrose.)
What happens if we play optimally rather than randomly?

## Birth control

Theorem.[M+Spöhel, 11+] There exist functions
$f, g:[0, \infty) \rightarrow(0,1)$ such that the following hold. If $\left(r_{n}\right)_{n}$ is such that

$$
\pi n r_{n}^{2}=c \cdot n^{\frac{1}{3}} /(\ln \ln n)^{\frac{2}{3}}
$$

for some fixed $c>0$ then
(i) There exists a strategy $S$ such that $L(G(n, r, S)) \leq f(c) n$ w.h.p.;
(ii) For every strategy $S$, we have that $L(G(n, r, S)) \geq g(c) n$ w.h.p.

Moreover, $f(c) \rightarrow 0$ as $c \downarrow 0$ and $g(c) \rightarrow 1$ as $c \rightarrow \infty$.

## Thank you for your attention!

