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The random geometric graph (RGG)
We construct a random graph G (n, r) as follows. We pick vertices
X1, . . . ,Xn ∈ [0, 1]2 i.i.d. (independent, identically distributed)
uniformly at random and we join Xi ,Xj (i 6= j) by an edge if
‖Xi − Xj ‖≤ r .

Computer generated example with n = 100, r = 1
4 .



Disclaimer

◮ Often the RGG is defined in arbitrary dimension d , with the
points X1, . . . ,Xn i.i.d. according to some (general) probability
measure on R

d , and where the distance between points is
measured by an arbitrary norm ‖ .‖ on R

d (often the ℓp-norm
for some p).
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◮ Often the RGG is defined in arbitrary dimension d , with the
points X1, . . . ,Xn i.i.d. according to some (general) probability
measure on R

d , and where the distance between points is
measured by an arbitrary norm ‖ .‖ on R

d (often the ℓp-norm
for some p).

◮ To keep the presentation as light as possible I will state the
results only when the dimension is 2, the points are
i.i.d. uniform on the unit square and we use the the Euclidean
norm to measure distance between points.

◮ Feel free to ask me about generalizations.



More pictures: expected degree 1

Computer generated example with n = 500 and r such that
πnr2 = 1. (Note that πnr2 is roughly the expected degree.)
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Computer generated example with n = 500 and r such that
πnr2 = 5. (Note that πnr2 is roughly the expected degree.)



More pictures: expected degree 10

Computer generated example with n = 500 and r such that
πnr2 = 10. (Note that πnr2 is roughly the expected degree.)



More pictures: expected degree 25

Computer generated example with n = 500 and r such that
πnr2 = 25. (Note that πnr2 is roughly the expected degree.)



Connectedness of the RGG

Theorem.[Penrose 1997] Let (rn)n be a sequence of nonnegative
numbers, and write xn := πnr2n − ln n. Then:

lim
n→∞

P [G (n, rn) is connected ] =







0 if xn → −∞;

e−e−x
if xn → x ∈ R;

1 if xn → +∞.

Recall that πnr2n is (roughly) the average/expected degree.



Some notation

For a graph G , we let L(G ) denote the number of vertices of the
largest component.



Some notation

For a graph G , we let L(G ) denote the number of vertices of the
largest component.

If E is an event then E holds almost surely (a.s.) means that
P(E ) = 1.



Some notation

For a graph G , we let L(G ) denote the number of vertices of the
largest component.

If E is an event then E holds almost surely (a.s.) means that
P(E ) = 1.

If Z1,Z2, . . . are random variables and c ∈ R a constant then we
say that “Zn converges to c almost surely”, denoted:

Zn → c a.s.

if P(Zn → c) = 1.
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The largest component of the RGG

Theorem[Penrose 2003] There exists a non-decreasing continuous
function f : [0,∞) → [0, 1) such that the following holds.
Let the sequence (rn)n be defined by rn :=

√

λ/πn with λ ≥ 0
fixed (observe that πnr2n = λ).
Then

L(G (n, rn))

n
→ f (λ) a.s.

Furthermore, there is a constant λcrit > 0 such that f (λ) = 0 for
λ ≤ λcrit, and f (λ) > 0 for λ > λcrit.

A similar, but slightly weaker result was already obtained by
E. N. Gilbert in 1961.

The precise values of the λcrit and f (λ) for λ > λcrit are unknown,
but experimentally λcrit ≈ 4.51.



A cartoon plot of f (λ)

1

f (λ)

0
λc

λ = πnr2



Other aspects of the RGG that have been considered.

(A selection)

◮ Cover and mixing times of a random walk on the graph.
[Avin+Ercal 07, Cooper+Frieze ’09];

◮ Eigenvalues of the adjacency matrix [BEJ 06, Rai 09];

◮ Monotone properties [McColm 04, GRK 05];

◮ First order expressible properties [McColm 99,
Agarwal+Spencer 05];

◮ Min and max bisection [DPPS 99, DGM 06];

◮ Graph diameter [CKE 05];

◮ Small components [Penrose 03, DPM 08];

◮ Broadcasting algorithms on the graph [BEFSS 09];

◮ Chromatic number [McDiarmid 03, Penrose 03, DSS 07, MM
07+, Müller 08];

◮ Hamilton cycles [Petit 01,DPM 07,BBMW 09+,MPW 09+].



Part II: Colouring.



chromatic number

Let G = (V ,E ) be a graph.

A k-colouring of G is a map f : V → {1, . . . , k} that satisfies
f (v) 6= f (w) whenever vw ∈ E

23

12

1

The chromatic number χ(G ) is the least k such that G is
k-colourable.
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Why colour (random geometric) graphs?

◮ Graph colouring goes back to the famous four-colour
conjecture by Francis Guthrie in 1852 (now a theorem by
Appel+Haken 1976);

◮ Many discrete optimization problems, such as scheduling, are
ultimately graph colouring problems;

◮ Frequency assignment: A random geometric graph might
model a network of radio transmitters.

◮ Each transmitter needs to transmit its signal on some
frequency;

◮ But, if two transmitters use the same frequency and they are
(too) close, then there is interference between the signals;

◮ We want to minimise the number of distinct frequencies used
and keep the interference at an acceptable level.

◮ Great fun.
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Let G = (V ,E ) be a graph.

A clique in G is a complete subgraph of G , ie. a set of vertices
C ⊆ V such that vw ∈ E for all v ,w ∈ C .

The clique number ω(G ) is the cardinality of a largest clique.

Observe that χ(G ) ≥ ω(G ) for all G .

In general, the ratio χ(G )/ω(G ) can be arbitrarily large [Mycielski
1955].
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A result on the ratio χ/ω

Theorem.[McDiarmid+M 2007+] There exists a t0 > 0 and a
continuous, strictly increasing function x : [t0,∞) → [1, 2

√
3/π)

such that, for any sequence (rn)n:

(i) If πnr2n ≤ t0 ln n then

χ(G (n, rn))/ω(G (n, rn)) → 1 a.s.;

(ii) If πnr2

ln n → t with t0 ≤ t < ∞ then

χ(G (n, rn))/ω(G (n, rn)) → x(t) a.s.;

(iii) If πnr2

ln n → ∞ then

χ(G (n, rn))/ω(G (n, rn)) →
2
√
3

π
a.s.



Another cartoon

t = lim πnr2

ln n

t0

2
√

3
π

≈ 1.1

1

0

x(t) = lim
χ(G(n,r))
ω(G(n,r))

Note : This is very different from other graph models
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Remarks

◮ The behaviour of ω(G (n, rn)) and χ(G (n, rn)) is also
described separately in the paper but we skip this today;

◮ The precise value of t0 is not known;

◮ While we have an ‘explicit’ expression for x(t), it is not easy
to extract information it. It is not even clear how to
numerically approximate x(t);

◮ However, we know x(t0) = 1 and limt→∞ x(t) = 2
√
3

π
.

◮ It takes several (technical) slides to state the definition of x so
I’ll skip it today.

◮ Where does the constant 2
√
3/π come from? I will try to

explain in the next few slides.



The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If πnr2n ≫ ln n then
ω(G (n, rn))/nr

2
n → π

4 a.s.

Proof sketch:

◮ A clique is a set of points of diameter ≤ rn;
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The clique number for large(ish) expected degree.

Theorem.[McDiarmid 2003] If πnr2n ≫ ln n then
ω(G (n, rn))/nr

2
n → π

4 a.s.

Proof sketch:

◮ A clique is a set of points of diameter ≤ rn;

◮ Fix a disk of radius rn/2 inside the unit square. The clique
number is at least the number of points that fall inside this
disk. We expect π

4nr
2
n points to fall inside it. When

πnr2n ≫ ln n then it contains at least (1− ε)π4nr
2
n points with

probability tending to 1;

◮ Isodiametric inequality: every set of diameter less than r has
area at most π

4 r
2;

◮ When nr2n ≫ ln n there is a “concentration phenomenon”:
(with probability tending to 1) every convex set S ⊆ R

2 with
diameter ≤ rn contains less than (1 + ε)π4nr

2 points.

�



The packing density

For K > 0, let N(K ) denote the biggest number of points in
[0,K ]2 that all have pairwise distance 2. (in other words they are
the centers of disjoint disks of unit radius). The limit

δ := lim
K→∞

π · N(K )

K 2
.

exists and it equals

δ =
π

2
√
3
,

by a theorem of Thue from 1892. The constant δ is the packing
density of the unit disk and it can be interpreted as the biggest
proportion of the plane that can be filled with disjoint unit disks.



(Part of) an optimal packing

We can cover a proportion of δ = π/2
√
3 of the plane with disks

centered on the ”hexagonal” lattice.

The circumscribed regular hexagon around a disk of radius 1 has
area 2

√
3.
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Let G = (V ,E ) be a graph.

A independent set in G is a set of vertices C ⊆ V such that
vw 6∈ E for all v ,w ∈ C .

The independence number α(G ) is the cardinality of a largest
independent set.



independence number

Let G = (V ,E ) be a graph.

A independent set in G is a set of vertices C ⊆ V such that
vw 6∈ E for all v ,w ∈ C .

The independence number α(G ) is the cardinality of a largest
independent set.

Observe that χ(G ) ≥ |V |/α(G ) for all G .
(A colouring is a partition into independent sets.)
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Why is δ relevant for colouring the RGG – some intuition

Suppose that Xi1, . . . ,Xim form an independent set.

Then ‖Xij − Xij′
‖≥ r for all 1 ≤ j < j ′ ≤ m.

In other words, the disks B(Xij , r/2) are disjoint.

Since the Xi lie in the unit square, a deterministic bound for the
independence number is:

α(G (n, r)) ≤ N(2/r) ≈ δ(2/r)2

π
=

2√
3
r−2,

(for small r) by definition of δ.

As it turns out, when nr2 ≫ ln n, the deterministic lower bound

χ(G (n, r)) ≥ n

α(G (n, r))
≥ n

N(2/r)
≈

√
3

2
nr2,

gives (roughly) the right answer.



How we ended up with 2
√
3/π.

When πnr2n ≫ ln n then

ω(G (n, rn))

nr2n
→ π

4
a.s.

and (although I only sketched the easy half of the proof):

χ(G (n, rn))

nr2n
→

√
3

2
a.s.

And hence

χ(G (n, rn))

ω(G (n, rn))
→ 2

√
3

π
a.s.

�



The probability distribution: two-point concentration

When the “expected degree” πnr2n is not too large then the clique
and chromatic numbers are ‘quasi-deterministic’:
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The probability distribution: two-point concentration

When the “expected degree” πnr2n is not too large then the clique
and chromatic numbers are ‘quasi-deterministic’:

Theorem.[M, 2008] If πnr2n
ln n → 0 then there is a sequence (kn)n

such that:
P [ω(G (n, rn)) ∈ {kn, kn + 1}] → 1.

Theorem.[M, 2008] If πnr2n
ln n → 0 then there is a sequence (mn)n

such that:
P [χ(G (n, rn)) ∈ {mn,mn + 1}] → 1.

This proves and extends a conjecture of Penrose.

For other choices of (rn)n the probability distribution of χ, ω is an
open problem.



Part III: Hamilton cycles
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Definition : the hitting radius

Let P be an increasing graph property (adding edges cannot
destroy the property – e.g. connected, non-planar). The hitting
radius of P is defined as:

ρn(P) := min{r ≥ 0 : G (n, r) satisfies P}.

Here we keep the positions of the points X1, . . . ,Xn fixed as we
take the minimum. So ρn(P) is a function of X1, . . . ,Xn (and
hence a random variable).

In words, ρn(P) is the least r for which G (n, r) satisfies the
property P.
In again other words, it is the length of the edge which makes the
RGG process satisfy P.



Example: ρ10(connected)

In the particular instance of the RGG process we had two slides
ago ρ10(connected) ≈ 0.4513.



Example: ρ10(connected)

In the particular instance of the RGG process we had two slides
ago ρ10(connected) ≈ 0.4513.



Terminology: with high probability

Let (An)n be a sequence of events.

We say that An holds with high probability (notation: An w.h.p.) if

P(An) → 1,

as n → ∞.



A result of Penrose on the hitting radius for connectedness

Theorem.[Penrose’97] ρn(connected) = ρn(min.deg. ≥ 1) w.h.p.

This implies the result stated on a earlier slide (I will explain how
the corollary follows from the theorem on the next few slides)

Corollary. Let (rn)n be a sequence of nonnegative numbers, and
write xn := πnr2n − ln n. Then:

lim
n→∞

P [G (n, rn) is connected ] =







0 if xn → −∞;

e−e−x

if xn → x ∈ R;
1 if xn → +∞.



Explanation: why the corollary is a corollary

Note that for any n, r :

P(G (n, r) has min.deg. ≥ 1)
≥

P(G (n, r) is connected)
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≥
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P(G (n, r) is connected and has min.deg ≥ 1 )
=

P(G (n, r) has min.deg. ≥ 1)−
P(G (n, r) is not connected and has min.deg ≥ 1 )

≥
P(G (n, r) has min.deg. ≥ 1)−

P(ρn(connected) 6= ρn(min.deg. ≥ 1)).

(Continued on next slide)



Why the corollary is a corollary, continued

By inequalities on the previous slide and the hitting-radius result of
Penrose, for any sequence (rn)n:

P(G (n, rn) is connected) = P(G (n, rn) has min.deg. ≥ 1)− o(1).



Why the corollary is a corollary, continued

By inequalities on the previous slide and the hitting-radius result of
Penrose, for any sequence (rn)n:

P(G (n, rn) is connected) = P(G (n, rn) has min.deg. ≥ 1)− o(1).

So the probability of being connected is about the same as the
probability of having no isolated vertex (= a vertex of degree 0).

(Continued on next slide)



Why the corollary is a corollary, continued

Suppose that (rn)n is such that πnr2n − ln n → x ∈ R.
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Why the corollary is a corollary, continued

Suppose that (rn)n is such that πnr2n − ln n → x ∈ R.
Let Zn denote the number of isolated vertices in G (n, rn).
Observe that

EZn ≈ n · (1− πr2n )
n−1 = n ·

(

1− ln n + x

n

)n−1
→ e−x .

It is relatively straightforward to show that

P(Zn = 0) → e−e−x

.

In fact Zn is approximately distributed like a Poisson(e−x ). 2

(By monotonicity we only need to consider the range when
πnr2 − ln n is constant to prove the corollary.)



Definition: Hamilton cycle

A Hamilton cycle in a graph G = (V ,E ) is a closed walk that vists
every vertex exactly once

G is Hamiltonian = G has a Hamilton cycle

Hamiltonicity = having a Hamilton cycle.



Earlier work on Hamiltonicity

Theorem. [Petit’01] there exists a C > 0 such that if
πnr2n ≥ C ln n then

lim
n→∞

P(G (n, rn) has a Hamilton cycle ) = 1.

This was later improved to:

Theorem. [Diaz+Mitsche+Perez’07] For any fixed ε > 0, if
πnr2n ≥ (1 + ε) ln n then

lim
n→∞

P(G (n, rn) has a Hamilton cycle ) = 1.
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Hamilton cycle.
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An observation

Note that being connected is a necessary condition for having a
Hamilton cycle.

So by Penrose’s result on connectivity
P(G (n, rn) is Hamiltonian ) → 0 whenever πnr2n ≤ (1− ε) ln n for
some fixed ε > 0.

In other words, the Diaz-Mitsche-Perez result shows that

ρn(Hamiltonian)
√

ln n
πn

→ 1 in probability.



Penrose’s question

Penrose [2003] asked whether

ρn(Hamiltonian) = ρn(min.deg ≥ 2) w.h.p.

This would establish an analogue of a celebrated theorem by
Ajtai+Komlós+Szemerédi’85 and independently Bollobás’84 on
the Erdős-Rényi random graph.



The answer to Penrose’s question is yes

Theorem. [KM, BBW, PW 09+]
ρn(Hamiltonian) = ρn(min.deg.≥ 2) w.h.p.

Corollary. Let (rn)n be a sequence of nonnegative numbers, and
write xn := πnr2n − (ln n + ln ln n). Then:

lim
n→∞

P [G (n, rn) is Hamiltonian ] =







0 if xn → −∞;

e−
√
πe−x−e−x

if xn → x ∈ R;
1 if xn → +∞.



An extension

Let us write

k-EDHs := there exist k edge-disjoint Hamilton cycles.

Theorem. [M+Perez+Wormald, 09+] For each fixed k we
have:

ρn(k-EDHs) = ρn(min.deg. ≥ 2k) w.h.p.



More extensions

pancyclic := ∃ cycles of all lengths between 3 and n.
Hamilton connected := between any two points ∃ a Hamilton path.

Theorem. ρn(pancyclic) = ρn(min.deg. ≥ 2) w.h.p.

Theorem. ρn(Hamilton connected) = ρn(min.deg. ≥ 3) w.h.p.

All are analogues of classical results for the Erdős-Rényi random
graph.



Part IV: the power of two choices.
(Work in progress)
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The power of two choices

There are n rounds, and in each round two random points arrive.

There is a player who has to decide which of the two points two
points to keep. (He does not know the future).

The player wants to delay or speed up some property / event, such
as having a linear size component.
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Let us denote by G (n, r ,S) the (random geometric) graph we end
up after n rounds, when the player plays strategy S .

Suppose the player plays randomly.
If (rn)n is such that πnr2n ≥ λcrit + ε then there is a linear size
component, i.e.

L(G (n, rn,S) ≥ c · n w.h.p.

(This follows from a result of Penrose.)

What happens if we play optimally rather than randomly?



Birth control

Theorem.[M+Spöhel, 11+] There exist functions
f , g : [0,∞) → (0, 1) such that the following hold. If (rn)n is such
that

πnr2n = c · n 1
3 /(ln ln n)

2
3 ,

for some fixed c > 0 then

(i) There exists a strategy S such that L(G (n, r ,S)) ≤ f (c)n
w.h.p.;

(ii) For every strategy S , we have that L(G (n, r ,S)) ≥ g(c)n
w.h.p.

Moreover, f (c) → 0 as c ↓ 0 and g(c) → 1 as c → ∞.



Thank you for your attention!


