Laboratoire de Mathématiques et Physique Théorique

htt w.lmpt .univ-tours.fr

Asymptotic behavior of the survival probability for
a critical branching process in markovian
environment

Yinna YE

Workshop YEP VIII 2011
EURANDOM

17 March 2011

Yinna YE Workshop YEP VIII 2011



Introduction

Branching process in random environment: definition (1)

Consider
@ a measurable space (E, &) and its corresponding product
measurable space (,3) = (EN, M),
@ a probability law T on Q

e a family (pg)eee of probability law pg on N; we denote by gy
the generating function of py defined by

+00
go(s) = Zpg(k)sk, for 0 <s < 1.
k=0

@ Any element w = (wj)i>0 € Q is called an environment
process.
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Introduction

Branching process in random environment: definition (2)

e For a fixed environment process w = (wj)i>0 € €2, we consider
a branching process (Z,),>0 such that Zy =1 and the
reproduction law of an individual of the generation i has the
generating function g;.

The generating function of Z, is

Gn(s) =googio...ogn1(s) 0<s<l.
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Introduction

Branching process in random environment: definition (3)

@ Denote by P, the conditional probability of the branching
process (Z,), on A = NY, given the environment w € Q.

@ The total probability denoted by IP, defined on A x €, is
defined by

P= / P, © 5,dM(w).
Q

We denote by E the corresponding expectation.
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Introduction

Branching process in random environment: basic results (1)

In the case of a stationary ergodic environment (ie 1 is invariant
and ergodic for the shift on ), we have the following results:

Theorem (Athreya & Karlin, 1971)
@ /fE[Ingy(1)] <0, then

Pw(nlir—]l—qoo Z,=0)=1, M-as.

@ I/fE[Ingi(1)] > 0 and E{—In(1 — go(0))} < 400, then

Py ( ll>Too Z,=0)<1, TM—as.

n
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Introduction

Branching process in random environment: basic results (2)

The branching process (Z,)n>0 is called

e supercritical, if E[ln g{(1)] > 0;
e critical, if E[Ingg(1)] = 0;
e subcritical, if E[In gj(1)] < 0.
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Introduction

Branching process in random environment: basic results (3)

In the case of i.i.d. environment (ie M = u®N for some probability
won E), we have

Theorem (Guivarc'h, Le Page & Liu 2003)

ifIE[In go( )] =0, 0 < E[lngj(1)]? < 400 and
E{[( )2] } < +oo for some € > 0, then

P(Z, > 0) ~ as n — o0,

1
ﬁ’

where C € R*T. |
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Branching process in markovian random environment

Definition (1)

Let
@ X be a finite set

@ X = (Xp)n>0 be an irreducible and aperiodic Markov chain on
X with transition matrix P = (p;j)ijex;

@ v be the (unique) P-invariant probability measure on X.

We denote by G the semi-group of all generating functions of
probability measures on N and § its o-algebra.

We consider a finite family (F(7,/,-))ijcx of probabilities on
(G, 9).
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Branching process in markovian random environment

Definition (2)

e Consider now the Markov chain (Mp),>0 = (gn, Xn)n>0 with
values in G x X with transition probability Q

Q{(g, 1), (Ax L} = pijF(iJ, A).

@ The Markov chain (Mp,),>0 will be our environment process.

@ Given the environment (M,),>0, we consider the branching
process (Zp)n>0, Zo = 1 associated to the sequence (gn)n>0-
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Branching process in markovian random environment

A remark

Note that the g, are in “markovian dependance”; in the case when
X reduces to one point, the random environment is i.i.d.
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Branching process in markovian random environment

Goal

Goal: to generalize Guivarc'h, Le Page & Liu's theorem [2003] in
the case when (Z,)n>0 is in markovian environment.
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Branching process in markovian random environment

Hypotheses

Consider h: G — Ry, g~ h(g) :=Ing’(1). The image of the
probability F(i,j,-) by the map h is denoted by F(i,j,-). Assume
that the following hypotheses (H) are satisfied:
H1 there exist o > 0, such that for all A € C satisfying
|IRe)| < «, we have

~

sup |F(i,j,A)| < +o0,
(ij)exxXx

where /I—:(i,j, A) = [p eMF(i,j,dt);

H2 there exist ng > 1 and (ip,jo) € X X X such that the
measure Pj (Xn, = Jjo, Sn, € dx) has an absolutely
continuous component with respect to the Lebesgue
measure on R;

H3 Z I/,'p,"j/ tF(i,j,dt) = 0.

(i))EXXX R
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Branching process in markovian random environment

Main result

Under hypotheses (H), for any (i,j) € X x X, there exists a
constant 0 < 3; j < 400 such that

P(Z,>0,X,=j/My=(Ild,i)) ~ as n — +oo.

Bij
ﬁ?
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Proof of the main result

General formulations

@ Given the environment (M,),>0, the survival probability of
the branching process (Z,)n>0 at the generation n is equal to

an :=1— G,(0).
@ Setting Sy =0and S, = So + Y1 +---+ Y, with
Yo, =Ing/_1(1) for n > 1, one gets:

n—1

;" =exp(—Sn) + Y Mk exp(—Sk),
k=0

where, for 0 < k< n—1and s € [0,1]
Q Nk,n = fk(gk+1,n(0));
Q fi(s) = - ;
O =T aE)  gmi-9)
© 8kn=8kOgkt10- - 0gn—1 and gn, = Id;




Proof of the main result

Local limit theorem (1)

Set m, = min(So, S1,---, Sn).

Theorem (Local limit theorem)

Under the hypotheses (H), for all (i,j) € X x X, one gets

nETooﬁPi(mn > —X,X,, :_]) = h;J(X), (].)
where the functions (x, i) — h; j(x) are harmonic for (Sn, Xn)n>0
and satisfy
e foranyi,j € E, x— h;; is increasing;
. h;J(X)>0 for x > 0.

Moreover,

2
hi j(x) ~ x 2V X +o0.
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Proof of the main result

Local limit theorem (2)

The proof of the local limit theorem is based on
© the factorization theory of Presman;

@ several technics from the theory of complex variable functions
( analytic continuation, Weiertrass preparation lemma, residue
theorem ...) ...
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Proof of the main result

Sketch of the proof (1)

@ We want to check that
VnPi(Z, > 0) "25° 8, (2)

whith 5; > 0.

@ Since
Pi(Z, > 0)=Pi(Z, > 0,m, < —x) +Pi(Z, > 0, m, > —x),

the equality (2) is an immediate consequence of the following
two lemmas
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Proof of the main result

Sketch of the proof (2)

Under the conditions (H) , we have

lim /1 Bi(Zy > 0,m, > —x) = Bi(x),

n—-+o00

where (Bi(x) > 0, for any i € X. Moreover,
limy— 100 ,3,‘(X) =i > 0.
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Proof of the main result

Sketch of the proof (3)

Under the conditions (H) , we have for any n > 0,

0 < Pi(Z, > 0,m, < —x) < 0(x)

where 0 satisfies lim 6(x) = 0.
X—>+00
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Thank you for your attention!

yinna.ye@lmpt.univ-tours.fr
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