

Fédération Denis Poisson Orleans-Tours Laboratoire de Mathématiques et Physique Théorique http://www.lmpt.univ-tours.fr

Asymptotic behavior of the survival probability for a critical branching process in markovian environment

Yinna YE

Workshop YEP VIII 2011 EURANDOM

17 March 2011

Branching process in random environment: definition (1)

Consider

- a measurable space (E, ξ) and its corresponding product measurable space (Ω, 𝔅) = (E^ℕ, ξ^ℕ);
- a probability law Π on Ω
- a family $(p_{\theta})_{\theta \in E}$ of probability law p_{θ} on \mathbb{N} ; we denote by g_{θ} the generating function of p_{θ} defined by

$$g_ heta(s):=\sum_{k=0}^{+\infty}p_ heta(k)s^k, ext{ for } 0\leq s\leq 1.$$

Any element ω = (ω_i)_{i≥0} ∈ Ω is called an environment process.

 For a fixed environment process ω = (ω_i)_{i≥0} ∈ Ω, we consider a branching process (Z_n)_{n≥0} such that Z₀ = 1 and the reproduction law of an individual of the generation *i* has the generating function g_i.

The generating function of Z_n is

$$G_n(s) := g_0 \circ g_1 \circ \ldots \circ g_{n-1}(s) \quad 0 \leq s < 1.$$

- Denote by P_ω the conditional probability of the branching process (Z_n)_n on Λ = N^N, given the environment ω ∈ Ω.
- The total probability denoted by $\mathbb P,$ defined on $\Lambda\times\Omega,$ is defined by

$$\mathbb{P} = \int_{\Omega} \mathbb{P}_\omega \otimes \delta_\omega \mathsf{d} \mathsf{\Pi}(\omega).$$

We denote by ${\mathbb E}$ the corresponding expectation.

Branching process in random environment: basic results (1)

In the case of a stationary ergodic environment (ie Π is invariant and ergodic for the shift on Ω), we have the following results:

Theorem (Athreya & Karlin, 1971)

• If $\mathbb{E}[\ln g'_0(1)] \le 0$, then

$$\mathbb{P}_{\omega}(\lim_{n\to+\infty}Z_n=0)=1,\quad \Pi-a.s.$$

 $\mbox{ If } \mathbb{E}[\ln g_0'(1)]>0 \mbox{ and } \mathbb{E}\{-\ln(1-g_0(0))\}<+\infty, \mbox{ then }$

$$\mathbb{P}_{\omega}(\lim_{n\to+\infty}Z_n=0)<1,\quad \Pi-a.s.$$

Branching process in random environment: basic results (2)

The branching process $(Z_n)_{n\geq 0}$ is called

- supercritical, if $\mathbb{E}[\ln g_0'(1)] > 0$;
- critical, if $\mathbb{E}[\ln g'_0(1)] = 0;$
- subcritical, if $\mathbb{E}[\ln g_0'(1)] < 0$.

Branching process in random environment: basic results (3)

In the case of i.i.d. environment (ie $\Pi = \mu^{\otimes \mathbb{N}}$ for some probability μ on *E*), we have

Theorem (Guivarc'h, Le Page & Liu 2003)

if
$$\mathbb{E}[\ln g'_0(1)] = 0$$
, $0 < \mathbb{E}[\ln g'_0(1)]^2 < +\infty$ and
 $\mathbb{E}\{[\frac{g''_0(1)}{(g'_0(1))^2}]^{\varepsilon}\} < +\infty$ for some $\varepsilon > 0$, then

$$\mathbb{P}(Z_n>0)\sim rac{C}{\sqrt{n}}, \quad \text{ as } n o +\infty,$$

where $C \in \mathbb{R}^{*+}$.

Branching process in markovian random environment Definition (1)

Let

- $\mathcal X$ be a finite set
- $X = (X_n)_{n \ge 0}$ be an irreducible and aperiodic Markov chain on \mathcal{X} with transition matrix $P = (p_{i,j})_{i,j \in \mathcal{X}}$;

• ν be the (unique) *P*-invariant probability measure on \mathcal{X} . We denote by *G* the semi-group of all generating functions of probability measures on \mathbb{N} and \mathcal{G} its σ -algebra. We consider a finite family $(\overline{F}(i,j,\cdot))_{i,j\in\mathcal{X}}$ of probabilities on $(\mathcal{G},\mathcal{G})$. • Consider now the Markov chain $(M_n)_{n\geq 0} = (g_n, X_n)_{n\geq 0}$ with values in $G \times \mathcal{X}$ with transition probability Q

$$Q\{(g,i), (A \times \{j\})\} = p_{i,j}\overline{F}(i,j,A).$$

- The Markov chain $(M_n)_{n\geq 0}$ will be our **environment process**.
- Given the environment (M_n)_{n≥0}, we consider the branching process (Z_n)_{n≥0}, Z₀ = 1 associated to the sequence (g_n)_{n≥0}.

Note that the g_n are in "markovian dependance"; in the case when \mathcal{X} reduces to one point, the random environment is i.i.d.

<u>Goal</u>: to generalize Guivarc'h, Le Page & Liu's theorem [2003] in the case when $(Z_n)_{n\geq 0}$ is in markovian environment.

Branching process in markovian random environment Hypotheses

Consider $h: G \to \overline{\mathbb{R}}_+, g \mapsto h(g) := \ln g'(1)$. The image of the probability $\overline{F}(i, j, \cdot)$ by the map h is denoted by $F(i, j, \cdot)$. Assume that the following hypotheses (H) are satisfied: H1 there exist $\alpha > 0$, such that for all $\lambda \in \mathbb{C}$ satisfying $|\mathsf{Re}\lambda| < \alpha$, we have $\sup_{(i,j)\in\mathcal{X}\times\mathcal{X}}|\widehat{F}(i,j,\lambda)|<+\infty,$ where $\widehat{F}(i, j, \lambda) = \int_{\mathbb{D}} e^{\lambda t} F(i, j, dt);$ H2 there exist $n_0 \ge 1$ and $(i_0, j_0) \in \mathcal{X} \times \mathcal{X}$ such that the measure $\mathbb{P}_{i_0}(X_{n_0} = j_0, S_{n_0} \in dx)$ has an absolutely continuous component with respect to the Lebesgue measure on \mathbb{R} :

H3
$$\sum_{(i,j)\in\mathcal{X}\times\mathcal{X}}\nu_i p_{i,j}\int_{\mathbb{R}} tF(i,j,dt) = 0.$$

Theorem

Under hypotheses (H), for any $(i,j) \in \mathcal{X} \times \mathcal{X}$, there exists a constant $0 < \beta_{i,j} < +\infty$ such that

$$\mathbb{P}(Z_n > 0, X_n = j/M_0 = (Id, i)) \sim rac{eta_{i,j}}{\sqrt{n}}, \quad \text{as } n o +\infty.$$

Proof of the main result

General formulations

 Given the environment (M_n)_{n≥0}, the survival probability of the branching process (Z_n)_{n≥0} at the generation n is equal to

$$q_n:=1-G_n(0).$$

• Setting $S_0 = 0$ and $S_n = S_0 + Y_1 + \cdots + Y_n$ with $Y_n = \ln g'_{n-1}(1)$ for $n \ge 1$, one gets:

$$q_n^{-1} = \exp(-S_n) + \sum_{k=0}^{n-1} \eta_{k,n} \exp(-S_k),$$

where, for
$$0 \le k \le n-1$$
 and $s \in [0, 1[$
1 $\eta_{k,n} = f_k(g_{k+1,n}(0));$
2 $f_k(s) = \frac{1}{1 - g_k(s)} - \frac{1}{g'_k(1)(1 - s)};$
3 $g_{k,n} = g_k \circ g_{k+1} \circ \cdots \circ g_{n-1}$ and $g_{n,n} = Id;$

Proof of the main result Local limit theorem (1)

Set
$$m_n = \min(S_0, S_1, \cdots, S_n)$$
.

Theorem (Local limit theorem)

Under the hypotheses (H), for all $(i, j) \in \mathcal{X} \times \mathcal{X}$, one gets

$$\lim_{n \to +\infty} \sqrt{n} \mathbb{P}_i(m_n \ge -x, X_n = j) = h_{i,j}(x), \tag{1}$$

where the functions $(x, i) \mapsto h_{i,j}(x)$ are harmonic for $(S_n, X_n)_{n \ge 0}$ and satisfy

- for any $i, j \in E$, $x \mapsto h_{i,j}$ is increasing;
- $h_{i,j}(x) > 0$ for $x \ge 0$. Moreover,

$$h_{i,j}(x)\sim x\sqrt{rac{2}{\sigma^2}}\
u_j, \quad ext{as } x o +\infty.$$

Proof of the main result Local limit theorem (2)

The proof of the local limit theorem is based on

- the factorization theory of Presman;
- Several technics from the theory of complex variable functions (analytic continuation, Weiertrass preparation lemma, residue theorem ...) ...

Proof of the main result Sketch of the proof (1)

• We want to check that

$$\sqrt{n} \mathbb{P}_i(Z_n > 0) \xrightarrow{n \to +\infty} \beta_i, \qquad (2)$$

whith $\beta_i > 0$.

Since

$$\mathbb{P}_i(Z_n>0)=\mathbb{P}_i(Z_n>0,m_n<-x)+\mathbb{P}_i(Z_n>0,m_n\geq -x),$$

the equality (2) is an immediate consequence of the following two lemmas

Proof of the main result Sketch of the proof (2)

Lemma 1

Under the conditions (H), we have

$$\lim_{n\to+\infty}\sqrt{n}\,\mathbb{P}_i(Z_n>0,m_n\geq-x)=\beta_i(x),$$

where $\beta_i(x) > 0$, for any $i \in \mathcal{X}$. Moreover, $\lim_{x \to +\infty} \beta_i(x) = \beta_i > 0$.

Proof of the main result Sketch of the proof (3)

Lemma 2

Under the conditions (H), we have for any $n \ge 0$,

$$0 \leq \mathbb{P}_i(Z_n > 0, m_n < -x) \leq \theta(x)$$

where θ satisfies $\lim_{x \to +\infty} \theta(x) = 0$.

Thank you for your attention!

yinna.ye@lmpt.univ-tours.fr